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The accessory spleen, a condition affecting a subset of the population, often presents 

diagnostic challenges due to its potential for being mistaken for a tumor or cyst. This 

underscores the importance of accurate identification of the accessory spleen. In this study, 

the development of a patch-based hybrid Convolutional Neural Network (CNN) model 

designed for the automatic detection of the accessory spleen is presented. The proposed 

model applies a five-step process in the detection of the accessory spleen, encompassing the 

extraction of the potential accessory spleen region, extraction of features from this region, 

selection of consistent and significant features, integration of these features, and their 

subsequent classification. Specialist physicians were responsible for the extraction of the 

region of interest. For feature extraction, four distinct CNN architectures were employed 

(AlexNet, Vgg16, MobileNet, Resnet50), and the feature vectors derived from these 

architectures were integrated. The Neighborhood Components Analysis (NCA) and ReliefF 

algorithms were utilized for the selection of the most representative features, which were 

subsequently classified using Support Vector Machines (SVM) and k-Nearest Neighbors (k-

NN). The study revealed that the highest performance was achieved through the combination 

of SVM and ReliefF, yielding an accuracy of 93.87% (evaluated via 10-fold cross-

validation). The findings suggest that the proposed model could offer valuable decision 

support for physicians in the preliminary identification of the accessory spleen during 

clinical evaluations of tumors and similar structures resembling the accessory spleen. 
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1. INTRODUCTION

Accessory spleens, which are variously-sized secondary 

spleens that form during the embryological development 

within the womb, present a unique characteristic in contrast to 

the normal spleen tissue [1-4]. These entities, which develop 

differently from the conventional spleen, typically are smaller 

in size and can range from a few millimeters to several 

centimeters. On average, the diameter of an accessory spleen 

is considered to be approximately 1 cm [5-7]. 

The presence of accessory spleens, which can be singular or 

multiple, is an anatomical condition observed in 

approximately 10% to 30% of the human population [8-10]. A 

true encapsulated accessory spleen is comprised of smooth 

muscle and elastic tissue [5]. Commonly, these accessory 

spleens are located in the hilus, the region where arteries enter 

the normal spleen [10]. However, the location in which 

accessory spleens develop within the human body can be 

variable [9, 10]. 

Apart from the hilus, accessory spleens can potentially form 

in several other regions within the human body, such as the tail 

of the pancreas, the stomach wall, intestinal wall, gastrosplenic 

ligaments, omentum, mesentery, and in the pelvis in females 

or scrotum in males [7-10]. Accessory spleens typically 

remain in the human body for a lifetime, often without 

producing any clinical symptoms. Therefore, they are usually 

asymptomatic [9, 10]. A representative CT image 

demonstrating the presence of an accessory spleen is provided 

in Figure 1. 

Figure 1. CT image of accessory spleen 

1.1 Related works 

When the literature is examined, in a study conducted by 

Adem Aktürk in 2013, some features of accessory spleens in 

the computed tomography images taken for the abdominal 

region of 1000 patients were examined. As a result, it was 

emphasized that the vascular vessels feeding the accessory 

spleen can be detected to a large extent in thin-section 

computed tomography and the diagnosis can be made that 

distinguishes it from other organ structures that can be 

confused with the accessory spleen [11]. In another study 

conducted by Linguru et al. [12] in 2013, the volume of the 

spleen was automatically determined by labeling 172 spleen 

images (45 images of normal spleen, 127 images of abnormal 
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spleen) created by computed tomography. The obtained results 

were compared and analyzed in the light of previous studies. 

An accuracy rate of 95.2% was obtained [12]. In a study 

conducted by Onur Osman and other authors in 2016, 

automatic segmentation of the injured spleen was performed 

using morphological features of the normal spleen, computed 

tomography and abdominal images, and computer-aided 

diagnosis (CAD) method was proposed. The sensitivity of the 

proposed system in this study was reported to be 

approximately 96.42% [13]. It has been stated that this 

proposed method can provide a faster and more robust 

diagnosis than existing methods. In a study conducted by 

Teomete et al. [14] in 2018, performed a computer-assisted 

diagnosis (CAD) labeling study by using spleen 

morphological features to automatically detect traumatic 

abdominal pathologies. The system in this study was 

approximately 97.63%. It has given a sensitivity and it has 

been emphasized that all other traumatic abdominal 

pathologies can be detected more successfully and more 

effectively. Humpire-Mamani et al. [15] proposed a deep 

learning-based spleen volume detection study and performed 

volume determination with an accuracy of up to 92% using 

computed tomography images of 1100 patients. 

 

1.2 Problem statement  

 

If a clinical symptom occurs due to accessory spleen, 

accessory spleen should be removed with a surgical 

intervention [3-6, 10]. If the person's normal spleen has 

problems such as injury, cyst, or tumor, the normal spleen may 

need to be surgically removed [5, 6]. In this case, the accessory 

spleen can function like a normal spleen [10]. If the person's 

normal spleen is working more than it should, and in this case, 

if the spleen tissue needs to be surgically removed, accessory 

spleens should also be removed [5, 6]. Accessory spleens can 

be easily detected for radiological imaging due to their 

presence in fatty tissue [2], but the accessory spleen may 

appear larger in imaging methods because it is a highly bloody 

tissue [5]. In addition, accessory spleens are usually visualized 

with the help of computed tomography, and when noticed, 

they can be confused with cysts or tumors [2, 5]. In this case, 

it is very important to know the presence of accessory spleens 

and to detect them correctly in order to prevent an incorrect 

intervention when the person has a clinical symptom or a 

problem with the normal spleen [8-10]. Therefore, we propose 

a CNN-based hybrid model for automatic detection of 

accessory spleen to provide decision support to specialist 

physicians. 

 

1.3 Contributions of our study 

 

The contributions of the proposed system are summarized 

below. 

A new hybrid CNN model was introduced. 

A dataset of CT images containing accessory spleen was 

created. 

A CNN-based system was created for the detection of 

accessory spleen. 

Accessory spleen was detected automatically with high 

success in the study. 

It has been shown that a hybrid model can be more 

successful by combining classical CNN models. 

A decision support system was created for specialist doctors 

for the preliminary diagnosis of accessory spleen. 

2. MATERIAL AND METHODS 
 

2.1 Dataset 
 

In this study, the dataset was obtained from a total of 390 

individuals, 172 with accessory spleens and 218 without 

accessory spleens. There are a total of 1550 CT images. 

Accessory spleen is present in 684 of these images and absent 

in 866 of them. The ages of individuals range from 20 to 85 

years. 182 of them are women and 208 of them are men. Other 

information of individuals was not taken care of because it was 

unimportant. The performance of the study was tested with 

both ten-fold cross validation and hold out validation. For hold 

out validation, 310 images (20%) are reserved for testing and 

1240 (80%) images are reserved for training. Statistical 

information about the data set is given in Table 1. 
 

Table 1. Statistical information of the data set 
 

 No Accessory Spleen Accessory Spleen 

Number of Person 218 172 

Number of Image 866 684 

Age (Mean±SD) 29.54±8.32 32.52±11.97 

Gender (M) 106 (48.62%) 102 (59.3%) 

 

2.2 Methods 

 

In this study, a CNN-based hybrid model for the detection 

of accessory spleen is proposed. A five-step process was 

followed in the study of the model. These steps are obtaining 

patch images of accessory spleen from the CT image, feature 

extraction, feature fusion feature selection and classification. 

In the first step, 16 patch images of 32×32 were obtained from 

128×128 images created by the doctor from the ROI regions. 

In the second step, patch images were fed to AlexNet [16], 

Vgg16 [17], ResNet50 [18], MobileNetV2 [19] CNN models 

to obtain features of patch images. Each model obtained a 

feature vector of 1×1000 for a patch image from the fully 

connected layer. For 16 patch images, a total of 16000 features 

were obtained from each model. In the third stage, a feature 

vector of 1×64000 was created by combining the feature 

vectors. In the fourth stage, feature selection based on NCA 

and ReliefF was made to extract the most decisive features in 

classification performance. These features selected in the last 

step were classified by SVM and k-NN. The schematic 

representation of the study is given in Figure 2 and the pseudo 

code is given in algorithm 1. Each of the process steps is 

described in detail in the following sections.  
 

Algorithm 1. Pseudocode of the proposed patch-based 

model 

Input: Accessory Spleen Dataset (asd) 

Output: Classification Result  

00 Load asd   

01 for i=1 to N // N is the number of Images  

02 I=asdi   // Read each image (I) from 

dataset 

 

03   Ir=roi(I) // Ir (256 x 256) is 

ROI of I  

  

04   Resize the Ir to 128 x 128   

05  for k=1 to 16    

06 Ip=Irk      

07 F1=AlexNet(Ip) // Extract to feature with 

AlexNet 

08 F2= Vgg16(Ip) // Extract to feature with Vgg16 
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09 F3=ResNet50(Ip) // Extract to feature with 

ResNet 

10 F4=MobileNet(Ip) // Extract to feature with 

MobiletNet  

11 F=merg (f1, f2, f3, f4)   

13 end for k   

14 end for i   

15 Normalize fT using min-max normalization 

16 𝐹𝑠 = 𝑓𝑛𝑐𝑎(𝐹)  or 𝐹𝑠 = 𝑓𝑟𝑙𝑓(𝐹)  //Apply NCA and 

ReliefF to F  

17 Select the top 1000 features  

18  SVM(Fs,class) // Export selected features to the cubic 

SVM classifier. 

19  Obtain classification results with 10-fold CV and 

80:20 hold-out validation 

 

 
 

Figure 2. Proposed hybrid model 

 

Step 1: Obtaining patch images 

In this section, firstly, redundant regions without AS were 

removed from the original CT images. The ROI image 

determined by the doctor was obtained as 256×256. These 

images have been resized to 128×128. Then, 16 patch images 

of 32×32 dimensions were created on these images. 

 

Step 2: Feature extraction  

Feature extraction is the most advantageous feature of 

traditional machine learning algorithms. The performance of 

deep learning networks is directly related to identifying 

features with high classification ability. Deep learning models 

provide high classification performance thanks to its multiple 

layers. However, this creates computational complexity. In 

order to reduce this complexity, pre-trained models (AlexNet, 

Vgg16, ResNet50, MobileNetV2) were used in this study. 

These 4 models have been chosen because they have high 

performance in classification problems. A feature vector of 

1x1000 dimensions was obtained for each patch image from 

the fully connected layers of these models. Since each 

dimensioned accessory image consists of 16 patches, a total of 

16000 features were obtained from each model. I is the patch 

number and Ipi is the ith patch image F1, F2, F3, F4 represent 

feature vectors of 16 patch images obtained with AlexNet, 

Vgg16, MobileNetV2 and ResNet50, respectively. 

 

𝐹1 = ∑𝐴𝑙𝑒𝑥𝑁𝑒𝑡(𝐼𝑝𝑖
)

16

𝑖=1

 (1) 

 

𝐹2 = ∑ 𝑉𝑔𝑔16(𝐼𝑝𝑖
)16

𝑖=1    (2) 

 

𝐹3 = ∑𝑀𝑜𝑏𝑖𝑙𝑒𝑁𝑒𝑡𝑉2(𝐼𝑝𝑖
)

16

𝑖=1

 (3) 

 

𝐹4 = ∑𝑅𝑒𝑠𝑁𝑒𝑡50(𝐼𝑝𝑖
)

16

𝑖=1

 (4) 

 

Step 3. Feature margining 

Different network models extract different features from an 

image. The fact that the feature vector of the image contains 

different features directly affects the classification 

performance. For this purpose, feature fusion was used in the 

study. F1, F2, F3, F4 feature vectors from the fully connected 

layer of each model were combined as in Eq. (5) and a 

1×64000 F feature vector of each accessory spleen image was 

obtained. Here U is the concatenation operator. 

 

𝐹 = 𝐹1 ∪ 𝐹2 ∪ 𝐹3 ∪ 𝐹4 (5) 

 

Step 4: Feature selection 

In classification problems, feature selection is used to obtain 

the most distinctive features in the feature vector. In addition, 

complex calculations and high processing time caused by 

unnecessary features are avoided. For this purpose, ReliefF 

[20] and Neighborhood component analysis NCA [21] feature 

selection algorithms were used to determine the most 
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distinctive features from the 1×64000 feature vector and to 

create a subset of the feature vector. 

Neighborhood component analysis (NCA): It assigns a 

coefficient to each feature. These coefficients are weighted 

according to the relationship between the features. Features 

with a high coefficient are enhanced, while features with a low 

coefficient are disabled. NCA is formulated as an optimization 

problem [20]. The feature selection process of NCA is 

explained below.  
 

𝐹𝑠 = 𝑓𝑛𝑐𝑎(𝐹) (6) 

 

Here, F is the merged feature vector, fnca is the NCA 

function, and 𝐹𝑠 is the selected feature vector. Its mathematical 

expression is given in Eq. (7). 

 

�⃗⃗� = 𝑎𝑟𝑔𝑤𝑚𝑎𝑥 ∑𝑝𝑖 −

𝑛

𝑖=1

𝜆 ∑𝑤𝑟
2

𝑑

𝑟=1

 (7) 

 

Here, �⃗⃗�  is the weight vector, pi is the probability of 

predicting the correct class of the classifier, wr is the weighting 

coefficient of the r’th feature, and λ is the correction 

coefficient. It improves the generalization coefficient of NCA. 

λ makes the weights of unimportant features zero. A large λ 

will reset the weighting coefficients of all features. That's why 

choosing the right value is important. 

 

ReliefF: It is one of the distance-based feature selection 

algorithms [21]. It uses a Manhattan distance-based function. 

It is weighted depending on the distance value. Positive values 

highlight important features, while negative values suppress 

unimportant features (Eq. (8)). 

 

𝑅𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑅𝐹(𝑓, 𝑡) (8) 

 

Here, Rlfweight represents weight values, RF weight function. 

F denotes the feature vector and t denotes the targeted values. 

The formula as in Eq. (9) is applied to remove the features with 

negative values.  

𝑓∗(ℎ) = 𝑓𝑒𝑎𝑡(𝑘), 
𝑖𝑓 𝑅𝑙𝑓𝑤𝑒𝑖𝑔ℎ𝑡(𝑘) > 0, ℎ = ℎ + 1, ℎ ≤ 𝑘, 𝑘

= {1,2,3. .1000} 
(9) 

 

Here, f*(h) represents features with positive value. The 

feature selection process of ReliefF is explained below.  

 

𝐹𝑠 = 𝑓𝑟𝑙𝑓(𝐹) (10) 

 

Here, F is the merged feature vector, frlf is the ReliefF 

function, and Fs is the selected feature vector. 

 

Step 5: Classification 

The most distinctive 1000 feature vectors selected by 

ReliefF and NCA were given to the SVM and k-NN classifier. 

Ten-fold cross validation and hold out cross validation were 

used as classification strategy. 

 

 

3. EXPERIMENTAL SETUP  
 

The proposed model was created in Matlab (2021b) 

environment. The computer used in the study has a 64-bit 2.30 

GHz processor and 16 GB of RAM. Figure 1 shows the 

performance of the proposed model and pre-trained models 

(AlexNet, Vgg16, ResNet50, MobileNetV2) in accessory 

spleen detection. The parameters of the algorithms are given 

in Table 2. Confusion matrix was used to evaluate the 

performance of the proposed model. The confusion matrix 

offers a comprehensive assessment. Ten performance 

parameters were obtained from the confusion matrix. These 

parameters are accuracy (A), sensitivity (SN), specificity (SP), 

precision (P), F1 score (F1), misclassification rate (M), 

negative predictive value (NPV), false positive rate (FPR), 

false discovery. rate (FDR), false negative rate (FNR), and 

True positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN). The results obtained in Table 3 are 

presented in detail.  

 

Table 2. Parameters of the algorithms 

 
Phase Algorithm/Architecture Hyperparameter 

Feature Extraction 

AlexNet 

Total Parameters: 62 million 

Number of Layers: 25 

Output: FC8 

Vgg16 

Total Parameters: 138 million 

Number of Layers: 41 

Output: FC8 

ResNet50 

Total Parameters: Over 23 million 

Number of Layers: 50 

Output: FC1000 

MobileNetV2 

Total Parameters: 3.4 million 

Number of Layers: 154 

Output: logits 

Feature Selection 

NCA 
Solver: Stochastic Gradient Descent (SGD) 

Iteration: 10000 

ReliefF 
Nearest neighbors Value (K): 2 

Distance Scale Factor (Sigma): Infinitive 

Classification 

SVM 

Kernel: Cubic polinomial, 

Validation: Ten-Fold 

Kernel Scale: Auto 

k-NN 
Number of Neighbors: 2 

Distance Metric: Euclidean 
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Table 3. The obtained performance values 

 
     Proposed Model 

METRICS AlexNet Vgg16 ResNet50 MobileNet ReliefF NCA 

A(%) 89.85  88.89  89.45  90.50  93.87 92.23 

SN(%) 90.82  89.8  89.80  90.91  94.16  92.86 

SP(%) 88.89  88. 00 89.11  90.10  93.59  91.61 

P(%) 89. 00 88. 00 88.89  90. 00 93. 55 91.67 

F1(%) 89.9  88.89  89.34  90.45  93.85  92.26  

M(%) 10.15  11.11  10.55  9.50  6.13  7.77 

NPV(%) 90.72  89.8  90. 00 91. 00 94. 19 92.81 

FPR(%) 11.11  12. 0 10.89  9.90 6.41  8.39  

FDR(%) 11. 00 12. 00 11.11  10. 00 6. 45 8. 33 

FNR(%) 9.18  10.20 10.20 9.09  6.84 7.14  

 

 
 

Figure 3. Confusion matrix obtained by SVM classifier and feature selection algorithms A. ReliefF B. NCA 

 

 
 

Figure 4. Change in accuracy values according to different classifier and feature selection algorithms 
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According to Table 3, the highest performance values 

among the pre-trained models were obtained with 

MobileNetV2 (Accuracy 90.5%, Sensitivity 90.9%, Specify 

90.10%). ReliefF and NCA feature selection algorithms are 

used in the proposed hybrid model to increase the detection 

performance of AS. Using the features selected by ReliefF, 

93.87% Accuracy, 94.16% Sensitivity and 93.59% Specificity 

were obtained in the detection of AS. 92.23% Accuracy, 

92.86% Sensitivity and 91.61% Specificity were obtained in 

the detection of AS by using the selected feature with NCA. 

The performance of the study was tested with both ten-fold 

cross validation and hold out cross validation (19.3% test and 

80.7% train). Different performance values were obtained by 

using different classifier and feature selection algorithms. The 

obtained values show that SVM has a higher performance of 

approximately 1% compared to k-NN. The highest 

performance was obtained with hold out CV and 

SVM+ReliefF as 93.87%. Table 3 summarizes the results 

obtained. Figure 3 shows the confusion matrices obtained 

using ReliefF and NCA. The highest performance SVM 

classifier and ReliefF feature selection algorithm were 

obtained. The 1000 features, which are the most determinant 

in the 1×64000 feature vector, are analyzed and their accuracy 

changes are given in Figure 4. As can be seen in Figure 4, 

when SVM+ReliefF algorithms are used together, the 

maximum accuracy value of 93.87% was obtained with the 

first 195 features. The lowest performance was obtained when 

the k-NN classifier and NCA feature selection algorithm were 

used together. The accuracy value obtained using the first 146 

features was 91.85%. 

 

 

4. DISCUSSION 

 

The proposed model in the study is more successful than the 

classical and pre-trained models for the detection of accessory 

spleen. A classification is made with 1000 features from the 

fully connected layer of a pre-trained CNN model. The 

proposed model, on the other hand, was selected as the most 

distinctive 1000 features among 64000 features obtained from 

4 different CNN models. In this way, a higher accuracy value 

was obtained with a hybrid model in which the best features 

selected by different models were used. A disorder that occurs 

during the shooting of some individuals negatively affects the 

performance of the proposed model. In some images, 

accessory spleen sizes were far below the average and could 

not be detected. This caused False Negatives to occur. All of 

the false negative images resulted from such a situation. Figure 

5 shows sample images of false positives, false negatives, true 

positives, and true negatives. 

In medical images, especially CT images, the area of 

interest is usually in a small part of the image. Therefore, 

instead of analyzing the whole image, dividing the relevant 

region in the image into patches is necessary both in terms of 

performance and to reduce the processor load. In addition, the 

size of the selected patch image and its size to include the 

relevant lesion or tissue is an important criterion for success. 

The position of the accessory spleen in the CT image was 

determined by the specialist doctor. This area of interest 

covers a 128×128 region. As seen in Figure 5, the accessory 

spleen can be found in different locations within this area 

determined for each CT image in the data set. Accessory 

spleens in the dataset are of variable size, from approximately 

20×20 to 30×30 pixels in the whole image. In this study, the 

effect of different patch sizes on performance was also 

investigated. For this purpose, patch images in 4 different 

(16×16, 28×28, 32×32, 64×64) sizes were used. In Figure 6, 

the accuracy values for the situation where SVM and ReliefF 

algorithms are used together for different patch sizes are given. 

The highest performance was obtained in 32×32 dimensions. 

 

 
 

Figure 5. Example images showing different situations 
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Figure 6. Effect of patch sizes on detection performance 

 

 

5. CONCLUSIONS 

 

In this study, a patch-based hybrid CNN model was created 

for the detection of accessory spleen. This model includes four 

pre-trained models. The features from each model were 

combined. Then, the most decisive features were obtained 

with different feature selection algorithms. Accessory spleen 

was detected with k-NN and SVM classifiers. It has been 

observed that the proposed model is more successful in 

detecting the accessory spleen than other classical network 

models. With network models such as AlexNet, MobileNet, 

ResNet50, Vgg16, an average of 90.87% sensitivity, 89.50% 

specificity and 90.18% accuracy, respectively. In the proposed 

hybrid model, 94.16% sensitivity, 93.59% specificity and 

93.87% accuracy were obtained. In the study, a local data set 

of abdominal CT images was created. In some cases, accessory 

spleen may show similar textural features with cancer tumors. 

In such cases, it is thought that the proposed system will guide 

expert radiologists in the detection of accessory spleen. In the 

next study, the data set will be updated by adding CT images 

containing tissues (tumor, cyst) that are similar to the 

accessory spleen. In this way, a new system will be developed 

that distinguishes the accessory spleen from other lesions. 
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