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The economic health of a nation is significantly influenced by the productivity of its 

agricultural sector. Enhancing this productivity is directly linked to the early detection and 

management of plant diseases. Automated classification methodologies are instrumental in 

the early diagnosis of these diseases, offering improved precision over traditional methods. 

These automated systems initiate disease detection as soon as symptoms begin to manifest 

on plant leaves, following a four-step process involving pre-processing, segmentation, 

feature extraction, and classification. In this study, we present an automated methodology 

for the detection and classification of plant diseases using a deep-learning approach applied 

to varying quality leaf images. A deep convolutional neural network architecture was trained 

utilizing an image dataset. The proposed Deep Neural Network Plant Disease Classifier 

(DNN-PDC) was specifically designed for the multi-categorization of plant diseases. 

Tomato leaf images from the PlantVillage dataset on Kaggle were selected for the 

experiments. The proposed deep learning system demonstrated a high level of accuracy in 

the classification of various tomato leaf diseases, including Early Blight, Septoria Leaf Spot, 

and Late Blight. Experimental results indicate that the proposed method surpasses existing 

approaches in the image-based classification of tomato plant diseases. This study 

underscores the potential of the DNN-PDC model as a highly effective tool for plant disease 

detection and classification. 
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1. INTRODUCTION

Untimely detection of plant diseases can escalate food 

insecurity, thereby adversely impacting the yield and quality 

of agricultural products. Consequently, effective disease 

prevention and control hinge on early detection and 

forecasting, playing a pivotal role in agricultural production 

management and decision-making. Traditional methods of 

plant disease identification largely leaned on visual 

inspections by field specialists, a process that is labor-

intensive, time-consuming, and unsuitable for large-scale 

applications [1]. Furthermore, real-time and rapid diagnosis of 

plant diseases remains unachievable with this approach. To 

assuage these challenges, Wang et al. [2] introduced an 

innovative approach for plant disease detection, which notably 

ameliorates classification efficacy while addressing issues 

linked to agricultural challenges. 

Most plant diseases are initially detectable on plant leaves, 

opening avenues for automated detection through high-quality 

image processing. However, the task of plant disease detection 

through image processing is complicated due to considerable 

differences in leaf color, texture, and shape across different 

and related plant species. Several researchers have developed 

a range of data mining-based feature extraction methods in the 

initial stages, including block-level correlations following the 

Markov model, discrete wavelet differential clustering models, 

bags of visual words, and convolutional neural networks [3]. 

These techniques generate high-dimensional features without 

requiring human experts, yet the dimensionality of the image 

emerges as a significant challenge. 

The loss of crops can profoundly influence a country's 

economy, making it critical to diagnose plant diseases 

promptly and take necessary measures to prevent crop losses. 

A wide array of diseases plague crops in the temperate, 

tropical, and subtropical regions of the world. Environmental 

variables such as rainfall and moisture levels can propagate 

certain plant diseases caused by various viruses, fungi, 

bacteria, and other pathogens [4]. These diseases can severely 

impact farmers' livelihoods. Therefore, early detection of plant 

diseases is crucial for maintaining crop health, especially as 

agricultural advancements promise enhancements in both crop 

yield and quality.  

Traditionally, the diagnosis of plant diseases has heavily 

relied on human expertise, a reality that is not always feasible 

in remote and underdeveloped areas. Furthermore, traditional 

methods employed by farmers and field specialists for 

identifying plant diseases are time-consuming, expensive, and 

error-prone [5]. Thus, artificial intelligence-based methods 

can play a significant role in diagnosing plant disease in a rapid 

and accurate manner. Image processing and data modeling 

tools have assisted farmers and agricultural experts in 

identifying diseases. Automated methods for assessing the 

quality of agricultural and aquaculture products can also 

analyze images, which are then used to construct a detection 

model for plant diseases.  

Significant strides have been made in applying deep 
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learning techniques to agricultural problems such as insect 

detection, fruit and leaf disease detection, and plant and leaf 

categorization [6]. However, executing real-time disease 

diagnosis with typical machine learning algorithms poses 

significant challenges. Hence, deep learning methodologies 

can aid in the development of expert systems in the 

agricultural industry. 

Complex phytopathological issues coupled with the vast 

variety of crops make it challenging for even agronomists to 

correctly identify plant diseases. As such, systems employing 

deep learning and computer vision can aid field specialists and 

farmers in diagnosing plant diseases by analyzing input 

images of leaf tissue. These state-of-the-art systems employ a 

large number of training parameters, necessitating long 

learning curves and powerful computational resources [7]. 

This study attempts to reduce the number of features used for 

prediction while maintaining classification accuracy for 

detecting plant diseases using the CAE network, significantly 

reducing training and prediction time.  

Deep Learning approaches are modeled on the architecture 

of the human brain. They use variants like Convolutional and 

Recurrent Neural Networks to find hidden structures in data. 

Compared to Machine Learning, Deep Learning has two 

primary advantages: they extract multiple features from raw 

data automatically, eliminating the need for an additional 

feature extraction module, and they can process large datasets 

with many dimensions in a fraction of the time [8]. Many 

computer vision applications utilize two Deep Learning 

techniques, convolutional neural networks (CNNs), and 

convolutional autoencoders (CAEs) due to their efficacy with 

image data. Both strategies employ convolution operations to 

extract various spatial and temporal features from image data, 

with CAEs being more efficient in reducing the dimensionality 

of an image than CNNs in classifying input images. 

While research and findings are promising, there remains a 

need to explore the potentials of developing artificial 

intelligence-based systems using advanced neural network 

designs with substantial accuracy in the field of plant species 

recognition and disease detection. To enhance the robustness 

and efficiency of these automatic classification models, they 

are modeled on a wide variety of crops from different types 

and quality settings [8]. The proposed effort in this study aims 

to develop a plant disease detection and classification system 

using deep learning. Plant leaves' images from diverse health 

and disease categories were analyzed. The compiled dataset 

includes images from databases from various countries, 

ensuring the proposed framework's global applicability [9-11]. 

Using both laboratory and field images, the framework is 

solidified. Multiple rounds of dense convolutional neural 

network models are trained on a big collection of images from 

diverse categories. Complex background factors contribute to 

a wide range of differences between and within classes. 

Training, validation, and testing sets are created from the 

collected data for testing and training purposes [12, 13]. The 

trained architecture is cross-validated five times and tested on 

unseen images to ensure that it is accurate and efficient. On 

fivefold cross-validation and other unseen test images, the 

suggested deep learning-based solution outperformed all 

previous methods by an accuracy of 96% [14]. For plant health 

monitoring and early disease diagnosis, the suggested 

framework has demonstrated good results with actual, fixed-

resolution operation and integration [9]. 

The main contributions of the research conducted and 

presented in this paper are as follows: 

• An image pre-processing and segmentation approach to 

extract the image features for training the model has been 

implemented. 

• A novel multi-class classification algorithm DNN-PDC 

that uses a convolutional neural network architecture that 

classifies the disease of the crop from the images given 

has been proposed. 

• Extensive experiments were conducted with the 

PlantVillage dataset to assess the accuracy of the classifier 

system and the experimental results were compared with 

existing classification algorithms. 

 

 

2. LITERATURE SURVEY 

 

With the advent of smartphones and the expansion of 

mobile apps, simple and easy-to-use applications may be 

designed to improve agricultural infrastructure and give 

information on plant disease identification [15]. Plant and crop 

monitoring using a live image capturing device to detect Phyto 

pathological concerns may be done using new prototypes 

created for use with autonomous agricultural vehicles. Using 

a mobile or computer application, these devices may be 

managed and monitored in an easy-to-use framework. The 

plant disease identification problem may be tackled with the 

use of image processing techniques and specific statistical 

characteristics. Mobile devices are used to identify wheat crop 

candidate hotspots [16].  

Deep learning, an advanced form of machine learning, was 

developed as a result of advancements in the realm of graphics 

processing units (GPUs) and the availability of technology 

applications based on cognitive technologies. In contrast to 

ordinary neural networks, deep learning designs often consist 

of several layers. Plant disease identification has been aided 

by a variety of machine learning and deep learning methods 

[17]. The user-defined characteristics used in basic machine 

learning algorithms are used to distinguish images from 

different categories. To identify and classify characteristics, 

deep learning methods use the architecture's many levels to 

decide them on their own. Plant diseases including grape leaf 

disease, potato blight disease, palm oil leaf disease, and others 

have long been recognized using support vector machines 

(SVMs) [18]. 

Sustained learning techniques like SVM are used for data 

categorization, however, they require custom features in order 

to distinguish between distinct classes. SVM-trained ANN 

classifiers having an accuracy of 92.17 percent were used to 

extract texture and colour characteristics from plant leaves. 

The categorization of rice blasts, a significant problem, is 

aided by an enhanced KNN algorithm based on image 

processing and the k-means approach in Lab colour space. 

This approach was able to detect rice blasts with a 94% success 

rate [19]. Plants of black grime are susceptible to chlorosis, 

commonly known as yellowing sickness.  

A support vector machine-based computer vision system for 

identifying Chlorosis in plant leaves was suggested and 

achieved a 95.69 percent accuracy rate. Machine learning and 

other statistical approaches suffer from a lack of performance 

since they require manual characteristics for their operation 

[20]. This led to the development of NN-based approaches 

with a diagnosis of crop diseases in big datasets. The plants of 

the Vigna were classified as good, moderate, and disease 

classes by a convolutional neural network. Different pre-

processing approaches are used to train the sequential network. 

1480



 

The model achieved a 97.403% accuracy value for different 

images. Transfer learning was utilised to train the EfficientNet 

architecture with a disease classifier, and numerous images 

were used for the training process in the experimentation [20, 

21]. 

Disease identification in the alpine grasslands can also be 

accomplished using hyperspectral imaging techniques [22]. 

PCA (Principal component analysis), spatial catalogues, range 

elimination, and spinoffs were all employed in the arduous 

circumstances of high spatial homogeneity. A total of four 

machine learning-based techniques generated a 94.73 percent 

success rate. Bacteriosis, a prevalent disease in peach crops, 

was detected using an imaging and convolutional neural 

network technique. Pre-processing leaf images with a variety 

of adaptive processes, such as channel selection and gray-level 

slicing, allows for the most accurate results [23]. Bacteriosis 

detection using a deep learning model has an overall accuracy 

of 98.75 percent. 

Plant diseases and their severity may be detected using a 

computer network called PD2 SE-Net. Five crops in three 

distinct groups and Resnet-50 architecture are used as a basic 

network for training images in different categories [24]. Using 

transfer learning, a system for detecting disease in the Casava 

plant was developed and found to be 93% accurate in unseen 

images. The development of AI (Artificial Intelligence) 

cleared the path for the creation of robotic machines which 

could achieve precise findings in disease detection. Today, 

artificial intelligence-based technologies that can identify a 

wide range of diseases are widely employed. Traditional 

machine learning methods have been suggested in the recent 

decade over disease classification [25].  

Various researchers used Support Vector Machines (SVMs) 

to study the early detection and categorization of diseases in 

sugar beets (SVM). Using K-means and Artificial Neural 

Networks (ANN), some researchers were able to identify five 

different plant leaf diseases. To diagnose six distinct diseases 

on cotton leaves, some researchers came up with a novel 

technique. Image processing characteristics such as edges, 

colours, and textures may all be used to create a feature vector 

that can be used to pick the best features to use in a Particle 

Swarm Optimization (PSO)-based feature selection approach 

to classify disease [26]. In a separate investigation, researches 

used the SVM approach to identify and detect two distinct 

viruses that cause disease on tomato leaves [27-35]. In a 

separate study, some researchers used the Local Binary Pattern 

approach to identify three distinct vine leaf diseases via SVM. 

Images processing-based candidate hotspot identification and 

the Naive Bayes classifier were suggested by some researchers 

focused on early detection of three wheat illnesses by use of a 

mobile phone application. They tested a strategy on mobiles 

with a real-world setting to see if it worked [28].  

The logistic algorithm Group Method Data Handling 

(GMDH) was recently introduced for automated plant disease 

detection. Classification performance is directly impacted by 

the difficulty of the feature extraction procedure necessary for 

machine learning classification. The discovery of novel 

approaches that can handle real-time data lacking the 

requirement for unique characteristics cleared the door for 

deep learning systems [29]. Many layers and neurons in deep 

neural networks can handle enormous amounts of data 

effectively to execute high-complexity tasks like speech and 

image recognition. Deep learning techniques are increasingly 

being used in the detection and categorization of diseases 

based on medical imagery [30].  

Neural networks-based research identification of disease 

detection was investigated in a review paper published in 2019 

and the possibilities of deep learning were appraised. Instead 

of identifying entirely disease detection-based dataset, it has 

been shown that the majority of research utilises the 

PlantVillage database to identify disease in a single plant or a 

few crops. In one of these researches, some researchers used 

Convolutional Neural Networks to classify 13 distinct plant 

diseases (CNN). A suggested model was trained on 30,880 

images, and a test model was tested on 25,89 images, in this 

work. The accuracy of their proposed model was 96.3 percent 

on average. Some researchers used the DENS-INCEP deep 

transfer learning model to find rice plant disease in their study.  

VGGNet has been an adapted module that allowed to 

perform of disease classification on maize and rice plants in a 

separate investigation. A total of 39 categories in the 

PlantVillage dataset, comprising five studies identified plant 

illnesses and a category of ambient images devoid of leaves. 

Various CNN models were used by researchers to classify 

plant diseases [31]. They were able to get a classification 

accuracy of 99.35 percent in their research. VGG16, 

Brainstorm V4, ResNet50, ResNet101, Resnet152, and Dense 

Nets 121 are only a few of the CNN models. With fewer 

parameters and less computation time than other models, the 

DenseNet architecture utilised in the study was shown to have 

the best test accuracy of 99.75 percent. With a varied epoch, 

batch size, and dropout, the researchers designed the 9-layer 

CNN model on the PlantVillage dataset and compared its 

performance with popular transfer learning algorithms.  

In analysing the given dataset, their suggested model 

accomplished a classification accuracy of 96.46 percent. On 

the other side, two other studies have added additional images 

to the PlantVillage collection [32]. Ferentinos used the test 

dataset and the neural network architectures to classify 58 

distinct plant diseases across 25 different species. With a 99.53 

percent accuracy rate, the VGG architecture employed in the 

study was the most accurate. 79,265 images from the 

PlantVillage dataset were developed by some researchers in a 

second research attempt, which used the larger PlantDisease 

dataset. Both datasets were used in the experiments. 

Classifying leaves in the second stage of the proposed two-

stage PlantDiseaseNet classification model is a key component 

of this approach [33]. In the Plant Disease dataset, the model 

they provided had an accuracy rate of 93.67%. Deep learning 

architectures have also been studied to see how well they 

classify plant diseases in both PlantVillage and commercial 

datasets. Image segmentation and image classification phases 

were included in the model described by some researchers for 

the identification of plant diseases [34].  

In the image segmentation step, they suggested a hybrid 

segmentation technique based on hue, saturation, intensity, 

and LAB, and in the classification phase, they employed CNN 

models. As some colleagues expanded the which was before 

MobileNetV2 model by adding the Classification Activation 

Map (CAM), they came up with a new plant disease detection 

model dubbed MobileNet-Beta. The suggested model was 

evaluated using data from PlantVillage as well as data from 

the authors' research. The MobileNet-Beta model was shown 

to be 99.85 percent accurate, according to the test findings [34]. 
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3. MATERIALS AND METHODS 

 

3.1 Image pre-processing 

 

Imperfections in image acquisition, data transmission, and 

recording devices can produce poor visualizations and 

computer processing challenges during the image production 

process, degrading the image quality. There are several 

elements that can impact image quality such as imaging 

system noise, environmental conditions, and so on. Before 

performing any image analysis, it is required to perform 

images pre-processing such as grey transformation and image 

denoising. Sample Images in pre-processing stage are shown 

in Figure 1. 

As a result of unequal lighting circumstances and varied 

times or locations for photography, we may suppose the plant 

leaf image 𝐼𝑥,𝑦  is composed of a grey backdrop 𝐺𝑟𝑥,𝑦 , leaf 

diseases 𝐷𝑥,𝑦  and background errors 𝐸𝑟𝑟𝑥,𝑦  in the image. 

Background images must be removed in order for the bilinear 

interpolation method to work properly, and this is done by 

using the grey transformation method. Each block of the image 

is used as a starting point for determining the image's backdrop 

colour. Despite the overall image's uneven lighting, it may be 

regarded as virtually uniform in the immediate vicinity. Using 

bilinear interpolation, we may create a continuous surface by 

interpolating four consecutive pixels that are contiguous to 

each other as part of the image's grey transformation process. 

So, the image can be represented as: 

 

𝐼𝑥,𝑦 = 𝐺𝑟𝑥,𝑦 + 𝐷𝑥,𝑦 + 𝐸𝑟𝑟𝑥,𝑦 (1) 

 

Some noise in the image can be caused by external 

influences, which might have a detrimental effect on feature 

extraction. Consequently, image denoising is required, with 

traditional filtering algorithms like median filtering as well as 

Gaussian filtering being employed because of their widespread 

use and the fact that they are right and superior in certain issues 

over time. Using the predetermined median, a central template 

pixel's grey value is altered using the median filtering 

technique. The median of all the template pixels is calculated. 

Despite being less sensitive to noise and doing a better job of 

reducing salt and pepper noise, this approach may easily break 

up an image.  

Using a gradient inverted weighted approach, the image 

edges and details are blurred while noise is suppressed, thus 

the median technique is compared on this basis. While the 

grayscale transformation in a region is smaller than the 

grayscale changes between regions, there is a greater 

difference in their absolute values. This can be seen in a 

𝑚 × 𝑚  window by looking at how much each neighbour 

point's weight differs depending on where it is located in 

relation to the region's centre pixel, which has a larger weight 

value than the neighbour points on the periphery and outside 

of the area. It is therefore possible to use a weighted average 

instead of an arithmetic one to improve the algorithm and 

avoid blurring its boundaries.  

When applying filters or convolutions to an image, such as 

blurring or smoothing filters, a common operation involves 

computing the average of neighbouring pixel values. In the 

case of an arithmetic average, all pixels within the filter's 

neighbourhood contribute equally to the computed value. This 

can result in blurring or smoothing across edges, as the 

intensity values on both sides of an edge are averaged together. 

In this approach, the weights are determined based on the 

distance from the center pixel or the application of edge 

detection algorithms to identify and assign higher weights to 

pixels along edges. By incorporating a weighted average, our 

algorithm can effectively balance the smoothing or blurring 

effect across an image while preserving important edge 

information. This can result in improved boundary delineation, 

sharper image features, and better overall image quality for 

tasks that require edge preservation or edge-aware processing. 
 

  

Tomato Leaf 

Images of 

Healthy 

plant with 

Late blight 

disease 

  

Gray Image 

conversion 

  

Post 

Filtering 

Images 

 

Figure 1. Sample images in pre-processing stage 
 

So, with these preliminaries, we are estimating the gradient 

inverse(h) based on the gray value as: 
 

ℎ(𝑥, 𝑦, 𝑚, 𝑛) =
1

𝑔(𝑥 + 𝑚, 𝑦 + 𝑚) − 𝑔(𝑥, 𝑦)
 (2) 

 

∀𝑚, 𝑛 = −1 𝑜𝑟 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑚 ≠ 𝑛 ≠ 0 (3) 

 

The neighbourhood pixel gradient inverse(S) is estimated 

and we get the weight matrix in normalised form as: 

 

𝑆 = 

[

𝑠(𝑥 − 1, 𝑦 − 1) 𝑠(𝑥 − 1, 𝑦) 𝑠(𝑥 − 1, 𝑦 + 1)
𝑠(𝑥, 𝑦 − 1) 𝑠(𝑥, 𝑦) 𝑠(𝑥, 𝑦 + 1)

𝑠(𝑥 + 1, 𝑦 − 1) 𝑠(𝑥 + 1, 𝑦) 𝑠(𝑥 + 1, 𝑦 + 1)
] 

(4) 

 

Assuming that the total of the weights of the eight other 

points is equal to 1, the centre point is given a weight of 0.5. 

The weight may therefore be calculated for each location as: 

 

𝑆(𝑥 + 𝑚, 𝑦 + 𝑛) =
1

2

ℎ(𝑥, 𝑦, 𝑚, 𝑛)

∑ ∑ ℎ(𝑥, 𝑦, 𝑚, 𝑛)𝑛𝑚

 (5) 

 

Grayscale conversion from colour images is a typical image 

processing technique. It's true that grayscale images don't 

convey as much information as colour ones, yet there are times 

when it's useful or even vital. In contrast to colour pictures, 

which use three different channels (red, green, and blue), 

grayscale images only use one (intensity). This simplification 

makes it less difficult to conduct specific operations on the 
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picture by decreasing the computational complexity, memory 

requirements, and processing time.  

 

3.2 Image segmentation  

 

One of the most important techniques for analyzing and 

comprehending images is segmentation, which breaks an 

image into non-overlapping sections. Leaf image 

segmentation is used to differentiate diseased sections of 

leaves from healthy ones, resulting in a binary image that may 

be used for feature extraction and computation. For this reason, 

a unique grey threshold must be determined for each image 

because the colors of different varieties of leaves aren't 

identical. A large variation (𝛿) can be seen between the grey 

levels in various places, yet the grey levels within the same 

region are frequently identical. There is a high grey level 

difference (𝜌𝐶
2) between two sections separated by threshold u. 

If the difference in the average grey of the two regions is 

greater than that of the overall average grey of the image. This 

feature may be expressed using the regional grey variance, 

which has the following formula. 

 

𝛼𝐶
2 = 𝜌1(𝑢)[𝛿1(𝑢) − 𝛿]2 + 𝜌2(𝑢)[𝛿2(𝑢) − 𝛿]2 (6) 

 

𝛿 = 𝛿1(𝑢)𝛾1(𝑢) + 𝛿2(𝑢)𝛾2(𝑢) (7) 

 

𝜌𝐶
2 = 𝛿1(𝑢)𝛿2(𝑢)[𝛿1(𝑢) − 𝛿2(𝑢)]2 (8) 

 

where, 𝛼𝐶
2 represents variance between two segmented regions 

in order to estimate the threshold 𝑡. It is important to identify 

when the variance between two segmented sections reaches its 

highest value as a result of this study, the threshold for 

binarizing the image might be the normalized grey value. 

Finding a suitable threshold for image segmentation can be 

a challenging task, especially when manual selection or 

exhaustive calculation is not practical. The image is divided 

into smaller regions, and the threshold is determined for each 

region individually. Common adaptive thresholding 

techniques include mean thresholding, Gaussian thresholding, 

and median thresholding. In this approach, Gaussian 

thresholding is used, which is found to be suitable for 

thresholding. 

 

3.3 Feature extraction 

 

Image analysis is frequently concerned with an image's 

distinctive features and specifics. During recognition and 

classification, the image characteristics could be produced and 

extracted by separating usable information from non-useful 

information; this allowed for additional computation to be 

done. Automatic image identification or evaluation can be 

achieved by extracting relevant signs from images using a 

technique known as image feature extraction. Image 

identification and classification rely heavily on feature 

extraction, which directly impacts model quality. Many 

elements may be retrieved from leaf images, including 

geometric features, textures, and colours.  

This work focuses on extracting the leaf images' features 

from the aforementioned aspects, such as geometric features, 

textures, and colours. Normal and sick leaves have highly 

distinct textures because of their various thicknesses and 

directions of the repeating patterns and rules that make up an 

image's texture. The grey scale may thus be used to quantify 

the disease spots' properties of roughness, sharpness, and 

texture. Because the grey-level co-occurrence matrix of an 

image contains all of the information needed to statistically 

define texture properties, it is frequently used as a starting 

point for analysing images. For example, HSI mode is more 

compatible with the human eye's perception of colour, and it 

can separate colour features first from the brightness 

information of an image, making it easier for a computer to 

modify the recognition pattern based on varied lighting 

conditions. An overview of Deep Learning model for multi-

class classifiers is depicted in Figure 2. 

 

 
 

Figure 2. Overview of deep learning model for multi-class 

classifier 

 

However, because a single colour space may only hold so 

much information about a disease's symptoms, the HSI, as 

well as RGB properties, are combined to create a more 

complete colour space. The severity of the disease may be 

gauged by looking at the size and form of the disease spots on 

the leaves, which vary in size and shape depending on the 

disease severity. Spots are merely a reflection of the disease's 

form aspects, and it is not important to examine the leaf 

disease's colour. In this case, the grayscale images of leaves 

may be converted to binary images, which simplifies the 

process while also reducing the amount of storage required. 

The binary image is labelled with 0 or 1 depending on the 

value of the grayscale. The following are the features extracted 

for our proposed work: 

1. 𝐶 = ∑  |𝑚 − 𝑛|2
𝑚,𝑛=0 𝑆𝑚𝑛  that determines the contrast 

value(C) and estimated from the co-occurrence matrix entries 

𝑆(𝑚, 𝑛). 

2. 𝐸 = ∑ 𝑆(𝑚, 𝑛)2  defines the energy(E) estimated by 

summing up all the elements by squaring them and ranges 

between 0 and 1. 

3. 𝑐𝑜𝑟 =  ∑
(𝑚−𝜇𝑚)(𝑛−𝜇𝑛)𝑠(𝑚,𝑛)

𝜎𝑚𝜎𝑛
𝑚,𝑛  provides the correlation 

value(cor) that falls between -1 and 1. 

4. 𝐻 =
𝑆(𝑚,𝑛)

1+|𝑚−𝑛|
 gives the homogeneity value (H) derived 

between 0 and 1. 

While converting a grayscale image into a binary image 

during feature extraction, it typically involves applying a 

thresholding operation to separate the image into foreground 

and background regions. The resulting binary image contains 

only two intensity values, typically represented as black and 

white pixels, indicating the presence or absence of objects or 

features. Once the binary image is obtained, a feature 
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extraction technique can be applied to analyze and describe the 

characteristics of the objects or regions present in the image. 

These extracted features capture important information about 

the shape, texture, size, or spatial distribution of objects, which 

can be useful for subsequent analysis, classification, or 

recognition tasks. These features can then be used for 

decision-making processes in leaf disease detection. 

Multi-class data feature selection is a difficult process. The 

majority of known feature selection methods are based on 

binary datasets. Methods for selecting the most important 

characteristics from a huge number of features can be found 

by using the well-known area under the ROC (AUC) curve. 

Binary classification issues are commonly analysed using 

AUC. Multi-class AUC is used in this article to identify the 

most important characteristics for categorising the dataset. 

Multi-class AUC is briefly discussed here using an example of 

a multi-class situation to illustrate the point. 

 

3.4 Dataset 

 

The leaves of different crops are categorized into distinct 

groups. Using the input layer of the deep learning architecture, 

the images used in the proposed work were translated from 

several datasets with varying resolutions into the same 

dimensions. It is necessary to create a good dataset before 

dividing the acquired information into training, validation, and 

testing sets. A deep learning architecture is then taught 

utilising this data in numerous epochs. A variety of criteria are 

used to gauge the model's overall performance. Unseen images 

belonging to all categories were also examined by the trained 

model following 5-fold cross-validation. Models are trained 

and tested on a specific dataset in order to produce a competent 

leaf classification and the disease diagnosis procedure. The 

four datasets each contain a separate set of images, one for 

each type of damaged or healthy plant.  

More than 25,000 images of plant leaves were gathered 

from the PlantVillage collection. These leaf images are from 

three different crops, including Apples, Potatoes, and 

Tomatoes. A total of 17 distinct levels are available. Only 

three classes of leaf images from each crop were classified as 

healthy, while the others were classified as unhealthy. We 

have chosen Tomato leaves images from the dataset and 

trained the model. The various combination of images with 

healthy tomato leaves, and the leaves affected with the 

diseases such as Early blight, Septoria leaf spot, and Late 

blight. 

In the dataset, the number of tomato leaf images is up to 

18,060. Out of which, 6,748 images were taken for the 

proposed work. The following details in Table 1 shows 

different categories and images. 

 

Table 1. Categories of tomato leaf in PlantVillage dataset 

 
S.No. Category Number of Images 

1. Bacterial Spot 2027 

2. Early bilght 1000 

3. Late bilght 1909 

4. Mold leaf 952 

5. Septoria Leaf spot 1771 

6. Spider mites 1676 

7. Target spot 1404 

8. Tomato mosaic virus 373 

9. Tomato yellow curl virus 5357 

10. Healthy 1591 

 

 

4. PROPOSED DEEP NEURAL NETWORK MODEL 

FOR PLANT DISEASE CLASSIFICATION (DNN-PDC) 
 

In the field of computer vision and image categorization, 

deep learning has had a significant impact. There are a variety 

of layers in deep convolutional neural networks, such as 

convolutional layers, pooling layers, and fully connected 

layers with various activation functions. The convolutional 

neural network's input layer transforms the incoming data to 

fit its specific dimensions. An object's classification is learned 

and differentiated from other sorts of objects by processing the 

incoming data layer by layer. It is believed that training a deep 

convolutional neural network will be faster, more accurate, 

and deeper if the connectivity between layers between input 

and output is kept as short as feasible. The proposed Deep 

Learning process has been explained with the diagram as 

shown in Figure 3. 

 

 
 

Figure 3. Proposed deep learning process 
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Convolutional neural networks have a feed-forward 

connection structure, with each layer feeding information to 

the next. Traditional n-layer convolutional neural networks 

have n connections between each layer, one for each 

succeeding layer in the network. However, with dense 

convolution, there are 
𝑛(𝑛+1)

2
 direct connections. All previous 

layers' feature maps are utilised as inputs into the current layer, 

while the current layer's feature maps are used as inputs into 

the next layer. The first layer receives input and generates k 

feature maps, which are then combined with the input data. 

Additional 𝑚 set of feature maps is generated using the second 

layer, which is then combined with the first. This results in 

𝑚 × 𝑛 feature maps being generated for each 𝑁 layered dense 

block. Table 2 shows the CNN layer structure. 

 

Table 2. CNN layer structure 

 
Layers Output Size Architecture 

Convolution 112*112 Convolution 

Pooling 56*56 MaxPool 

Dense Block 1 56*56 Convolution 

Transition Layer 28*28 AveragePool 

Dense Block 2 14*14 Convolution 

Classification Layer 3*1 SoftMax 

 

DNN-PDC Multi Class Classifier Algorithm 

Input: Pre-processed Leaf images 

Output: Classification into a Disease Class 

Steps: 

1. Estimate the Feature score of the multiclass dataset. 

2. Let Feature set 𝑨 = 𝒂𝟏, 𝒂𝟐, … 𝒂𝒏 and the disease 

classes as 𝑩 ∈ 𝟏, 𝟐, 𝟑. 

3. For any combination of {𝒂𝒊, 𝑩}: 

 a. Set threshold 𝜽 based on the ROC value of feature 

vectors. 

 b. Generate corresponding 𝒏  feature score values and 

compare with 𝜽. 

 c. Create a new feature set with features 𝒂𝒊  such that 

𝒂𝒊 >  𝜽. 

4. For an 𝒏 − 𝒅𝒊𝒎𝒆𝒏𝒔𝒊𝒐𝒏𝒂𝒍 feature vector from step 3, 

Calculate the output vector �̂� = ∅(∑ 𝒂𝒋𝒘𝒋
𝒏
𝒋=𝟏 + 𝒃𝒊𝒂𝒔), 

where 𝒘𝒋 denotes weight value for the neuron. 

5. Estimate connection weights by the backpropagation 

algorithm. 

6. Compute error as 𝒆𝒓𝒓 =
𝟏

𝟐
∑ (𝒀 − �̂�)

𝟐𝒏
𝒋=𝟏 . 

7. Back propagate the error term 𝒆𝒓𝒓 and adjust neuron 

weight in the hidden layer as: 

𝒘𝒊𝒋
𝒖𝒑𝒅𝒂𝒕𝒆𝒅

= 𝒘𝒊𝒋
𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍

− 𝝆𝝉�̂�𝒚  for the 𝒚𝒕𝒉  hidden layer 

with the learning parameter (𝝆) 

𝟎 ≤ 𝝆 ≤ 𝟏. 
8. Estimate (𝝉)  

𝝉 = {

𝒆𝒓𝒓 × �̂�, 𝑭𝒐𝒓 𝑶𝒖𝒕𝒑𝒖𝒕 𝑳𝒂𝒚𝒆𝒓 𝒏𝒐𝒅𝒆𝒔 

�̂� ∑ 𝝆𝒚𝒘𝒊𝒋

𝒏

𝒊,𝒋=𝟏,𝒚=𝟏

, 𝑭𝒐𝒓 𝒉𝒊𝒅𝒅𝒆𝒏 𝑳𝒂𝒚𝒆𝒓 𝒏𝒐𝒅𝒆𝒔
 

9. Train the model with newly identified 𝒂 features with 

the identified disease class labels. 

10. Combine the feature sets 𝒂𝟏, 𝒂𝟐, … 𝒂𝒏  and 

�̂�𝟏, �̂�𝟐,… �̂�𝒏. 

11. Input the new pre-processed image to check the 

classifier performance and accuracy. 

As opposed to other models, such as ResNet, AlexNet, and 

so on, the model has improved the precision of CNN 

architectures with a small number of attributes. Traditional 

convolutional neural networks have a lot more parameters than 

dense connection patterns, but they don't have to learn 

duplicate feature maps. There are several tiers in DenseNet201, 

and it has performed well. As the name implies, DenseNet is 

"dense", meaning that every layer is interconnected with every 

other layer. Architectures based on feature reuse and gradient 

flow are also advantageous. The compact network makes it 

simple to train the DenseNet201. There is a lot of variances in 

the succeeding layers' input because of the feature reuse 

functionality employed by various levels in order to improve 

speed.  

Furthermore, DenseNet outperformed other deep learning 

architectures while using fewer parameters. A greater amount 

of information may be gleaned from dense networks than from 

simpler networks. This training deep learning compact model 

uses 224 ×  224-pixel images of plant leaves as input. 16 

output channels in DenseNet are utilised to convolution an 

input image that is supplied to the dense blocks. Each dense 

block has a direct feedforward connection between all the 

levels in the block. Each layer's feature maps are analysed 

individually and combined into a single tensor before being 

sent to the next layer. The activation function used is the 

Rectifier Linear Unit (ReLU) because of its computing 

efficiency. Batch normalisation and convolutions of three-by-

three are also used to feature maps.  

As a result of batch normalisation, a transition layer is added 

between the dense blocks, which are made up of convolutions 

of 1:1 and pooling averages of 2:2. One further layer of global 

average pooling connects the final dense block before a 

softmax classifier is added. After that, classification is 

performed on all of the previously taught labels, and a plant 

leaf image is tested using a similar technique. Several 

convolutional layers and dense blocks are used to process the 

plant leaf image. Predicted images in a given category are 

determined using block-by-block processing once a model has 

been trained. The first two layers of a fully connected layer 

utilise a dropout approach to prevent overfitting in deep 

learning architectures by randomly blocking particular 

neurons based on a preset probability value. Diseases alter the 

leaf's appearance by infecting it, and the resulting patterns can 

be used as visual cues by a machine learning system. Different 

patterns created by disease and the morphology of the leaf 

images are used to identify infected and healthy images in a 

deep learning network. 

Deeper architectures allow for hierarchical feature 

extraction, capturing both low-level and high-level features. 

The increased capacity enables the model to capture more 

intricate relationships within the data, potentially improving 

accuracy. In this approach, Non-linear activation functions, 

such as ReLU (Rectified Linear Unit), introduce non-linearity 

into the neural network, enabling it to learn more complex and 

expressive representations. Non-linear activation functions 

can help the network model intricate decision boundaries and 

improve accuracy compared to linear activation functions. 

Also,used regularization techniques L1 regularization 

prevents overfitting, which occurs when a model becomes too 

specialized to the training data and performs poorly on unseen 

data. Regularization techniques encourage the model to 

generalize better and can improve accuracy.  
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5. RESULTS AND DISCUSSION 

 

GPU support was employed to compile all models in this 

investigation. An NVIDIA Tesla K80 with 12GB of memory 

and a 64-bit Debian GNU/Linux 9.11 operating system were 

used for all experimental tests in the Google cloud 

environment. Everything is developed in Python using the 

Keras 2.3.1 framework, an open-source deep neural network 

toolkit. A total of 90% of the original and augmented 

PlantVillage datasets were randomly divided into training and 

validation sets while 3% of the total datasets were randomly 

separated into test and validation sets. When building the 

model, the training and validation datasets were used only for 

that purpose, whereas the test set was used to determine how 

well the model predicted the outcomes of samples it had never 

seen before. The transfer learning strategy was employed in 

conjunction with already existing CNN models in this study.  

 

 
 

Figure 4. Training and validation loss analysis 

 

Pre-trained CNN models on the ImageNet dataset allowed 

us to quickly discover and categorise all of the categories in 

the dataset. It is estimated that the ImageNet database has 1.2 

million photos grouped into 1,000 different classifications. For 

the deep learning models utilised in this work, pre-trained 

weights from the most recent generation of CNN models on 

ImageNet were employed to save training time. There were 39 

outputs added to all models with 1000 outputs in response to 

the issue. All the layers of pre-trained models were set to be 

trainable. For the last layer, we used Softmax to activate the 

function and category cross entropy for the loss function. The 

early halting strategy was utilised with patience as 5 and a 

minimum change in loss as 1e-3 throughout training. Training 

and validation loss analysis has been shown in Figure 4. 

 

Table 3. Performance comparison 

 

Model 
Training 

Accuracy 

Training 

Loss 

Testing 

Accuracy 

Testing 

Loss 

DenseNet 

201 
99.9 0.02487 89.56 0.08954 

Efficient

Net B5 
98.85 0.03458 91.35 0.12547 

DNN-

PDC  
99.94 0.002549 94.68 0.00324 

 

The maximum epoch for training models was not 

determined because the early halting strategy was employed. 

It utilised the same optimization strategy that was used for 

ImageNet training. All other models are optimised using 

Adam, whereas the VGG16 model is optimised using SGD. 

There is a notable difference between the Adam and SGD 

methods when it comes to their learning rates. All models have 

their validation step set to one. After normalising each pixel 

value in the original and supplemented datasets, the results 

were compared. After that, the photos were downsized to fit 

the specifications of each model, which varied widely. Table 

3 shows the performance comparison among various neural 

models. 

Table 4. Model trainnig parameters 

 
S. No. Training Parameters Values 

1. Learning Rate 0.01 

2. Batch Size 128 

3. Number of Epochs 100 

4. Optimizer Adam 

5. Loss Function cross-entropy loss 

 

Table 4 shows the training parameters of the model.Because 

of the constraints of our technology, we had to reduce the input 

image resolution for all models of EfficientNet architecture. 

132*132 was found to be the greatest input size for which our 

hardware resources could train the model with the most 

parameters in the trial-and-error research. 132*132 has been 

chosen as the input size so that all models of EfficientNet 

architecture may be evaluated under the same circumstances. 

During backpropagation, weights and biases are updated using 

a mini-batch of data. In most cases, a value that can be divided 

by the total number of samples in the dataset is desirable for 

the mini-batch value. Network convergence and accurate 

prediction may be improved with the help of this value. 

Different parameters of the Neural Network model have been 

listed in Table 5. 

 

Table 5. Neural network model parameters 

 

Model Name 
Image 

Size 

Optimization 

Method  

Learning 

Rate 

DenseNet 201 113*113 Adam 0.001 

EfficientNet B5 132*132 Adam 0.001 

DNN-PDC  132*132 Adam 0.01 

 

 
 

Figure 5. Confusion matrix 

 

All models' hardware resources permitted a maximum mini-

batch size of 16, hence that was the value used in this 

investigation. PlantVillage's dataset has 39 different categories, 
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hence a multi-class classification algorithm was used to sort 

the data. False Positive (FP) and False Negative (FN) indices 

are used to create metrics based on the confusion matrix values 

acquired in such classifications (FN). For example, in this 

example, TP refers to the number of correctly classified 

diseased photos in each category, whereas TN indicates the 

total number of correctly categorised images in all other 

categories except for the relevant category. A number of 

photos that have been incorrectly categorised. Except for the 

appropriate category, FP displays the total number of images 

that were incorrectly categorised. In Figure 5, the confusion 

matrix for the proposed approach has been shown. 

 

 
 

Figure 6. Proposed model training and testing accuracy 

analysis 

 

Different measures, including Accuracy (A), Sensitivity 

(Sy), Specificity (Sp), and Precision (P) are used to evaluate 

EfficientNet's and other cutting-edge CNN models (P). 

Sensitivity is the percentage of true positives that are 

accurately anticipated. The ratio of accurately predicted 

negatives to all genuine negatives measures the degree of 

specificity. On the other hand, accuracy measures the 

percentage of samples that are properly categorised. Precision 

is the percentage of positive identifications that are accurately 

anticipated. EfficientNet deep learning architecture's 

performance in classifying plant leaf disease will be evaluated, 

and the results will be compared with those of other, more 

advanced CNN models that have been previously published. 

These models were all trained by transferring knowledge from 

one model to another. Figure 6 shows the proposed model 

training and testing accuracy analysis. 

 

𝑆𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑝
 

 

𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

All experiments were conducted using both original and 

enhanced datasets. It is important to note that in this context 

the average of the test dataset accuracy, sensitivity, specificity, 

and precision values achieved by all models on the test dataset. 

For training purposes, the period from when loss values began 

to rise to when they stopped was considered to be the entire 

training time. The entire training time was divided by the total 

number of epochs, and the result was presented as the time 

spent per epoch during model training. There was a lot of 

overlap between the models' average accuracy scores in the 

original dataset The EfficientNet model has the best average 

sensitivity across all classes in the original dataset. Sample 

Images from PlantVillage are shown in Figure 7. 

 
Healthy Leaf Early Blight Septoria 

Leaf Spot 

Late Blight 

    

 

Figure 7. Sample images from PlantVillage 

 

In contrast, the average performance of models in predicting 

other classes was near to each other. The EfficientNet model's 

true positive classification rate (precision) was greater than the 

other models' true positive classification rate (precision). 

While the EfficientNet model took over years to complete a 

single epoch, the training took just 643.3 minutes. EfficientNet 

obtained the lowest training time per epoch. Using the ratio of 

properly identified samples to the total sample count, these test 

accuracy numbers were derived. In the original dataset, the 

EfficientNet model had 99.91 percent accuracy, whereas the 

proposed model had 99.97 percent accuracy in the enhanced 

dataset. Additionally, EfficientNet accuracy scores were 

99.45% for the original datasets and 99.67% for the enhanced 

datasets, the lowest of any model. It is clear from the test 

accuracy curves that all models perform better on the enhanced 

dataset than on the original. The proposed model training and 

testing loss analysis has been depicted in Figure 8. 

 

 
 

Figure 8. Proposed model training vs testing loss analysis 

 

In the original and enhanced datasets, the EfficientNet and 

proposed models' results for the TP, TN, FP, FN, accuracy, 

sensitivity, specificity, and precision are summarised. 
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EfficientNet obtained the greatest performance in the original 

dataset with a precision of 84.75 percent to 100 percent, 

whereas DNN-PDC earned a precision of 96.08 percent to 100 

percent in the supplemented dataset with a precision of 

96.28% to 100 percent It was found that for each class, the 

EfficientNet model achieved an accuracy rate between 99.54 

and 100% in the original dataset whereas the DNN-PDC 

model achieved an accuracy rate of between 99.85 and 100% 

in the supplemented dataset while examining the test datasets 

for accuracy. For the EfficientNet and DNN-PDC models, the 

validation loss began to rise around the 20th and 11th epochs, 

respectively, due to the early halting approach utilised in 

training. Precision-Recall curve for the proposed approach has 

been depicted in Figure 9. 

 

 
 

Figure 9. Precision-recall curve for the proposed approach 

 

These models were tested on training sets and validation 

sets to see how well they performed on both. This dataset had 

an accuracy of 98 percent after just six iterations, and it 

reached its peak accuracy after 20 epochs of training. Loss in 

the enhanced dataset was minimised greatly after 11 iterations 

and its best accuracy was obtained at over 98% at that point. 

EfficientNet and DNN-PDC models scored the greatest 

accuracy and precision scores in the test dataset compared to 

other deep learning models, with 99.91 percent and 99.97 

percent for accuracy and 98.42 percent and 99.39 percent for 

precision, respectively.  

 

 
 

Figure 10. FPR vs TPR curve 

Figure 10 shows the ROC curve obtained for the proposed 

approach. A tight range of 99.45 to 99.97 percent accuracy was 

observed in the models, while the precision metric showed that 

the accuracy values fluctuated more significantly between 

90.26 percent and 99.39 percent. When the rate of false 

positives drops, so does precision, which measures how many 

out of every 100 samples the model predicts will be positive. 

The DNN-PDC model, which performed best on the expanded 

dataset, improved accuracy, and precision by 0.13 percent and 

2.16 percent, respectively, while all other models improved 

accuracy and precision by varying degrees. It was clear from 

this that as the volume of data grew, so did the precision of the 

models' false-positive predictions. The prediction accuracy 

analysis has been depicted in Figure 11. 

 

 
 

Figure 11. Prediction accuracy analysis 

 

 

6. CONCLUSIONS 

 

In this paper, we have proposed a deep learning model 

(DNN-PDC) for the classification of diseases of the Tomato 

plant leaves. The proposed approach has four stages such as 

pre-processing, segmentation, extraction of features, and 

classification. We have chosen tomato leaf images of the 

PlantVillage dataset from Kaggle for the experiments. The 

suggested deep learning-based system was found to be capable 

of accurately classifying a wide range of tomato leaf diseases 

such as Early blight, Septoria leaf spot, and Late blight. The 

proposed DNN-PDC model has been compared with the 

existing DenseNet 201 and EfficientNet B5 to analyse the 

performance of the existing approaches. From the 

experimental results, we can conclude that the proposed 

approach outperforms the existing approaches in the 

classification of disease of the tomato plant from the images. 

As an extension of this work, in the future, for achieving better 

performance than the proposed one, a self-organizing network 

structure can be created by applying a highly optimal layer-

wise propagation strategy to data linkages specified within the 

related graph structure. 
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