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Background: Sleep disorders pose significant health risks, necessitating accurate 

diagnostics. The analysis of polysomnographic data and subsequent sleep stage 

classification by medical professionals are crucial in diagnosing these disorders. The 

application of artificial intelligence (AI)-based systems for automated sleep stage 

classification has gained significant momentum recently. Methodology: In this study, we 

introduce a machine learning model designed for high-accuracy, automated sleep stage 

classification. We utilized a dataset consisting of polysomnographic data from 50 

individuals, obtained from the Yozgat Bozok University Sleep Center. A variety of 

classifiers, including Extra Tree, Decision Tree, Random Forest, Ada Boost, and Gradient 

Boost, were tested. Sleep stages were classified into three categories: Wakefulness (WK), 

Rapid Eye Movement (REM), and Non-Rapid Eye Movement (N-REM). Results: The 

overall classification accuracies were 95.4%, 95%, and 92% for three distinct classifiers, 

respectively, with the highest accuracy reaching 98.8%. Comparison with Existing Methods: 

This study distinguishes itself from comparable sleep stage-scoring research by utilizing a 

unique dataset, and by incorporating data from 16 channels, which contributes to the 

achieved accuracy. Conclusion: The machine learning model trained with a unique dataset 

demonstrated high classification success in the automated scoring of sleep stages. This 

research underscores the potential of machine learning techniques in improving sleep 

disorder diagnostics. 
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1. INTRODUCTION

Obstructive sleep apnea (OSA) is a condition characterized 

by recurrent or partial breathing obstructions that disrupt sleep 

architecture [1]. Worldwide, an estimated 1 billion people are 

affected by OSA [2]. The associated consequences, including 

sleep fragmentation, daytime sleepiness, and diminished 

psychomotor vigilance, are primarily due to the arousals 

triggered by breathing obstructions [3]. Hence, the analysis 

and understanding of sleep functions offer valuable insights 

into personal health. A proposed method for assessing the 

relationship between OSA and fragmented sleep is the 

performance of survival analysis on the durations of 

continuous sleep, with subjects grouped by OSA severity 

category [4]. 

The gold standard for sleep apnea diagnosis is full-night 

polysomnography (PSG), conducted in a sleep laboratory [5]. 

PSG involves the collection of various physiological signals 

from more than ten channels using different sensors such as 

electroencephalogram (EEG), electrooculogram (EOG), 

electromyogram (EMG), and electrocardiogram (ECG), 

thereby enabling researchers to achieve accurate results [6]. 

However, PSG is often uncomfortable, expensive, and not 

easily accessible [7]. Additionally, the analysis and sleep stage 

scoring processes involved are time-consuming [8]. Sleep 

stage scoring, a critical process for apnea detection, is prone to 

errors, and there is a scarcity of professionals capable of 

diagnosing sleep apnea in medical facilities [9, 10], leading to 

long waiting times [11]. 

Sleep stages are typically divided into Rapid Eye Movement 

(REM) and Non-Rapid Eye Movement (NREM), with NREM 

further subdivided into stages 1, 2, and 3 according to the 

guidelines of the American Academy of Sleep Medicine 

(AASM) [12]. The Rechtschaffen and Kales method proposes 

an alternative classification that includes four NREM stages 

[13]. It is important to note that sleep stages are not only brain-

focused; effects of the autonomous nervous system (ANS) are 

also a significant factor [14, 15]. For instance, the activity of 

the sympathetic nervous system (SNS) is decreased during 

NREM sleep, with phasic bursts of SNS activity occurring 

during REM sleep [16]. 

Changes in ANS activity cause hemodynamic changes 

during sleep [17]. During NREM sleep, both mean arterial 

pressure and cardiac output are reduced. In contrast, increases 

in arterial pressure and heart rate are observed during REM 

sleep [18]. Sleep apnea may occur during any sleep stage, but 

it is dominant during REM sleep due to further relaxation of 

the upper airway muscles [19]. Thus, a three-stage 

classification consisting of Wake, REM, and NREM stages 

can be employed for apnea detection and scoring. 

Considerable research has been conducted on the 

development of automatic algorithms for sleep apnea detection 
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and sleep stage scoring based on various physiological signals 

[20-22]. Conventional machine learning algorithms were 

among the first automatic algorithms used for apnea detection. 

However, due to the limited feature extraction capability and 

the need to solve complex physiological signals, researchers 

have started focusing on more complex deep learning models 

[23, 24]. 

Conventional machine learning methods generally involve 

three main steps: feature extraction, feature selection, and 

classification. The performance of these machine learning 

algorithms can be significantly boosted by the feature 

engineering process, and various classification algorithms 

have been developed. These include Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), 

Logistic Regression (LR), Support Vector Machines (SVM), 

K-Nearest Neighborhood (KNN), Decision Tree (DT), 

Random Forest (RF), Extra Tree (ET), and Gradient Boosting 

(GB) [25]. 

For instance, Liang et al. [26] proposed the use of multiscale 

entropy as a signal feature, while Hassan and Subasi [27] dealt 

with a signal that needed to be decomposed into several sub-

bands. Jiang et al. [28] approached sleep stage classification in 

three steps: feature extraction, random forest classification, 

and result refinement using a hidden Markov model. 

In deep learning models, feature extraction is automatically 

performed by a deep neural network model, enabling end-to-

end automated sleep stage classification [29]. Deep learning-

based methods employ convolutional neural networks (CNN) 

[30], recurrent neural networks (RNN), or a combination of 

both. For instance, Andreotti et al. [31] employed a modified 

ResNet with 34 layers for automatic sleep stage classification, 

while Michielli et al. [32] used a two-level long short-term 

memory (LSTM) structure for classifying EEG signals. 

The accuracy of sleep staging methodologies in current 

state-of-the-art research ranges from 62% to 99%. However, it 

should be noted that some of the higher accuracy values were 

obtained in apnea detection or wake-sleep detection. Moreover, 

some studies use only EEG or EOG input for automatic sleep 

stage scoring [33]. Another factor that affects the accuracy rate 

is the use of different datasets released by various hospitals 

orresearch institutions. When comparing the performance of 

different models, it is important to consider the complexity of 

the input data and the specific tasks that the model is designed 

to perform. 

For example, in a study by Arslan et al. [34], a deep learning 

model was trained on 8,000 patients suffering from various 

sleep disorders, and the model achieved an accuracy of 72% 

in five-class sleep stage scoring. Shahin et al. [35] used a 1D 

CNN to classify sleep stages based on single-channel EEG 

data, achieving an accuracy of 74%. Li et al. [36] achieved an 

accuracy of 79% in five-class sleep stage scoring using a deep 

bidirectional LSTM (BiLSTM). 

Despite the significant progress in the field, there are still a 

number of challenges and limitations associated with current 

sleep stage scoring methodologies. These include the lack of 

standardization in scoring methods and the need for large 

amounts of training data for deep learning models. In addition, 

the performance of these models often depends on the quality 

and length of the sleep data, which can vary greatly among 

individuals. Furthermore, these models are often complex and 

require significant computational resources, which can be a 

barrier to their widespread use in clinical settings. 

In conclusion, the automatic detection and scoring of sleep 

stages is a complex task that requires the analysis of various 

physiological signals. While significant progress has been 

made in the development of machine learning and deep 

learning models for this task, there are still many challenges to 

be addressed. Future research should focus on improving the 

accuracy and robustness of these models, as well as 

developing methods that are more efficient and easier to 

implement in clinical settings. 

 

 

2. RELATED WORKS 

 

In this part of the manuscript performance of the proposed 

manuscript compared with similar studies up to date by using 

number of classes (Wake (W), rapid eye movement (REM), 

non-rapid eye movement (NREM)), PSG device input type 

and dataset type. The proposed work offers many advantages 

such as having its own database, using multi-channel inputs, 

and having high accuracy. Table 1 summarizes a list of 

comparisons between the proposed work and recent similar 

works. To explain the presented works importance following 

works chosen which employs different inputs and different 

techniques to show the literature gap. 

Shahin et al. [35] realized a deep learning approach by using 

single and two EEG inputs on their own dataset to classify 

sleep stages. When compared with manual assessments, an 

NREM+REM based classifier had an overall discrimination 

accuracy of 92% and 86% between two groups using both two 

and one EEG channels, respectively in 2017. This study also 

proves that the accuracy has a directly relation with channel 

input numbers. Li et al. [36] classifies three sleep stages 

(Wake-REM-NREM) from a single lead ECG using beat 

detection, cardiorespiratory coupling in the time frequency 

domain and deep convolutional network (CNN). Their 

obtained accuracy was 85.1% when application was verified 

on MIT-BIH PSG database. DNN was used for the 

classification of the sleep stages into W, REM and NREM 

sleep stages by Wei et al. [37] in 2018. They applied the sleep 

stage stacked autoencoder to constitute a 4-layer DNN model. 

To test the accuracy of their method, eighteen PSGs from the 

MIT-BIH Polysomnographic Database were used. They 

obtained an accuracy of 77% and a Cohen’s kappa coefficient 

of about 0.56 for the classification of W, REM, NREM. 

Another deep learning-based sleep stage classification work 

made by Chambon et al. [38] in 2018. They employed 6 EEG, 

2 EOG and 3 EMG channels of publicly available MASS 

dataset. Their accuracy for five sleep stage classification was 

around 87%. 

Malafeev et al. [39] developed machine learning algorithms 

for sleep classification: random forest (RF) classification 

based on features and artificial neural networks (ANNs) 

working both with features and raw data. They tested their 

methods and achieved accuracy of 90% when on 5 stage 

classifiers. Zhao et al. [40] employs SVM for classification of 

sleep stages on EDF dataset by using EEG input. Their 

accuracy is 85.93% when this technique was applied to EDF 

database in 2019. A flexible deep learning model is proposed 

using raw PSG signals by Yildirim et al. [41]. A one-

dimensional convolutional neural network (1D-CNN) is 

developed using electroencephalogram (EEG) and 

electrooculogram (EOG) signals for the classification of sleep 

stages. The performance of the system is evaluated using two 

public databases (sleep-edf and sleep-edfx). The developed 

model yielded the highest accuracies of 98.06% and 94.64 for 

2 and 3 classes, respectively. Ravan and Begnaud [42] used 
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quantitative features obtained from electroencephalography in 

2019 for awake-Ligth sleep+REM-deep sleep classification. 

They first developed a new automatic sleep-staging 

framework that consists of a multi-class support vector 

machine (SVM) classification, based on a decision tree 

approach. To train and evaluate the performance of the 

framework, they used polysomnographic data of 23 healthy 

subjects from the PhysioBank database where the sleep stages 

have been visually annotated. After that, they used the trained 

classifier to label the sleep stages using data from 22 patients. 

Their overall accuracy is 90% at the related study when PZ-

Oz channel was employed. Jeon et al. [43] proposed a novel 

end-to-end classifier based on a multi-domain hybrid neural 

network (HNNmulti) approach consisting of a convolutional 

neural network and bidirectional long short-term memory for 

automatic sleep staging with pediatric scalp EEG recordings 

in 2019. Their HNN-based classifier yielded the best 

performance metrics using 30-s time series in combination 

with an instantaneous frequency using a 19-channel, three-

stage classification with overall accuracy, F1 score, and 

Cohen's Kappa, equal to 92.21%, 90%, and 88%, respectively. 

Huang et al. [44] proposed a multi-channel signal adding 

method for sleep staging in 2020. Overall performance was 

obtained while using the proposed method, and in six-state 

sleep staging. The highest overall classification accuracy of 

96.53% was obtained based on the superposition of two EEG 

signals. Chriskos et al. [45] realized a study for automatic 

sleep staging by employing CNN and cortical Connectivity 

images. When they apply Synthetic Minority Oversampling 

Technique (SMOTE) technique for the classification REM-

NREM stages, they obtained an accuracy of 99.85%. Santaji 

and Desai [46] proposed an efficient technique for sleep stage 

classification based on Electroencephalogram (EEG) signals 

analysis using machine learning algorithms by considering 10 

seconds of EEG epochs. EEG signals were filtered and 

decomposed into frequency sub-bands using band-pass filter. 

Statistical features are extracted and trained with Decision 

Tree, Support Vector Machine and Random Forest algorithms 

with different testing dataset percentage. Results show 

Random Forest algorithm achieves 97.8% of accuracy for 

NREM-REM classification. 

Zhang et al. [47] collected data from 294 studies and 

developed a model by using DNN to obtain higher accuracy. 

Their accuracy value is 96.02% in binary classification (as N1 

and N2, W and REM ETC). However, the overall 

classification accuracy decreases to 83% in 5 classes 

classification. Satapathy et al. [48] proposed a study aims to 

develop a new automated sleep staging system using the brain 

EEG signals. Based on a new automated sleep staging system 

based on an ensemble learning stacking model that integrates 

Random Forest (RF) and eXtreme Gradient Boosting 

(XGBoosting). Their model achieved an accuracy of 91.10% 

in S-EDF dataset. Grieger et al. [49] proposed a classification 

system based on a simple neural network architecture that 

scores the classical stages as well as pre-REM sleep in mice. 

Their accuracy for NREM, W, REM was 97%. Satapathy and 

Loganathan [50] proposed automated sleep staging system 

followed four basic stages: signal preprocessing, feature 

extraction and screening, classification algorithms, and 

performance evaluation. In that work, a new method is applied 

for signal preprocessing, feature screening and classification 

models. With that proposed model they obtained an accuracy 

of 99.34% on SG-I dataset for 5 stage classification. Another 

high accuracy work done by Satapathy and Loganathan [51]. 

That work develops an Automated Sleep Staging System 

based on Two-Layer Heterogeneous Ensemble Learning 

Stacking Model (ASSS-TL-HELSM) for sleep staging. Their 

model has maximum accuracy of 99.02% in SG-I dataset if 3 

substage (W-REM-NREM) and feature selection were applied. 

Arslan et al. [34] proposed a 5-class model for automatic 

scoring of sleep stages. Classification was made using 19 

sensors and as a result, 95.36% accuracy value was obtained 

for Extra Tree. 

Abdollahpour et al. [52] proposes a new method for fusing 

two sources of information, electroencephalogram (EEG) and 

electrooculogram (EOG), to achieve promising results in the 

classification of sleep stages. The proposed method employs 

transfer learning at the training stage of the model to accelerate 

the training process of the CNN and to improve the 

performance of the model. The proposed algorithm was used 

to classify the sleep-EDF and sleep-EDFX benchmark datasets. 

The algorithm could classify the Sleep-EDF dataset with an 

accuracy of 93.58% and Cohen’s kappa coefficient of 0.899. 

The results show that the proposed method can achieve 

superior performance compared with state-of-the-art studies 

on the classification of sleep stages. Furthermore, it can 

provide reliable results as an alternative to conventional sleep 

staging [52]. 

Fraiwan and Alkhodari [53] examines the application of a 

long-short-term memory (LSTM) learning system for the 

purpose of automatic sleep stage scoring in neonates. The 

research employed a dataset of 5095 sleep stage signals that 

were obtained from electroencephalogram (EEG) recordings 

conducted at the University of Pittsburgh. The Pediatric 

Neurology Department of Case Western Reserve University 

enlisted the expertise of a medical doctor to annotate the sleep 

stages of neonates. Specifically, the doctor identified three 

distinct sleep stages-awake (W), active sleep (AS), and quiet 

sleep (QS)-in 60-second epochs. The signals underwent pre-

processing procedures, including normalization and filtering. 

The signals obtained were partitioned into four-fold, six-fold, 

and 10-fold cross-validation schemes. The bidirectional 

LSTM network classifier, which has been constructed with 

predetermined training parameters, is used to execute the 

training and classification procedures. The algorithm that was 

formulated underwent an evaluation process, which was 

accompanied by a comprehensive summary table that presents 

the findings of this investigation as well as those of other 

contemporary research endeavors. The present investigation 

attained notable levels of Cohen's kappa (κ), accuracy, and F1 

score, specifically 91.37%, 96.81%, and 94.43%, respectively. 

The confusion matrix indicates that the true-positive 

percentage achieved an overall value of 95.21%. The 

algorithm that was developed demonstrated favorable 

outcomes in the context of automated scoring of neonatal sleep 

signals for sleep stage identification. Subsequent research 

endeavors will entail enhancements to the classifier’s overall 

accuracy through the utilization of LSTM architecture and 

improvements to the training parameters [53]. 

Eldele et al. [54] introduces a new deep learning framework 

named AttnSleep, which employs attention mechanisms for 

the classification of sleep stages based on EEG signals 

obtained from a single channel. The architectural design 

comprises three primary components, namely feature 

extraction, temporal context encoder, and classification. The 

module for feature extraction relies on a convolutional neural 

network (CNN) that operates at multiple resolutions, known as 

the multi-resolution CNN (MRCNN). Additionally, the 
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module employs adaptive feature recalibration (AFR) to 

enhance the quality of the extracted features. This approach 

allows for the extraction of both low-and high-frequency 

features and models the interdependencies between them, 

resulting in improved feature quality. The Temporal Context 

Encoder (TCE) utilizes a multi-head attention mechanism to 

effectively capture temporal dependencies within the extracted 

features. The module responsible for categorizing sleep stages 

employs a fully connected layer for classification purposes. 

The AttnSleep model, as proposed, exhibits superior 

performance compared to contemporary techniques, as 

evidenced by various evaluation metrics. 

The paper proposes an efficient technique for sleep stage 

classification based on Electroencephalogram (EEG) signals 

analysis using machine learning algorithms by considering 10 

s of epochs. The EEG signals are filtered and decomposed into 

frequency sub-bands using a band-pass filter. Statistical 

features are extracted and trained with Decision Tree, Support 

Vector Machine and Random Forest algorithms with different 

testing dataset percentage. Results show that the Random 

Forest algorithm achieves 97.8% of accuracy. The paper also 

mentions that PSD and ERP are well-established methods for 

analyzing EEG signals to classify sleep stages. In this study, 

PSD and ERP plots are derived using EEGLAB, which is a 

graphical user interface that permits users to intuitively 

process the data for better sleep stage classification [55]. 

Liu et al. [56] examines the use of polysomnography as a 

preeminent method for detecting sleep stages, and underscores 

inconsistencies in the application of these criteria by 

technicians. The present research suggests the implementation 

of an artificial intelligence (AI) system to effectively assess 

the dependability and uniformity of sleep scoring, and 

consequently, the quality of sleep centers. This was achieved 

through the use of an interpretable machine learning algorithm 

to evaluate the interrater reliability (IRR) of sleep stage 

annotation among sleep centers. A study was conducted on 

679 patients without sleep apnea from six sleep centers in 

Taiwan to perform intra center and inter center assessments. 

Centers that may have quality issues were identified using the 

estimated internal rate of return (IRR). Intra center assessment 

revealed that the median accuracy varied between 80.3% and 

83.3%, apart from a single hospital, which demonstrated an 

accuracy of 72.3%. During the inter-center assessment, the 

median accuracy varied between 75.7% and 83.3% when a 

single hospital was omitted from both the testing and training 

phases. 

Haghayegh et al. [57] presents a novel deep learning 

algorithm that integrates Proportional Integrating Measure 

(PIM) and zero-crossing mode (ZCM) data to estimate sleep 

parameters through wrist actigraphy. The research entailed the 

acquisition of ZCM, PIM, and electroencephalographic (EEG) 

data from a sample of 40 individuals who were in good health. 

The algorithm under consideration demonstrated a noteworthy 

improvement in specificity compared to the existing algorithm 

while exhibiting a slight reduction in sensitivity for individuals 

suffering from sleep disorders. The inconspicuous evaluation 

of circadian rhythms is especially pertinent for individuals 

with neuropsychiatric disorders linked to sleep disruptions, 

such as major depressive disorder or cognitive decline. The 

manuscript additionally examines approaches to mitigate the 

issue of incomplete data through the optimization of DHT 

deployment and the incorporation of patient viewpoints in the 

research framework. Furthermore, this manuscript presents a 

methodological guide for establishing studies on daily life, 

with a specific emphasis on evaluating salivary cortisol levels. 

A polysomnography (PSG) study was conducted on a sample 

of 11 male and 9 female individuals in order to assess potential 

neuropsychiatric sleep disorders. Concurrently, wrist 

actigraphy was documented, whereby 37 characteristics were 

calculated for every 1-minute interval. The study involved a 

comparison of the prediction of PSG-derived sleep-wake 

states for each feature using our newly developed algorithm 

and four state-of-the-art algorithms. The performance of the 

algorithms was assessed through the use of leave-one-subject-

out cross-validation. The recently developed algorithm 

demonstrated an accuracy of 84.9% in identifying sleep 

epochs and 74.2% in identifying wake epochs, resulting in an 

overall sleep-wake scoring accuracy of 79.0%. 

Peker offers a concise survey of the literature pertaining to 

the categorization of sleep phases. The text delves into a 

comparative analysis of the proposed and current 

methodologies while referencing the novel contributions of the 

proposed approach. The present study introduces a novel 

approach to automatic sleep scoring utilizing single-channel 

electroencephalography (EEG) signals. This approach is a 

hybrid machine-learning method that incorporates complex-

valued nonlinear features (CVNF) and a complex-valued 

neural network (CVANN). The nomenclature assigned to the 

proposed technique is CVNF CVANN. The method under 

consideration demonstrated accuracy rates of 91.57% and 

93.84% in accordance with the R&K and AASM standards, 

respectively. These results suggest that the method has the 

potential to be effective in the context of sleep scoring. The 

present study introduces a facial video database and its 

corresponding acquisition process, comprising 31,500 video 

clips featuring 100 distinct individuals hailing from 20 

different countries [58]. 

As briefly given here and other review studies [59, 60] our 

works differentiated from related works by having own dataset 

and applying all channels as input. Since sleep experts uses all 

PSG channels during sleep stage scoring, we wanted to all 

PSG channels of the device as input which leads to 5 million 

data for every patient which is occupied from 800 epochs of 

30 seconds approximately. For increasing reliability, sleep 

data had been used which means 250 million records. Machine 

learning algorithms applied and obtained results presented in 

detail. The maximum accuracy obtained as 98.8% when 

machine learning algorithms applied in this work. Although 

obtained accuracy is lower than the ones that uses publicly 

available dataset with single or dual channel data, we claim 

that the proposed work will give an idea to the researcher who 

want to make similar studies by using own dataset with all 

PSG inputs. In order to explain the literature gap, Table 1 is 

prepared by giving classes, PSG inputs, dataset and size, 

engineering techniques and accuracy tabs as below. The 

proposed work differs from related works by using own 

dataset and applying discrete signal pre-processing and 

processing on it to achieve recognize the sleep stage with 

nearly 100% accuracy. When we look at the current state of 

the art, similar works employs EEG, ECG, or whole PSG 

inputs to differentiate the sleep stages generally by using DNN, 

machine learning or CNN methods on publicly available 

datasets. This work is motivated by that literature gap. Another 

point of literature gap which can be seen in the Table 1, the 

number of individuals in approximately half of the databases 

used in similar studies is less or the same amount than the 

number of individuals in ours. In studies [50, 51], were 

conducted on 3 groups and the number of individuals in two 
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of them was less than 50. The number of individuals in the two 

references is around 60, not much different from 50. As a 

result, it is seen that the almost 70% of similar works have 

similar number individuals as in this work individuals in the 

databases used in 70% of similar studies is similar to that in 

our database. 

A summary table of the studies on the subject is presented 

in Appendix A. 

 

 

3. METHODOLOGY 

 

In this study, which aims to score sleep stages automatically, 

a model is proposed that includes collecting data from subjects 

during sleep and evaluating them by experts, preprocessing 

these data, testing them with appropriate machine learning 

techniques, predicting the sleep stage classes, and finally 

validating the results. The steps followed in the creation of the 

model are shown in Figure 1. 

 

 
 

Figure 1. Flow-chart of sleep stage scoring model 

 

3.1 Data collection and evaluation by experts 

 

The first step of this study was the collection of data. Data 

collected from 50 subjects who applied to Yozgat Bozok 

University Sleep Center were used in this study after the 

approval of the ethics committee. Analogue signals such as 

EEG, EOG, EMG, ECG obtained from the sensors attached to 

the bodies of the subjects constitute the raw data used in this 

study. The raw data were evaluated by well-trained sleep 

specialists in our study team, and sleep stages were scored as 

5 different classes. 

 

 
 

Figure 2. Example of an evaluation screen 

The signals that make up the raw data are divided into 30-

second time periods, defined as 1-epoch according to AASM 

standards, and each of the 800 epochs recorded during a 

night’s sleep lasting 6-8 hours is classified by the expert. The 

expert evaluates all the collected signals together, as seen in 

the example of an evaluation screen illustrated in Figure 2. In 

this proposed model, when all data are taken into account, the 

fact that the closest prediction to the expert opinion can be 

obtained. 

 

3.2 Pre-processing of data and feature selection 

 

The data collected by the sensors of the PSG device is 

converted into discrete signals with Compumedics [61] 

software, which is widely used in this field. Although the PSG 

device has 27 channels, only 19 channels were studied in this 

study. Because while these 19 channel inputs are common in 

every dataset, the inputs of other channels are rarely measured 

and are not found in some datasets. We found that some 

channels among 19 channels had a negative effect on 

classification. In order to observe this effect, we performed 

sample tests for 5 different classifiers and the results were as 

shown in Figure 3. As can be seen in the graph that the effects 

of the data coming from the CFlow, LEG1 and LEG2 channels 

on the classification are quite low. For this reason, 16 channels 
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were selected from 19 channels and used for classification. In 

addition, the effect of different feature numbers on the 

classification was measured for the RF classifier and the 

results are given in Appendix C. Accordingly, no positive 

performance increase was observed in classification after 16 

features. 

 
 

Figure 3. Feature importance graph for different classifiers 

 

It could be useful to explain feature numeric equalization, 

score conversion, combining features and feature selection for 

fully understanding the method. First, Feature Numeric 

Equalization: A significant challenge was encountered in the 

dataset because of the different sampling frequencies of the 

sensors, which resulted in different sample sizes for each 

channel. A numerical equalization step was introduced to 

maintain uniformity and compatibility. In this step, the sample 

size across three groups (1Hz, 100Hz, and 200Hz) was 

normalized. For the 1Hz and 100Hz groups, the samples were 

increased by coefficients of 200 and 2, respectively. This 

approach allowed a consistent sample size to be maintained 

across all channels, a factor that was critical for feeding the 

data into the machine-learning model. Secondly, Score 

Conversion: After the data were pre-processed and 

transformed, sleep stage scores were assigned based on 

American Academy of Sleep Medicine (AASM) standards. 

The dataset was labelled by well-trained sleep specialists 

according to these standards, with each 30-second epoch 

classified as N1, N2, N3, REM, or WAKE. However, to 

simplify the model, the N1, N2, and N3 stages were combined 

under the umbrella term ‘NREM’. Thus, the scoring 

classification included three categories: NREM, REM, and 

WAKE. Thirdly, Combining Features: In the feature 

combination stage, the 16-channel data for each epoch were 

merged, resulting in each epoch containing a 16-dimensional 

feature vector. Each feature represented data from a different 

channel, and each channel provided unique information 

relevant to sleep-stage classification. Finally, Feature 

Selection: The original data were collected from 27 channels 

of the PSG device. An initial focus was placed on 19 of these 

channels, which were commonly available in every dataset. 

However, through preliminary testing with five different 

classifiers, it was found that data from three of these channels 

(CFlow, LEG1, and LEG2) had minimal impact on the 

classification results. As a result, 16 channels from the initial 

19 were selected for the final model to optimize computational 

efficiency and model performance. 

There are three different sampling frequencies, 1Hz, 100Hz 

and 200Hz, in digitizing the data of these remaining 16 

channels. This is due to differences in sensor types and 

measured biomedical signal properties. As shown in Table 1, 

the sampling frequencies used to depend on the sensor type 

can be listed under three distinct groups. Sampling data at 

different frequencies means that each epoch will have a 

different number of samples coming from different channels. 

 

Table 1. Sampling frequencies depending on the sensor type 

 
Group Sampling Frequency Sensor Type 

1 1Hz 
1-channel Body Position 

1-channel SPO2 

2 100Hz 
2-channel Chest Effort 

1-channel Thermistor 

3 200Hz 

1-channel Chin EMG 

1-channel EKG-ECG 

2-channel Eye 

7-channel EEG 

 
Table 2. Number of samples produced per group in  

a 30 second epoch 

 
Group Frequency Number of Samples 

1 1 Hz 30 

2 100 Hz 3000 

3 200 Hz 6000 

 
Table 3. Sample numbers obtained at the end of 

the pre-processing process 

 
Group 1 2 3 

Frequency 1Hz 100Hz 200Hz 

Coefficient 200 2 1 

Samples per Epoch 30 3000 6000 

Samples Obtained per Epoch 6000 6000 6000 

Samples Obtained for 800 Epochs 
4.8 

million 

4.8 

million 

4.8 

million 

 
As shown in Table 2, in 1-epoch, because of sampling the 

data in the 1Hz, 100Hz and 200Hz frequency group, there will 

be 30, 3000 and 6000 samples, respectively. One of the 

significantly several aspects of this study is the use of all 16-

channel data. However, since each of the 16 channels does not 

have the same sample size, as such, it is impossible to use all 

channels in a single machine-learning model. To eliminate this 

situation and keep the sample size equal for each channel, we 

increased the samples in groups 1 and 2 by multiplying them 

by the coefficients of 200 and 2, respectively. Thus, the sample 

numbers obtained for each channel were equalized, as shown 

in Table 3. 

As a result of pre-processing the data in this way, a dataset 

of 800 epochs will contain a feature vector of size 4.8 million 

×16. Although the pre-processing of data of this size is quite 

laborious, it is especially important in terms of creating the 

unique aspect of this study. It also allows all 16 channels to be 

used in a machine-learning model, in a way not used in 

previous studies. 

 

3.3 Classifier selection and hyper-parameter tuning 

 

Appropriate machine learning classifiers should be used 

with appropriate hyper-parameters so that sleep stage classes 

can be predicted with the highest accuracy. In this study, first, 

various classifiers were tested with default parameters. As a 

result of these tests, the accuracy values, training, and test 

times obtained for each classifier were as shown in Figure 4. 

Accordingly, the classifiers with the highest accuracy were 

Extra Tree, Random Forest, and Decision Tree. In terms of 

training and testing time, Extra Tree and Random Forest need 
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more time. For this reason, it has been seen that the most 

balanced classifier between Accuracy and training and test 

times is Decision Tree. However, the tests were repeated in all 

patients for the 3 most successful classifiers and comparative 

results are shown in section. 

 

 
 

Figure 4. Comparison of different classifiers according to 

accuracy, training, and testing time 

 

Apart from 8 classifiers, the tests we performed with 

Logistic Regression and Support Vector Machine were not 

used in this study since the training process did not complete 

within 24 hours. Because our main goal in this study is to 

achieve reasonable training and testing times with high scoring 

ability. 

In order to further increase the performance for the 3 most 

successful classifiers, hyper parameter optimization was 

performed with GridSearchCV and the parameters with the 

highest performance were selected for each, and these values 

were as shown in Table 4. 
 

Table 4. Selected parameters for each classifier 
 

Algorithm Selected Parameters 

Random Forest 

Classifier 

‘n_estimators’: 400, ‘min_samples_split’: 10, 

‘min_samples_leaf’: 4, ‘max_features’: 

‘auto’, ‘max_depth’: 70, ‘bootstrap’: True 

Extra Trees 

Classifier 

‘n_estimators’: 100, ‘min_samples_split’: 20, 

‘min_samples_leaf’: 20, ‘max_features’: 250 

Decision Tree 

Classifier 

‘criterion’: ‘gini’, ‘max_depth’: 2, 

‘min_samples_leaf’: 5 

 

We calculated accuracy, precision, recall and f-score values 

to decide on the performance of the proposed model and 

compare it with similar studies. These four values are metrics 

commonly used in evaluating results. The results obtained are 

shown in detail in Section 4. 

 

 

4. EXPERIMENTAL RESULTS 

 

After the data was preprocessed, classifier and features 

selected, it was tested using machine learning techniques. The 

results are given in detail in this section and has compared each 

other. 
 

4.1 Dataset 
 

The data set was provided by Yozgat Bozok University, 

Department of Chest Diseases, Sleep Laboratory. The dataset 

consists of PSG signals collected from 50 subjects and 

recorded with the Philips Alice PSG device. PSG signals are 

collected over a night that lasts approximately 8 hours, via 

sensors attached to the subjects’ bodies and operating at 

various frequencies. In this study, the signals collected from 

19 different channels are reduced to 16-channel signals by 

using feature selection and the dataset is created. These data 

are grouped into epochs, each representing a 30-second time 

frame, according to AASM standards. Each epoch was 

evaluated by well-trained sleep specialists according to AASM 

standards and sleep stage scored. After the recordings 

classified as N1, N2 and N3 by the sleep specialist are 

combined under the name of NREM, sleep stage scoring is 

performed according to three classes: NREM, REM and 

WAKE. 

The sensors that make up the 16 different channels do not 

all operate at the same frequency. Therefore, data collected at 

different frequencies is appropriately organized during data 

preprocessing, as explained in Section 3.2. According to this 

arrangement, an epoch consists of 6000 records, each 

containing data from 16 different channels. There are 

approximately 800 epochs in the dataset created for a subject. 

This means that there is 800×6000×16 values in a subject’s 

dataset. Although these values vary from subject to subject, 

they are approximately 75 million. The number of records 

(rows) in the dataset of 50 different subjects according to sleep 

stage classes are shown in Appendix B. In this study, sleep 

stage classification was performed on a row basis, not on an 

epoch basis. So, each of the approximately 800×6000=4.8 

million rows are classified using approximately 75 million 

data in the calculations. 

Number of records (rows) in the subjects’ dataset according 

to different sleep stages is given in Appendix B. 

 

4.2 Performance metrics 

 

In this study, automatic scoring of sleep stages is done per 

recording. Thus, it is aimed to evaluate the sleep quality and 

sleep disorders of the subjects. The evaluation metrics of per-

record scoring, accuracy (acc), recall, precision (prec), and f1-

score, are defined as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
 (4) 

 

4.3 Experimental environment 

 

All experiments were performed on a computing server 

equipped with 2 x Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 

GHz and 192.0 GByte random access memory. The server 

uses a system running Windows 10 Pro for workstations. The 

results were obtained using the Python v3.9.5 programming 

language and its libraries sklearn, pandas, numpy, seaborn, 

matplotlib and imblearn. The environment is particularly 

important in calculations regarding training and test times. 
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4.4 Testing results with all classifiers 

 

In this study, it was aimed to achieve higher performance in 

scoring sleep apnea. For this purpose, the results obtained with 

11 classifiers were as given in Table 5. Accordingly, it has 

been determined that tree-based models, RF, DT and ET, are 

suitable for this classification. 

 

Table 5. Classification results with different algorithms 

 
 Average 

Classifier 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Logistic Regression 89.7 86.4 89.7 85.3 

Random Forest 98.8 98.8 98.8 98.8 

Extra Tree 98.8 98.8 98.8 98.8 

GNB 31.4 80.7 31.4 41.6 

LDA 89.7 85.8 89.7 85.9 

DT 97.8 97.8 97.8 97.8 

ADA 89.1 87.1 89.1 87.8 

GB 92.2 91.4 92.2 91.0 

XGB 95.5 95.2 95.5 95.2 

KNN 96.5 96.3 96.5 96.3 

 

The results for sleep stage estimations using the Extra Tree, 

Random Forest, and Decision Tree classifiers for each of the 

50 subjects are shown in Figure 5. According to these results, 

it is observed that the Extra Tree and Random Forest 

classifiers have the same performance, while the Decision 

Tree classifier has slightly less performance. Accuracy values 

are 0.950, 0.954, and 0.92 for the Extra Tree, Random Forest, 

and Decision Tree classifiers, respectively. Precision, Recall 

and F-Score values also show parallelism with Accuracy 

values. These results are the calculated mean values for 50 

subjects. Detailed results for each classifier for all subjects are 

given in Appendix D. When the subjects are analyzed 

separately, it is seen that the Accuracy value is between 0.925 

and 0.988 for Extra Tree, between 0.930 and 0.988 for 

Random Forest, and between 0.881 and 0.978 for Decision 

Tree. These results prove that the proposed model using 16 

different channel data is significantly successful in solving the 

classification problem. Figure 6 shows the confusion matrix 

for the dataset where the highest classification performance is 

obtained with an accuracy of 0.988. As seen in the matrix, it is 

understood that approximately the same success can be 

achieved for all classes. It is also seen from the matrix that 

remarkably high True Positive values are obtained for all 

classes. This indicates that NREM, REM and WAKE sleep 

stages can be successfully scored with the proposed model. 

In cases where the data between classes is balanced, the 

performance of the model obtained can be shown with the 

ROC curve. However, ROC curves produce optimistic results 

when class distributions deviate. Precision-recall curves are an 

alternative to ROC curves because there are differences in 

class distributions. In the dataset used in this study, as can be 

seen in Appendix B, sample imbalance between sleep stages 

is high. For this reason, in Figures 6-8, class-based precision-

recall curves taken separately for each of the 3 classifiers are 

given. As can be seen in all of the curves, the area value is very 

close to 1.0. This suggests that the proposed provides both 

high precision and high recall. It proves that a complete 

representation of an ideal classifier is used in this work. 

 

 

 
 

Figure 5. Accuracy, precision, recall and f1-measure of obtained results on extra tree (a) random forest (b) decision tree (c) 

classifiers 
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Figure 6. Precision-recall curve of DT 

 

 
 

Figure 7. Precision-recall curve of ET 

 

Table 6. Stratified 10-fold cross validation of tree-based 

models 

 
Stratified K Fold Cross Validation (k=10) (Multiclass) 

 Balanced Accuracy F1_Weighted 

(TrainSet:4098600, 

TestSet:455400) 
ET DT RF ET DT RF 

Fold1 0.99 0.98 0.99 0.99 0.98 0.99 

Fold2 0.99 0.98 0.99 0.99 0.98 0.99 

Fold3 0.99 0.98 0.99 0.99 0.98 0.99 

Fold4 0.99 0.98 0.99 0.99 0.98 0.99 

Fold5 0.99 0.98 0.99 0.99 0.98 0.99 

Fold6 0.99 0.98 0.99 0.99 0.98 0.99 

Fold7 0.99 0.98 0.99 0.99 0.98 0.99 

Fold8 0.99 0.98 0.99 0.99 0.98 0.99 

Fold9 0.99 0.98 0.99 0.99 0.98 0.99 

Fold10 0.99 0.98 0.99 0.99 0.98 0.99 

Average 0.99 0.98 0.99 0.99 0.98 0.99 

 

The performance of the proposed model in this study is 

expressed with different metrics and measurements. However, 

cross-validation is needed to show that the results obtained 

show the same success in each random selection. Thus, it is 

possible to make a less biased evaluation for the proposed 

model. In order to make this objective comparison, Balanced 

accuracy and f1 weighted values were measured for 3 different 

tree-bases classifiers by choosing k=10 value and presented in 

Table 6. As can be seen when the tests are repeated by 

performing 10-Fold, no notable change was observed in the 

results. Average classification performance remained constant 

for both balanced accuracy and f1 weighted value. This 

situation reveals that the proposed model is not affected by 

training and test data changes and is a robust model in 

producing similar results. 

The final evaluation expected for the results obtained is on 

the FP and FN numbers of tree-based models on a class basis. 

Accordingly, in Figures 9-11, “confusion matrices” are given 

for 3 classifiers. Accordingly, the proposed model can detect 

the NREM class with higher performance than other classes. 

Proportionally the lowest performance is in the REM class. It 

is considered that this is due to the combination of N1, N2 and 

N3 classes as NREM classes. This situation revealed that FP 

values increased with the REM class containing different data. 

It was observed that all 3 tree-based models gave close values 

to each other. 

 

 
 

Figure 8. Precision-recall curve of RF 

 

 
 

Figure 9. Confusion matrix of DT
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Figure 10. Confusion matrix of ET 

 

 
 

Figure 11. Confusion matrix of RF 

 

As a result, the feature selection proposed in this study, 

using hyper-parameter tuning, used tree-based classifier 

models to solve the 3-class sleep apnea problem with high 

performance. The resulting model performs well 

independently of class and patient and produces consistent 

results for this problem with an unbalanced sample number 

based on class. 

 

4.5 Discussion 

 

Three sleep stage classes occupied from NREM, REM, and 

WAKE has been researched and machine learning model 

proposed in this study. High classification success was 

achieved by using 16 different input channels. This 

performance was demonstrated on a dataset of 50 different 

subjects. While the highest performance was achieved with 

98.8% accuracy on the basis of the subject, the overall system 

was found to be quite successful with an average accuracy of 

95.4%. Table 7 summarizes similar studies on this subject in 

recent years. As can be seen in this summary table, some of 

the studies on this subject are different from ours in that they 

only score 2-class, some use only EEG or both EEG and EOG 

channels, and some use public databases. Among similar 

studies scoring on a three-class basis, only one [48], using data 

collected from mice, outperformed ours by 99.34%. When it 

comes to sleep disorders in humans, the proposed model may 

inspire researchers. 

Although the classification success of the proposed model 

in this study is quite high, it also has some disadvantages. The 

large amount of data in the used dataset increases the 

classification time and requires high capacity computing 

devices, resulting in high processing time requirements. With 

the solution of this problem, the proposed model can reach 

widespread use. It could be useful to discuss advantages and 

disadvantages of the paper by briefly here. First of all, the 

study was enhanced by a thorough data collection procedure 

involving a sample size of 50 participants. The dataset has 

been gathered within a regulated laboratory setting using 

established methodologies, thereby augmenting the reliability 

of the data. The utilization of 16 distinct input channels 

facilitated a comprehensive examination of the various sleep 

stages through the implementation of multichannel input. The 

incorporation of this particular approach introduced an 

additional level of complexity to the investigation, which 

plausibly enhanced the precision of the findings, 

demonstrating a notable level of precision with an average 

accuracy of 95.4% and a maximum accuracy of 98.8%. The 

degree of precision demonstrated is not only noteworthy in its 

own right but also exhibits favorable parallels to analogous 

investigations, indicating that the framework exhibits 

considerable potential for pragmatic implementation. The 

research provides comprehensive and tailored perspectives for 

each unique participant. The degree of granularity involved in 

the analysis aids in comprehending the distinctions among 

subjects and enhances the adaptability and profundity of the 

analysis. The efficacy of the Random Forest classifier in 

producing precise outcomes highlights the adaptability and 

resilience of the model which can effectively process diverse 

PSG datasets. There are also disadvantages which can be 

discussed together with advantages. One notable limitation of 

this study is its high degree of data intensiveness, as a 

considerable volume of data is necessary for conducting the 

analysis. The potential outcome of this phenomenon is an 

increase in computational expenses and prolonged processing 

durations, thereby constraining the feasibility of the model in 

environments with limited computational capabilities. The use 

of 16 distinct channels in the study may potentially augment 

the intricacy of the model. Potential difficulties in 

interpretability and implementation of the model may arise, 

particularly in less controlled environments or with less 

sophisticated devices. The study’s findings rely on the sleep 

stages that were evaluated by professionals specializing in 

sleep scoring. The presence of any discrepancies or bias in the 

preliminary assessments conducted by humans may have an 

impact on the precision of the machine learning algorithm. The 

generalizability of the study is uncertain because the model’s 

performance on datasets with fewer channels or less controlled 

environments is unknown despite achieving high accuracy 

with its specific dataset. 
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Table 7. Similar studies on the sleep staging in recent years 

 

Ref. Classes PSG Inputs Dataset Engineering Technique Accuracy 

[41] 

Wake- 

Sleep, W-

REM-

NREM 

EEG, EOG 
Sleep-EDF and Sleep-

EDFX dataset 
Deep learning (1D CNN) 

98.06% for two stages, 

94.64 for three stages 

[44] 
REM, 

NREM 
Multichannel inputs Sleep-EDF x database Feature Extraction+SVM 96.53% 

[45] 
REM, 

NREM 
EEG ENVI-HAB dataset 

CNN+SMOTE deep 

learning 
99.85% 

[46] 
REM-

NREM 
Multichannel EEG Sleep EDF dataset RF-SVM-DT 97.8% 

[47] 

5 class and 

binary 

classification 

All channels Private dataset CNN 
83% and 96% according 

to the classification type 

[48] 5 classes Dual channel EEG S-EDF dataset RF+XGBOOST 91.10% 

[49] 
W-NREM-

REM 
EEG Private dataset Deep learning 97% 

[50] 
W-N1-N2-

N3-REM 
EEG SG-I dataset 

Machine learning with 

feature selection 
99.34% 

[51] 
W-NREM-

REM 
EEG SG-I dataset 

Machine learning with 

feature selection 
98.78% 

[34] 5 classes 
Multiple channel inputs (EEG, EMG, 

EOG, Csnore etc.) 

Own original dataset, 

Individuals, 50 

Individuals 

Extra Tree, Random 

Forest, Decision Tree 
95.28% 

This 

work 

W-REM-

NREM 
All channels (16 inputs) Own dataset Machine learning 98.8% 

 

 

5. CONCLUSION 

 

In this study, data consisting of 16 different signals 

collected from 50 subjects who applied to Yozgat Bozok 

University Sleep Center were scored by well-trained sleep 

experts according to the 5-class AASM standard. Later, these 

5 classes were combined into 3 classes and sleep stages were 

scored automatically with machine learning techniques. The 

highest classification success was obtained with the Random 

Forest classifier, with an average of 95.4% accuracy, precision, 

recall values and 92.2% f-score. In addition, the maximum 

accuracy, precision, recall and f-score values obtained with the 

same classifier were calculated as 98.8%. Unlike similar 

studies, this study is unique in that it uses 16-channel PSG 

signals and uses its own dataset. Although it has high accuracy, 

it requires processing substantial amounts of data, which is the 

limitation of this study. 

Obtaining precision, recall and f-score values, which are 

almost the same with the Accuracy value, proves that the 

predictions for each class will have high accuracy. As a result, 

the proposed model for automatic scoring of sleep stages has 

high performance. Based on the encouraging outcomes 

derived from this investigation, various avenues for further 

research have been recognized that hold the potential to 

enhance the functionalities of the suggested model and foster 

the advancement of more resilient and dependable sleep-stage 

classification methodologies. Dataset Expansion: Our 

objective is to gather additional patient data, which will 

enhance the model’s learning potential and its capacity to 

generalize. This approach has the potential to enhance the 

accuracy of classification and optimize the efficacy of the 

system in practical applications. The model’s accuracy can be 

improved by incorporating supplementary channels, such as a 

mouth mask (CPAP, EPAP, and IPAP), PatFlow, TidelVol, 

Totleak, and Snoring (Csnore and Msnore), in forthcoming 

iterations. The optimization of classifiers will be further 

pursued by fine-tuning their hyper parameters and exploring 

novel classifiers to enhance their performance and precision. 

The implementation of strategies aimed at addressing class 

imbalance is expected to enhance the performance of the 

model, particularly in the underrepresented classes. The focus 

of our research will be on advanced feature engineering 

methods that aim to extract highly informative and 

representative features from multichannel data. The objective 

of the subsequent phase is to enhance the model’s 

functionalities by incorporating the identification of distinct 

sleep disorders, such as apnea, hypopnea, and obstructive 

sleep apnea. The forthcoming efforts will concentrate on 

enhancing the model to facilitate its implementation in clinical 

environments. This entails performing additional validation 

studies, enhancing the user interface, and incorporating the 

system into the current clinical workflows. The prospect of 

interdisciplinary collaboration is being considered as a means 

of promoting an integrated approach towards the development 

of advanced sleep scoring systems. This involves partnering 

with specialists in sleep medicine, data science, and software 

engineering. Prospective investigations will facilitate the 

further enhancement of the suggested framework and broaden 

its scope of application, thereby assisting in the prompt 

identification and management of sleep disorders and 

ultimately augmenting patient outcomes. Future works, 

authors of this work are planning to try and realize sleep stage 

scoring by using lower inputs as ECG or oxygen saturation for 

integrating model in a wearable equipment as watch to 

decrease PSG expenses of sleep centers or hospitals. 
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APPENDIX 

 

Appendix A. Previous works for sleep stage scoring 

 
Ref. Classes PSG Inputs Dataset & Size Engineering Technique Accuracy 

[35] NREM+REM EEG 
Private dataset, 41 

Individuals 
Deep Learning 

92% on two channel 

EEG 

[36] Wake-NREM-REM ECG 
SLPDB dataset, 18 

Individuals 
Deep Learning (CNN) 85.1% accuracy 

[37] W, REM, NREM ECG 
MIT-BIH PSGdataset, 18 

Individuals 
Deep learning (CNN) 77% accuracy 

[38] W, REM, N1, N2, N3 
6 EEG, 2 EOG, 3 

EMG 

MASS dataset, 61 

Individuals 
Deep learning 87% 

[39] W, REM, N1, N2, N3 EEG 
MSLT dataset, 54 

Individuals 
DNN 90% around 

[40] 
Wake-Light Sleep, 

Deep Sleep, REM 
EEG 

EDF dataset, 61 

Individuals 
Machine learning (SVM) 85.93% 

[41] 
Wake-Sleep, W-

REM-NREM 
EEG, EOG 

Sleep-EDF and Sleep-

EDFX dataset, 61 

Individuals 

Deep learning (1D CNN) 
98.06% for two stages, 

94.64 for three stages 

[42] 

Awake-Ligth 

sleep+REM-deep 

sleep 

Pz-Oz PhysioBank, 22 Patients Machine Learning (SVM) 90% accuracy 

[43] W-N1-N2 
Two-Six variable 

inputs 

SNUBH Dataset, 218 

Individuals 
Hybrid Neural Networks 92.21 % 

[44] REM, NREM Multichannel inputs 
Sleep-EDF x database, 

197 Individuals 
Feature Extraction+SVM 96.53% 

[45] REM, NREM EEG 
ENVI-HAB dataset, 60 

days 

CNN+SMOTE deep 

learning 
99.85% 

[46] REM-NREM Multichannel EEG 
Sleep EDF dataset, 125 

Individuals 
RF-SVM-DT 97.8% 
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[47] 5 and 2 classes All channels 

Private dataset, 294 

Individuals for different 

purposes 

CNN 
83% and 96% according 

to the classification type 

[48] 5 classes Dual channel EEG 
S-EDF dataset, 61 

Individuals 
RF+XGBOOST 91.10% 

[49] W-NREM-REM EEG 
Private dataset, 18 Mice 

52 days 
Deep learning 97% 

[50] W-N1-N2-N3-REM EEG 
SG-I dataset, 3 different 

groups 4 individuals 

Machine learning with 

feature selection 
99.34% 

[51] W-NREM-REM EEG 
SG-I dataset, 100 

Individuals 

Machine learning with 

feature selection 
99.02% 

[34] (The first 

stage of this 

work) 

5 classes 

Multiple channel 

inputs (EEG, EMG, 

EOG, Csnore etc.) 

Own original dataset, 

Individuals, 50 

Individuals 

ExtraTree, Random 

Forest, Decision Tree 
95.28% 

 

Appendix B. Number of records (rows) in the subjects’ dataset according to different sleep stages 

 

PID NREM REM WAKE Subject No NREM REM WAKE 

1 3444000 678000 642000 26 2940000 324000 1140000 

2 3558000 702000 504000 27 2460000 384000 1542000 

3 3060000 600000 942000 28 2910000 162000 1470000 

4 3558000 210000 792000 29 3048000 324000 1014000 

5 3288000 492000 780000 30 3498000 588000 342000 

6 3366000 564000 588000 31 3396000 456000 1164000 

7 3984000 444000 204000 32 3246000 918000 480000 

8 3258000 132000 978000 33 3342000 90000 894000 

9 3480000 948000 120000 34 3534000 510000 426000 

10 2766000 342000 1416000 35 2388000 576000 1410000 

11 3714000 582000 378000 36 3450000 726000 168000 

12 3306000 348000 750000 37 3390000 768000 498000 

13 3420000 1092000 162000 38 3522000 546000 432000 

14 4002000 366000 228000 39 3306000 738000 420000 

15 3642000 468000 216000 40 3540000 762000 240000 

16 3126000 156000 1266000 41 2898000 366000 1308000 

17 3660000 504000 282000 42 4080000 168000 306000 

18 3282000 636000 570000 43 3402000 372000 858000 

19 3462000 366000 1068000 44 3324000 438000 702000 

20 3450000 666000 462000 45 3408000 360000 576000 

21 3270000 624000 654000 46 3276000 420000 1296000 

22 4926000 486000 354000 47 2508000 414000 1620000 

23 3366000 546000 840000 48 3234000 342000 822000 

24 3780000 804000 198000 49 3582000 192000 744000 

25 2898000 684000 894000 50 3240000 840000 564000 

    SUM 167988000 25224000 35724000 

 

Appendix C. The effect of the number of different features on the classification 

 
Random Selected 

Patient Data and 

RF Classifier 

k=5 k=8 k=12 k=16 
k=19 

(All Features) 

UFS 

Accuracy (%) 93.3 96.2 97.1 98.6 98.6 

Precision (%) 92.7 96.1 97.1 98.6 98.6 

Recall (%) 93.3 96.2 97.1 98.6 98.6 

F-score (%) 92.8 95.9 97.0 98.6 98.6 

PCA 

Accuracy (%) 91.6 93.0 95.3 95.6 98.6 

Precision (%) 90.7 93.0 95.4 95.8 98.6 

Recall (%) 91.6 93.0 95.3 95.6 98.6 

F-score (%) 89.5 91.4 95.4 95.1 98.6 

Extra Tree 

with ET Classifier 

(Auto selected 8 features) 

Accuracy (%) x 97.3 x x x 

Precision (%) x 97.3 x x x 

Recall (%) x 97.3 x x x 

F-score (%) x 97.3 x x x 
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Appendix D. List of all classification results by patient 

 
 Extra Trees Classifier Random Forest Classifier Decision Tree Classifier 

Patient ID Accuracy Precision Recall F1-Measure Accuracy Precision Recall F1-Measure Accuracy Precision Recall F1-Measure 

1 0.935 0.937 0.935 0.931 0.943 0.943 0.943 0.941 0.894 0.894 0.894 0.894 

2 0.957 0.958 0.957 0.955 0.955 0.956 0.955 0.953 0.905 0.906 0.905 0.906 

3 0.939 0.939 0.939 0.937 0.947 0.946 0.947 0.946 0.911 0.911 0.911 0.911 

4 0.943 0.943 0.943 0.938 0.954 0.953 0.954 0.951 0.919 0.919 0.919 0.919 

5 0.933 0.936 0.933 0.929 0.950 0.951 0.950 0.948 0.916 0.916 0.916 0.916 

6 0.959 0.960 0.959 0.958 0.961 0.962 0.961 0.960 0.929 0.929 0.929 0.929 

7 0.952 0.953 0.952 0.948 0.958 0.958 0.958 0.956 0.937 0.938 0.937 0.937 

8 0.939 0.941 0.939 0.936 0.944 0.945 0.944 0.941 0.913 0.913 0.913 0.913 

9 0.960 0.960 0.960 0.959 0.959 0.959 0.959 0.958 0.926 0.926 0.926 0.926 

10 0.927 0.927 0.927 0.926 0.936 0.936 0.936 0.936 0.895 0.895 0.895 0.895 

11 0.925 0.925 0.925 0.919 0.938 0.938 0.938 0.935 0.919 0.910 0.909 0.910 

12 0.949 0.951 0.949 0.947 0.960 0.960 0.960 0.959 0.931 0.931 0.931 0.931 

13 0.964 0.964 0.964 0.963 0.965 0.966 0.965 0.964 0.935 0.935 0.935 0.935 

14 0.984 0.984 0.984 0.984 0.982 0.982 0.982 0.982 0.968 0.968 0.968 0.968 

15 0.945 0.945 0.945 0.941 0.956 0.956 0.956 0.954 0.932 0.933 0.932 0.933 

16 0.952 0.954 0.952 0.951 0.955 0.956 0.955 0.954 0.917 0.917 0.917 0.917 

17 0.957 0.956 0.957 0.955 0.956 0.955 0.956 0.954 0.932 0.933 0.932 0.933 

18 0.938 0.939 0.938 0.935 0.941 0.942 0.941 0.940 0.900 0.901 0.900 0.901 

19 0.945 0.946 0.945 0.943 0.948 0.948 0.948 0.945 0.916 0.916 0.916 0.916 

20 0.931 0.933 0.931 0.928 0.942 0.942 0.942 0.941 0.903 0.903 0.903 0.903 

21 0.935 0.940 0.935 0.932 0.939 0.941 0.939 0.936 0.888 0.888 0.888 0.888 

22 0.941 0.944 0.941 0.935 0.959 0.959 0.959 0.957 0.940 0.940 0.940 0.940 

23 0.930 0.935 0.930 0.926 0.934 0.936 0.934 0.931 0.881 0.882 0.882 0.883 

24 0.928 0.931 0.928 0.922 0.931 0.933 0.931 0.925 0.888 0.889 0.888 0.888 

25 0.935 0.937 0.935 0.933 0.934 0.935 0.934 0.932 0.886 0.886 0.886 0.886 

26 0.950 0.951 0.950 0.949 0.952 0.952 0.952 0.951 0.916 0.916 0.916 0.916 

27 0.971 0.971 0.971 0.971 0.970 0.970 0.970 0.970 0.935 0.935 0.935 0.935 

28 0.945 0.947 0.945 0.942 0.953 0.953 0.953 0.951 0.922 0.922 0.922 0.922 

29 0.970 0.971 0.970 0.969 0.968 0.968 0.968 0.967 0.928 0.928 0.928 0.928 

30 0.963 0.964 0.963 0.962 0.959 0.959 0.959 0.958 0.931 0.931 0.931 0.931 

31 0.982 0.982 0.982 0.982 0.977 0.977 0.977 0.977 0.944 0.944 0.944 0.944 

32 0.933 0.933 0.933 0.930 0.931 0.930 0.931 0.929 0.891 0.892 0.891 0.891 

33 0.960 0.962 0.960 0.958 0.966 0.967 0.966 0.964 0.939 0.939 0.939 0.939 

34 0.926 0.928 0.926 0.919 0.930 0.931 0.930 0.926 0.893 0.894 0.893 0.893 

35 0.930 0.931 0.930 0.929 0.945 0.946 0.945 0.945 0.907 0.907 0.907 0.907 

36 0.948 0.949 0.948 0.946 0.947 0.947 0.947 0.944 0.914 0.914 0.914 0.914 

37 0.967 0.968 0.967 0.966 0.966 0.966 0.966 0.965 0.930 0.930 0.930 0.930 

38 0.977 0.977 0.977 0.977 0.968 0.968 0.968 0.968 0.936 0.936 0.936 0.936 

39 0.932 0.931 0.932 0.930 0.931 0.930 0.931 0.929 0.895 0.895 0.895 0.895 

40 0.974 0.975 0.974 0.974 0.969 0.970 0.969 0.969 0.945 0.946 0.945 0.945 

41 0.971 0.972 0.971 0.971 0.974 0.975 0.974 0.974 0.945 0.945 0.945 0.945 

42 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.978 0.978 0.978 0.978 

43 0.981 0.951 0.981 0.980 0.977 0.977 0.977 0.977 0.951 0.951 0.951 0.951 

44 0.938 0.942 0.938 0.932 0.947 0.948 0.947 0.943 0.912 0.913 0.912 0.912 

45 0.928 0.930 0.928 0.917 0.936 0.935 0.936 0.928 0.889 0.891 0.889 0.890 

46 0.961 0.962 0.961 0.960 0.961 0.961 0.961 0.960 0.921 0.921 0.921 0.921 

47 0.968 0.969 0.968 0.968 0.968 0.968 0.968 0.968 0.938 0.938 0.938 0.938 

48 0.944 0.947 0.944 0.941 0.949 0.950 0.949 0.946 0.916 0.917 0.916 0.917 

49 0.939 0.942 0.939 0.933 0.947 0.949 0.947 0.944 0.917 0.917 0.917 0.917 

50 0.959 0.960 0.959 0.959 0.955 0.956 0.955 0.955 0.921 0.921 0.921 0.921 

Avg 0.950 0.950 0.950 0.947 0.953 0.953 0.954 0.951 0.919 0.920 0.920 0.919 
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