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The inherent curvature in palm lines can pose challenges for palmprint recognition, 

particularly at lower resolutions where wrinkles become indistinguishable, leading to 

performance degradation. To address these issues, this study introduces a novel 

methodology employing curvi-linear anisotropic Gaussian filter-based Combined 

Differential Concavity and Infirmity (CDCI) codes. The use of curved filters has been 

proposed to represent curved palm lines more accurately, while anisotropic filtering is 

expected to enhance the extraction of blurred palm lines. The new representation, grounded 

in curvi-linear anisotropic Gaussian filtering, is posited to improve the recognition system's 

performance by effectively addressing these challenges. The proposed approach's 

effectiveness has been tested using the touchless IITD database and the contact-based PolyU 

2D database. The experimental results suggest that the proposed methodology surpasses the 

performance of state-of-the-art coding-based procedures in palmprint recognition with the 

improvement of 3.82% and 36.36% in recognition rate and equal error rate. 
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1. INTRODUCTION

Biometric traits such as palm prints have garnered attention 

due to the ease of capturing templates, high discriminative 

features, universal acceptability, richness in features even at 

low resolution, and permanence. The inherent features for 

differentiating one person's palmprint from another's lie in the 

edges, comprised of principal lines and wrinkles [1]. Principal 

lines, due to slower intensity variation, are considered low-

frequency information, while wrinkles, with their abrupt 

intensity changes, represent high-frequency information. 

Moreover, these inherent lines display curvature [1]. 

Past approaches primarily employed the even part of Gabor 

filters for palmprint representation, akin to Laplace of 

Gaussian (LOG) filters [2]. However, LOG filters are 

susceptible to noise and demonstrate an imbalance in the 

susceptibility to low and high-frequency information [3]. This 

approach failed to represent both principal lines and wrinkles, 

despite the enhancement of system performance from wrinkles 

[4]. Given that line frequency within local neighborhoods of 

the palmprint is fixed within a certain range, accurate feature 

extraction becomes dependent on the challenging task of 

frequency estimation for specific local neighborhoods. 

Existing palmprint representation algorithms can be broadly 

classified into structural, subspace, statistical, transform, and 

coding-based approaches [5]. Among these, coding 

approaches, a subcategory of transform-based algorithms [6-

9], have shown remarkable performance, ease in 

implementation, and rapid feature extraction. 

The evolution and development of coding approaches has 

seen numerous research contributions. Zhang et al. [4] 

presented the first binary feature representation for palmprint, 

in which binary features were extracted through zero crossings 

of a filtered image using a single-orientation Gabor filter. 

However, given that palm lines are oriented in various 

directions, a single orientation proved insufficient for 

comprehensive palmprint representation. Subsequent research 

saw the development of fusion codes [10], dominant 

orientation extraction and encoding [11-13], binary orientation 

co-occurrence vector (BOCV) [14], the incorporation of 

fragile bits with BOCV [15], XOR-SUM codes [16], Double 

Orientation Code (DOC) [17], half orientation codes (HOC) 

[18], discriminative and robust dominant orientation (DRCC) 

[19], neighboring Directional Indicator Code (NDIC) [20], and 

banana filter-based concavity code [21]. 

Palmprint representation can be enhanced using Anisotropic 

filtering (AF). Unlike Gabor filters, AF is frequency-

independent and eliminates the need for correct frequency 

assessments within local neighborhood blocks. The filters 

serve as a low-resolution smoothing function along the line 

direction, and as orthogonal smoothing filters perpendicular to 

the palm lines. AF has been shown to be robust to noise and 

distortion and capable of collecting evidence along inherently 

interrupted lines [22, 23]. In light of these advantages and the 

Traitement du Signal 
Vol. 40, No. 4, August, 2023, pp. 1739-1745 

Journal homepage: http://iieta.org/journals/ts 

1739

https://orcid.org/0000-0002-5177-8715
https://orcid.org/0000-0002-0441-7642
https://orcid.org/0000-0002-9739-2551
https://orcid.org/0009-0001-1286-5621
https://orcid.org/0000-0001-7412-5111
https://orcid.org/0000-0002-9762-3559
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400443&domain=pdf


 

curved characteristics of palm lines, this paper proposes a 

novel Curvilinear Anisotropic Gaussian filter (CAGF) based 

combined differential concavity and infirmity, (CDCI) codes 

for palmprint representation. 

The proposed CAGF, derived from AF, retains the 

frequency-independency towards palm line width and the 

noise removal capability of AF. Furthermore, the curvilinear 

filters are embedded with curvature in their shapes, providing 

a true representation of curved palm lines within palmprints. 

The performance of the proposed filter-based method is tested 

with the IIT Delhi touchless database [24] and the PolyU 2D 

database [25]. Both databases were chosen for their diverse 

inter and intra-class variations within their palmprint samples 

in terms of illumination and palm line width, and for their 

different capture techniques and environmental conditions. 

The key contributions of this work include the proposal of 

the novel Curvilinear Anisotropic Gaussian filter (CAGF) that 

incorporates the properties of anisotropic filters and considers 

the curved nature of the palm lines. The CAGF is frequency-

independent and capable of representing both types of palm 

lines, i.e., principal lines and wrinkles, irrespective of their 

frequencies. The novel CDCI codes are a combined binary 

representation of the curvature property of palm lines and the 

precise filtered image coefficient representation. This method 

discards repeated coefficients that can be captured at different 

orientations, known as infirmity codes. Thus, the proposed 

CDCI codes take advantage of the true structural 

representation of palm lines and incorporate vital features to 

enhance recognition performance. 

The rest of the paper is organized as follows: Section 2 

discusses the mathematical preliminaries to derive the CAGF, 

Section 3 elaborates the steps for generating the CDCI and the 

template matching, Section 4 discusses experimental results, 

and Section 5 concludes the paper. 

 

 

2. MATHEMATICAL PRELIMINARIES 

 

2.1 The curvilinear anisotropic gaussian filter 

 

Let X= [x1, x2] be the coordinates of the of the 2D palmprint 

image, and also assume that U= [u1, u2]T be the Cartesian 

coordinates of the 2-D Gaussian convolution kernel in a 

certain orientation, where u1 and u2 are anticipated to be 

parallel and orthogonal coordinates to the palm lines, 

respectively. Further, let the anticlockwise angle between the 

x1 and u1 is denoted by θ, then the coordinates, U from X, can 

be computed as: 
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where, T is the transpose operator, 𝛼 and 𝛽  are the contour 

adjustment parameters of the filter. The AFs are formulated by 

combining the Gaussian function in one direction, and second 

derivative of the Gaussian function in other direction 

(orthogonal direction) [26]. An anisotropic Gaussian filter 

kernel tuned to orientation θ, is described as a function of U. 
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The curved 2-D function from, f (m, n), can be derived by 

introducing the curvature into the function variables, m and n. 

This curvature property [21] can be deployed by the operator, 

Cc, which is defined as: 
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where, 𝜒  denotes curvature parameter and represented 

mathematically as follows: 
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and c is the parameter related to curvature. Therefore, the 

coordinates, to acquire curved 2-D Gaussian filter kernel, 

denoted as 𝑈𝑐 = [𝑢1
𝑐𝛾

𝑢2
𝑐𝛾

]  at certain orientation, θ, are 

obtained using following equation: 
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where, Cc introduces the curvature property up to the extent of 

c in 𝑢1
𝑐𝛾

 and 𝑢2
𝑐𝛾

. Thus, the 𝐶𝐴𝐺𝐹 𝜃
𝑐𝛾 can be obtained by 

substituting the coordinates, obtained through Eq. (6), into Eq. 

(7), and can be represented as: 
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The shape of the fitters with curvature features are shown in 

Figure 1.  

 

 
 

Figure 1. Curvilinear anisotropic filter shapes with: Positive 

concavity (LHS top and bottom shows front and top view, 

respectively); and Negative concavity (RHS top and bottom 

shows front and top view, respectively) 

 

 

3. PROPOSED FEATURE EXTRACTION APPROACH 

 

The different stages of proposed approach are shown in 

Figure 2 and detailed procedure is elaborated below: 
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Figure 2. Filtering stages: Convolution of the input image 

and filters with 𝜋/3 Orientation (left); filtered images 

(middle); differential concavity (top) and infirmity codes 

(bottom); and fusion of both obtained Differential concavity 

and infirmity codes (right most) 

 

3.1 Differential concavity codes 

 

To obtain the differential concavity codes, Dcc, the input 

image is convolved with the curvilinear anisotropic Gaussian 

filter, 𝐶𝐴𝐺𝐹𝜃
𝑐𝛾 , of different concavity at a particular orientation. 

Thereafter, differential concavity codes (Dcc) are obtained 

through zero crossings of these responses. Let I, be the input 

palmprint image of size M×M. 

By fixing the value of c, 𝐶𝐴𝐺𝐹𝜃
𝑐0  and 𝐶𝐴𝐺𝐹 𝜃

𝑐1  be the 

respective filter kernels, with positive (when 𝛾 =0) and 

negative (when 𝛾=1) concavity, in a particular direction, 𝜃𝑖 , 

that are obtained from Eq. (7). Thereafter, the filtered image 

responses, (𝑅𝐶𝐴𝐺𝐹 
𝑃𝑐 and 𝑅𝐶𝐴𝐺𝐹

𝑁𝑐 ), for both (positive and negative) 

concavity filters are computed as: 
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where, Pc and Nc stands for positive and negative concavities 

of the filter. 

By utilizing the filter responses obtained in Eq. (8) and Eq. 

(9), the Differential Concavity Codes, (Dcc)s, are derived as: 
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where, 𝛻 represents difference operator which calculates the 

difference between its variables and |. |  absolute operators, 

respectively. 

 

3.2 Differential infirmity codes 

 

For computing differential infirmity codes (Dic), the 

difference plane, between the 𝑅𝐶𝐴𝐺𝐹
𝑃𝑐 (𝑥1, 𝑥2, 𝜃𝑖)  and 

𝑅𝐶𝐴𝐺𝐹
𝑁𝑐 (𝑥1, 𝑥2, 𝜃𝑖)  is employed. Thereafter, a particular 

percentage, (Pr) of locations with minimum difference 

magnitude are identified and replaced with black pixels or 

masked as zeros. From the locations for lowest difference 

values of certain percentage, (Pr), finally Differential 

Infirmity codes are obtained by zero crossings of magnitudes 

in resulting difference plane, 𝛻(𝑅𝐶𝐴𝐺𝐹
𝑃𝑐 (𝑥1, 𝑥2, 𝜃𝑖),

𝑅𝐶𝐴𝐺𝐹
𝑁𝑐 (𝑥1, 𝑥2, 𝜃𝑖)). 

The step-by-step procedure for computing, Dic is as follows: 

 

• Compute the difference plane for each specific 

orientation between the 𝑅𝐶𝐴𝐺𝐹
𝑃𝑐 (𝑥1, 𝑥2, 𝜃𝑖)  and 𝑅𝐶𝐴𝐺𝐹

𝑁𝑐 (𝑥1, 𝑥2,

𝜃𝑖). 

• Reshape this difference plane into one dimensional 

vector and sort this vector in ascending order. 

• Select a particular percentage (Pr) of locations with 

minimum difference values and replace all of their magnitude 

with zero. 

• Revamp the obtained one-dimensional plane into 2D 

plane and perform zero crossing to procure Dic. 

 

3.3 Combined differential concavity and infirmity codes 

(CDCI) 

 

The Combined differential concavity and infirmity codes 

(CDCI) are derived by simple concatenation of the Dcc and Dic. 

Let 𝐷𝑐𝑐(𝑥1, 𝑥2, 𝜃𝑖)  and 𝐷𝑖𝑐(𝑥1, 𝑥2, 𝜃𝑖)  be the differential 

concavity and infirmity codes, respectively. The fusion of both 

of these codes takes place using following equation: 

 

1 2 1 2[ ( , , ), ( , , )]cc i ic iCDCI D x x D x x =  

 

where, 1,2,3,...,i number  of orientations (N). 

 

3.4 Template matching 

 

The hamming distance [16] between database template, 

CDCIP and test template, CDCIQ features are employed to find 

similarity. 
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where, i denotes the ith bit plane and ⊗  is bitwise XOR 

operation. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1 Experimental set up 

 

The proposed approach is evaluated with touchless (IITD 

Touchless Database [24]) and contact based (PolyU 2D/3D 

database [25]) databases provided by IIT Delhi and Hong 

Kong Polytechnic university, Hong Kong, respectively. 

The IITD database was collected by Biometrics Research 

Laboratory of IIT Delhi, from 230 individuals. Each individual 

was asked to put 5 palmprint samples of their left and right 

hand. The extracted size of the region of interest (ROI) for 

each sample was kept 150×150. In order two evaluate the 

proposed method, both left- and right-hand samples were 

considered as a separate individual which result 2300 

palmprint images from 460 individuals. The huge intensity and 

rotation variation, this database, makes this database very 

challenging. The contact based PolyU 2D/3D palmprint 

database was collected biometric research center of HKPU, 

Hong Kong from 400 individuals with 8000. Every individual 
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was urged to provide 20 samples of the one hand in two 

sessions. In this way, 4000 samples in each session were 

collected. The size of ROI for this database, was 128×128. 

The proposed approach is investigated for verification mode. 

Since the proposed filter is dependent on certain parameters 

(i.e., contour adjustment parameters (α, β), concavity control 

parameter ϒ and percentage differential infirmity magnitude 

locations (Pr)), the optimal values of these parameters are 

required to be explored firstly. The angles of orientation for 

the proposed work are fixed to three (i.e., 2π/6, 4π/6 and 5π/6) 

which limits the feature size. 

The reason for selecting the specific orientations is that 

while experimentation it is observed that filters at these 

particular orientations not only preserve curvature property but 

also maintain uniform excitatory of the filter. Thereafter, the 

performance of the proposed approach with particular 

database is compared with existing popular and recently 

published approaches. The size of databases is considered as a 

key factor for opting such evaluation process. Since the size of 

touchless database is small, the single stage evaluation is 

carried for it, whereas for contact-based database dual stage 

evaluation process is adopted. The single stage evaluation 

involves both parameter as well as performance estimation. 

 

Table 1. Experimental results of the proposed approach for 

extracting the optimal performance for IITD database and 

optimal parameters PolyU 2D database 

 
Databases IITD PolyU 2D 

Parameters (α, β, c)  EER  GAR  EER  GAR 

α=9, β=15, 
c=2 11.11 89.22 1.39 98.61 

c=3 10.93 89.17 1.40 98.57 

α=9, β=17, 
c=2 10.86 90.03 1.30 98.74 

c=3 90.00 10.73 1.30 98.78 

α=9, β=19, 
c=2 10.06 90.50 1.51 98.55 

c=3 10.00 90.39 1.35 98.75 

α=9, β=21, 
c=2 9.42 90.39 1.35 98.75 

c=3 9.33 90.33 1.51 98.55 

α=11, β=15, 
c=2 9.17 91.61 1.35 98.62 

c=3 9.12 91.56 1.37 98.63 

α=11, β=17 
c=2 8.84 91.72 1.53 98.39 

c=3 8.84 91.72 1.54 98.37 

α=11, β=19 
c=2 8.33 91.72 1.85 98.05 

c=3 8.36 91.66 1.84 98.07 

α=11, β=21 
c=2 7.90 91.44 2.18 98.02 

c=3 7.96 91.24 2.17 97.99 

α=13, β=15, 
c=2 8.23 91.50 2.46 97.77 

c=3 8.35 91.50 2.44 97.71 

α=13, β=17, 
c=2 8.06 91.78 3.14 96.96 

c=3 8.04 91.78 3.15 96.96 

α=13, β=19, 
c=2 7.89 91.50 3.48 96.24 

c=3 7.86 91.50 3.48 96.13 

α=13, β=21, 
c=2 8.02 91.06 4.02 95.66 

c=3 8.57 91.06 4.00 95.62 

 

The experimental outcomes are given in Table 1. and the 

best outcomes are highlighted in boldface letters. While for 

PolyU 2D database, in first stage, the optimum parameters are 

explored out with first session database. The Table displays 

the outcomes for the first session database. Thereafter, tuning 

the proposed method with optimal parameters, which are 

boldfaced in the Table 1, the performance is evaluated in terms 

of equal error rate (EER), genuine acceptance rate (GAR), 

receiver operating curve (ROC) with second session of the 

database. 

These performance measures are computed using the match 

scores which are generated by matching each image of the 

database to all other images in the database. The obtained 

match scores are categorized into two type genuine scores and 

impostor scores. The genuine scores are obtained by matching 

feature templates within the same class itself while impostor 

scores are generated by matching each feature template of one 

class to all other feature templates of other classes. For IITD 

database, aggregated scores are 2,64,3850 in which 46,000 are 

genuine scores and 2,63,9250 are impostor scores. The 

obtained genuine scores and impostor scores for PolyU 2D 

database with II session images are 18,000 and 7,98,0000, 

respectively. 

 

4.2 Performance with IITD touchless database 

 

The proposed approach is evaluated with aforementioned 

experimental set-up and the performance of the proposed is 

compared with existing popular and latest schemes such as 

Competitive code [11], Ordinal code [12], BOCV [14], DOC 

[17], DRCC [19], neighboring directional indicator code [20] 

and Concavity orientation code [21]. Since the contour 

adjustment parameters α and β affect the detection of different 

width palm lines, multiple combinations of these parameters 

are explored in the performance evaluation process. 

The major aim of this parameter investigation is to find out 

optimum parameters at which it can better represent both the 

fine and thick lines of the palmprint. Thus, the range of α= [7, 

9, 11, 13] and β= [15, 17, 19, 21] are chosen into the 

consideration. The curvature of the proposed filter is 

controlled by parameter, c which is fixed to 2 and 3 for each 

pair of α and β. Here, the optimal value of Pr is obtained 

experimentally which is found to be 25%. It is observed from 

the experimental outcomes that if we increase this percentage 

for this database then it results less amount of infirmity bits 

which consequently reduces the performance of the proposed 

work. Taking the above-mentioned parameters, optimum 

results for the proposed approach with touchless IITD 

database are obtained at c=3, α=13 and β=17.  

The obtained EER (%) and GAR (%) for the proposed 

approach is displayed in Table 2. and pictorially shown in 

Figure 3. The reported percentage of EER and GAR with this 

set up is 8.02 (%) and 91.71 (%), respectively. The efficacy of 

the proposed work can also be observed by ROC curves shown 

in Figure 4. It apparent from the ROC curve that the proposed 

approach is demonstrating the better performance compared to 

all listed approaches in Table 2. The experimental outcomes 

reveal that the proposed approach is the best among all listed 

approaches in the table. 

 

Table 2. EER (%) comparison of proposed and existing approaches with IITD palmprint database 

 
Approaches [12] [11] [14] [17] [20] [19] [21] Proposed 

EER 10.65 11.29 11.18 19.18 9.34 13.13 8.36 8.04 

GAR 88.20 88.61 88.85 83.86 90.19 80.65 91.20 91.78 
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Figure 3. Bar chart representation of performance parameter comparison for the proposed Vs. existing recent approaches 

 

 
 

Figure 4. Comparative performance for the proposed approach Vs. existing recent and popular approaches with IITD touchless 

database 

 

 
 

Figure 5. Bar chart representation of performance parameter comparison for the proposed Vs. existing recent and popular 

approaches for PolyU 2D database 

 

Table 3. EER (%) comparison of proposed and existing approaches with PolyU 2D palmprint database 

 
Approaches [12] [11] [14] [17] [20] [19] [21] Proposed 

EER 1.45 1.82 1.74 5.91 1.20 3.65 0.88 0.56 

GAR 98.51 98.12 98.46 94.06 98.81 96.53 99.14 99.35 
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Figure 6. Comparative performance of the proposed approach Vs. Existing approaches on PolyU 2D database 

 

4.3 Performance with PolyU 2D database 

 

In the evaluation and comparative analysis with PolyU 2D 

database, images of both sessions are employed. The 

experimentation process is divided into two stages. In first 

stage, the optimum parameters of the filter are derived using 

the images of first session. 

Thereafter, performance of the proposed approach is 

derived using the filter bank tuned at optimum parameters and 

compared with existing state-of-the-art approaches. The 

different combinations of the α, β and c are explored for 

determining the optimum combination of the parameters. For 

this database, the optimum results were obtained at 9, 17 and 

3 for α, β and c, respectively. The value of Pr, for this database 

is found optimum at 15%. Since palm line width within this 

database are thin as compared to IITD touchless database, it 

may be the possible reason behind the drop in the percentage 

of infirmity bits compared to IITD touchless database.  

The experimental results of the proposed approach tuned to 

above experimental setup and images of the second session are 

tabulated in Table 3. and graphically represented in Figure 5. 

These results reveal that the proposed approach outperforms 

and displays EER of 0.56% and GAR of 99.35% which is the 

best among all methods reported in the Table 3. The method 

demonstrates lowest equal error rate which may be due to the 

constrained capturing environment with uniform lighting 

conditions. The corresponding ROC curves on PolyU 2D 

database, for both existing and proposed approach are shown 

in Figure 6, which confirms the effectiveness of the proposed 

scheme by outperforming the reported ones. 

 

 

5. CONCLUSION 

 

The most of the work in the literature considers palm lines 

as straight line. However, these are the curved. Thus, A novel 

curvilinear anisotropic filter-based coding approach, CDCI 

has proposed which considers curved palm lines of the 

palmprint. The proposed curvilinear anisotropic filter based 

CDCI representation employs fusion of two different binary 

representation, i.e., differential concavity and infirmity codes 

for palmprint representation. The reported performance of the 

proposed approach (in terms of Equal Error Rate) with 

touchless database is 8.04% which is 3.82% from the other 

curvature-based approach. In contrast, the reported error rate 

on contact-based database was found to be 0.56%, which is 

found to be the lowest among the all considered for this study 

and demonstrates 36.36% of improvement from the other 

curvature-based approach. approaches. In future, the proposed 

approach can be investigated with Neural Network and 

machine learning based approaches. Moreover, the method 

can be tested with more contact-based datasets. 
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