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Diseases affecting the Oryza Sativa (rice) plant result in substantial agricultural losses, 

leading to a decline in crop productivity by up to 25% and posing a significant threat to 

global food security. Hence, the rapid and accurate diagnosis of such diseases is paramount 

to ensure effective treatment and to enhance overall plant health. This has led to an increased 

interest among plant pathologists in developing reliable methods for identifying diseases in 

Oryza Sativa crops. In this study, an innovative disease classification model for the Oryza 

Sativa plant is proposed, leveraging the Optimal Adaptive Boosting Cascade Classifier 

(OABCC) and the efficient-artificial fish swarm optimization (EAFSO). A weighted image 

fusion technique is utilized in the pre-processing stage for image denoising, combining the 

outcomes of homomorphic filtering (HAF), Laplace filtering (LAF), and the Kuwahara 

Filter (KF). The diseased portions of the Oryza Sativa plant leaf are localized using the 

OABCC, while Soft Non-Maximum Suppression (SN-MS) is deployed to select the optimal 

detection box for each item. The LeNet model, bolstered with an atrous-convolution layer, 

is integrated into the OABCC for improved disease classification. Further enhancement in 

model accuracy is achieved through the application of the EAFSO optimization strategy. 

When applied to the OABCC-ATRLeNet model for rice disease classification, the EAFSO 

optimization strategy outperforms other strategies such as WSSO, CSO, AFSO, and PSO. 

This research underscores the potential of deep learning approaches for robust and accurate 

classification of plant diseases, contributing significantly to the efforts in securing global 

food resources. 
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1. INTRODUCTION

Oryza Sativa, commonly known as rice, serves as a primary 

source of nutrition for approximately half of the global 

population [1]. However, the increasing human population 

continuously exacerbates the demand for consumable food [2]. 

Compounding this challenge are rice plant diseases, which are 

emerging as a significant deterrent to agricultural productivity. 

These diseases, coupled with other factors such as climate 

change and water scarcity, are discouraging individuals from 

engaging in rice farming. Notably, the diseases affect the 

quality of agricultural production, thereby impacting 

economic growth. 

The International Rice Research Institute (IRRI) classifies 

rice diseases into four categories: seeding disease, foliar-

fungal, leaf and culm, and grain diseases [3]. Each category 

further subdivides based upon the impact on the plant’s life 

cycle. Early detection and classification of these diseases 

remain critical for mitigating crop yield loss. 

Traditional methods of rice disease diagnosis relied heavily 

on specialists such as agricultural botanists, resulting in 

significant overhead costs [4]. However, recent advancements 

in object identification technology have enabled efficient 

detection and classification of diseases and pests over short 

and long timeframes, reducing dependency on specialists. 

Particularly, deep neural networks have revolutionized image 

classification in the realm of machine learning [5, 6]. 

Despite these advancements, external factors such as 

sunlight and background interference can degrade the quality 

of original images of the Oryza Sativa plant, leading to low-

contrast, blurry images that hamper disease feature 

identification. Without effective image pre-processing, the 

model's ability to extract disease features is severely 

compromised, resulting in poor classification rates [7]. 

Certain Oryza Sativa plant diseases, such as Leaf Blast and 

Leaf Smut, exhibit strong similarities, posing additional 

challenges to the model's discriminative ability [8]. Therefore, 

enhancing the image dataset is vital for improving feature 

extraction. 

The quality of the output post pre-processing significantly 

influences the effectiveness of Oryza Sativa plant disease 

identification [9]. Given the variations in disease distribution, 

appearance, and texture, along with the tendency of images to 

darken from the center outward, disease localization classifiers 

utilizing adaptive boosting have proven effective. 

However, the mathematical complexity of such adaptive 

boosting classifiers increases when applied to large datasets. 

Selecting the optimal technique can mitigate this complexity. 

Another issue arises from the overlapping bounding boxes, 

which may lead to inaccurate classification or lower accuracy 

scores. This overlapping issue can be resolved using a 

computer vision approach that selects one entity from multiple 
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overlapping entities. 

Optimizers are necessary for tuning neural networks in 

image classification to achieve high accuracy; they help in 

choosing the most suitable parameters. While established 

optimizers exist, many researchers are exploring Meta 

heuristic algorithms as a natural progression for neural 

network tuning [10]. 

Despite extensive research on the first three factors, there is 

a dearth of investigation on Adaptive boosting classifier and 

atrous convolution with a pre-trained convolutional neural 

network model. This research proposes the development of a 

disease classification model for rice plants, centered on the 

OABCC-ATRLeNet and the EAFSO optimization method. 

The following novel contributions are made in this study: 

 

• A novel image pre-processing method, the HAFLAF-KF 

algorithm, is proposed. This algorithm combines the HAF 

Algorithm Optimized by the LAF algorithm and processes 

Oryza Sativa plant disease images using the Kuwahara 

Filter. The resulting images are then combined using a 

weighted average. The HAFLAF-KF pre-processing 

algorithm enhances the detail characteristic features, color 

scheme, and brightness of the input image. 

• The mathematical complexity of the OABCC feature 

extraction method is reduced using the limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-GFGS) method. 

This assists in localizing the diseased part on the leaf. To 

address the issue of potential overlap, the SN-MS 

computer vision method is used to resolve the localized 

bounding boxes produced by the OABCC model. 

• An ATRLeNet-EAFSO network model is proposed for 

identifying and categorizing diseases that affect the leaves 

of Oryza Sativa. The disease portion on the leaf is localized 

using a cascaded AdaBoost classifier. For disease 

classification, the ATRLeNet model is modified by adding 

an atrous convolution layer and optimizing the network 

parameters using the EAFSO method. 

 

The remainder of the paper is organised as follows: Related 

work is explained in section 2, the procedure for the proposed 

model is described in section 3, the findings are presented in 

section 4, and the overall study is concluded in section 5.  

 

 

2. RELATED WORK 

 

Sridevi et al. [11] introduced a deep learning-based 

metaheuristic methodology for paddy leaf disease detection 

and identification that significantly enhances accuracy, 

generality, and training performance. For this investigation, 

they used field images of many kinds of paddy leaf diseases. 

Using the cuckoo search technique, they fine-tuned the 

suggested deep convolutional neural network parameters. 

Their suggested model was evaluated against SVM, RF, and 

ANN. The findings reveal that the suggested strategy worked 

flawlessly.  

In a study published by Ma et al. [12], they categorised the 

cucumber plant diseases anthracnose, downy mildew, 

powdery mildew, and target leaf spots. In the research, they 

trained and assessed a DCNN model using pictures of healthy 

and damaged cucumber plants. They put the model to the test 

against a random forest and a support vector machine. The 

research's results show that the recommended model performs 

better than the other models in terms of accuracy. Both 

balanced and unbalanced datasets were employed in the 

investigation. The recommended model has been produced as 

a result of the balanced dataset's higher performance. 

Arinichev et al. [13] Presented a research paper applying 

convolutional neural networks to identify and categorize rice 

fungal infections. They used a publicly available dataset and 

also obtained some images from an online source for their 

research. They removed Rice Hispa illnesses from the overall 

dataset since they are not common in Russia, and they trained 

and validated the model using 4278 images from three classes. 

They tested four models in this study: SqueezeNeq-1.0, 

DenseNet- 121, GoogleNet, and ResNet-18, and found that 

DenseNet-121 achieved 95% accuracy, which was the best 

among the other models.  

Türkoğlu and Hanbay [14] have assessed the performance 

outcomes by means of diverse methods of nine dominant 

designs of Deep Neural Networks for plant disease detection. 

The used pre-trained deep replicas are taken into consideration 

in the offered work for feature mining and for added fine-

tuning. The attained structures by means of deep feature 

extraction are then categorized by SVM, and KNN 

approaches. The trials are performed by means of data 

containing the actual disease and pest pictures from Turkey.  

Lu et al. [15] have suggested a new disease recognition 

method in rice centred on DCNN methods. In this study, 

CNNs are able to accurately identify 10 common rice diseases 

by comparing images of diseased and healthy rice diseases 

images collected from a rice research institute. The suggested 

DCNN model attains a precision of 95.48%. This precision is 

much greater than the normal ML models.  

Zhou et al. [16] have suggested a technique for identifying 

fast rice disease centred on FCM-KM and Faster R-CNN 

synthesis to address numerous difficulties with the rice disease 

images like dust, blurry image brink, huge background 

intrusion and less recognition correctness. Primarily, the 

technique utilises a two-dimensional straining mask together 

with a 2DFM-AMMF filter for sound decline and utilises a 

Faster 2D-Otsu procedure to decrease the intrusion of multi-

faceted circumstantial with the recognition of objective edge 

in the picture. Pooled with the R-CNN procedure for the 

recognition of rice diseases has performed well when 

compared with the other existing models. 

Sladojevic et al. [17] have discovered a novel method of 

utilising deep learning technique with the purpose of 

robotically cataloguing and perceiving plant diseases from leaf 

pictures. The established prototype was able to perceive leaf 

existence and differentiate between good leaves and 13 diverse 

diseases, which can be visually identified. The comprehensive 

process was defined correspondingly, from gathering the 

pictures utilised for training and authentication to image pre-

processing and amplification and lastly the process of training 

the Deep CNN and fine-tuning. Diverse assessments were 

made so as to verify the performance of the proposed model.  

Liang et al. [18] have suggested a new rice blast 

identification technique based on CNN. A dataset of positive 

and negative testers is recognized in the CNN prototype. 

Besides, they made proportional experimentations for 

qualitative and quantitative examination in their assessment of 

the efficiency of the suggested technique. Test results 

demonstrate that the CNN model outperforms conventional 

ML techniques. 

Xiao et al. [19] have suggested a rice blast identification 

technique to resolve the difficulties of low precision, 

inadequacy and subjectivity of fake identification of rice blast. 
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Initially, picture of reaped graze was treated, with 6 color 

structures, 10 morphological aspects, and 5 texture aspects. 

Furthermore, stepwise reversion examination was utilised to 

assess the association amid the distinguishing patterns. 

Several image processing methodologies and machine-

learning classifiers involved in the identification of Oryza 

Sativa plant disease have been reviewed [20]. It was inferred 

from the study that all the study presented was largely limited 

to Rice blasts or Brown spots.  

The existing literature review shows that various classifiers 

may provide diverse classification results. As a result, several 

research has been done to study the usefulness and efficiency 

of various classifiers. Also with the widespread usage of image 

pre-processing methods, there has also been a surge in interest 

in comparing various deep learning models. While employing 

various deep learning models, one must keep at least four 

crucial criteria in mind that might have a significant impact on 

classification accuracy and efficiency. Pre-processing and 

Segmentation of images [21], sample selection for training the 

system, feature extraction, and hyper parameter adjustment are 

some particular examples [22]. 

 

 

3. MATERIALS AND METHODS 

 

This research work proposes a rice plant disease prediction 

model based on OABCC- ATRLeNet -EAFSO. In pre-

processing, image denoising is performed by means of 

HAFLAF-KF algorithm. For detecting and classifying the 

images, OABCC- ATRLeNet is applied. The EAFSO 

algorithm is introduced to identify the optimal weights for 

ATRLeNet. The optimally configured ATRLeNet determines 

the health of the Oryza Sativa leaf (Healthy(RH))/Bacterial 

leaf blight (RBLB) /Leaf Blast (RLB) /Brown Spot (RBS)). 

The performance of ATRLeNet -EAFSO is be compared with 

other existing architectures. Similarly, the performance of 

ATRLeNet -EAFSO is compared with ATRLeNet-WSSO, 

ATRLeNet-CSO, ATRLeNet -AFSO and ATRLeNet -PSO. 

The process flow of the detection model for rice plant disease 

is shown in Figure 1. 

 

 
 

Figure 1. Proposed ATR-LeNet-EAFSO model 

 

3.1 Pre-processing with HAFLAF-KF algorithm 

 

Low illumination issues like backlight will invariably arise 

throughout the image capture process due to the influence of 

external elements like sunlight and climate, and the images are 

susceptible to motion blur and variable brightness, which 

renders it challenging to identify disease symptoms. In order 

to address these problem where the disease features are not 
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obvious because of the influence of various exposures like 

external light during the process of taking Oryza Sativa plant 

leaf disease images, some studies indicate the use of Laplace 

filtering to improve the edge details in the image and achieve 

better the visual clarity [23]. The ability of homomorphic 

filtering to improve images with low contrast or that are 

impacted by uneven illumination, such as images of tissues in 

medical imaging or images captured in low light 

environments, is what distinguishes it. Homomorphic filtering 

can show features that would otherwise be difficult to see by 

changing the brightness and contrast of the image [24]. Such 

issues can be efficiently solved by the HAFLAF method. In 

the HAFLAF algorithm, homomorphic filtering(HAF) and the 

Laplacian filtering(LAF) are combined, and after 

homomorphic filtering, the resultant high-frequency features 

are subjected to Laplacian filtering. 

 

3.1.1 Fusion of homomorphic filtering and Laplacian filtering 

A popular technique for improving low-light images is 

HAF. Its main measures are to decrease the amount of low-

frequency brightness to equal the brightness and enhance the 

amount of high-frequency lighting to highlight the details in 

the low-brightness image. The LAF is very much a classic 

two-dimensional linear filter that sharpens images by 

enhancing the image's features using the Laplacian operator. 

According to the Retinex hypothesis, any image may be 

thought of as the product of the components of brightness and 

reflection, denoted by b and re, respectively [25]. Eq. (1) is the 

mathematical formula. In Eq. (1), the brightness component 

(b) stands in for the visible light of the image, while the 

reflection component (r) stands for the object's inherent 

reflection property. The goal in image enhancement is to 

extract the most reflection component 𝑟 while removing the 

brightness component 𝑏 from image 𝑖.  
 

𝑖(𝑎, 𝑏) = 𝑏(𝑎, 𝑏). 𝑟(𝑎, 𝑏) (1) 

 

The luminous intensity of the image given by Eq. (1) is 

adopted by the HAFLAF algorithm. First, Eq. (1) may be 

obtained by taking the logarithmic on each side and converting 

the multiplier into some kind of additions shown in Eq. (2). 

Eq. (2) is then subjected to a Fourier transform to produce Eq. 

(3) in the frequency domain. 𝐵(𝑥, 𝑦) is the region of each that 

corresponds to the low frequency of the brightness component, 

and 𝑅(𝑥, 𝑦) is the region which belongs to the high frequency 

of the reflection portion. The high-frequency constituent 

mostly conveys the edge information of the image.  

 

𝑙𝑛 𝑖(𝑎, 𝑏) = 𝑙𝑛 𝑏(𝑎, 𝑏) + 𝑙𝑛 𝑟(𝑎, 𝑏) (2) 

 

𝐼(𝑥, 𝑦) = 𝐵(𝑥, 𝑦) + 𝑅(𝑥, 𝑦) (3) 

 

The high-frequency components are also filtered by the 

Laplacian operator to increase the clarity of such edges, 

curves, and features in the images of the Oryza Sativa plant. 

The high-frequency component of the pixel has the image grid 

coordinates (a,b), and the Laplacian operator is denoted by 

∇2 𝑟(𝑎, 𝑏). A derivation of the Laplacian function is: 

 

∇2 𝑟(𝑎, 𝑏) =  
𝜕2𝑟 

𝜕𝑎2 +
𝜕2𝑟 

𝜕𝑏2  = 

𝑟(𝑎-1, 𝑏)+𝑟(𝑎, 𝑏+1)+𝑟(𝑎+1, 𝑏)+𝑟(𝑎, 𝑏-1)- 4𝑟(𝑎, 𝑏) 
(4) 

 

According to Eq. (10), the Laplacian operator would filter 

the final value by adding its grey values of the left, right, top, 

and bottom image pixels as well as four times the total of the 

grey values of the centre pixel in the image. A fixed 3*3 scale 

frame serves as the Laplacian filter's template, as can be seen 

in Figure 2.  

The LAF value of every pixel can be found by iterating 

through every pixel in the image that corresponds to the high-

frequency region within the Laplacian filter template. This is 

significant to highlight the Laplace filtering result of the high-

frequency region which is denoted by G(𝑢, 𝑣) , hence the 

expression is:  

 

G(𝑢, 𝑣)=R(𝑢, 𝑣)- F[∇2 𝑟(𝑎, 𝑏)] (5) 

 

 
Figure 2. Template for the Laplacian filter 

 

The HAF function H(𝑢, 𝑣) filters the high- and low-

frequency features after Laplace filtering. The expression from 

the conventional Butterworth filter function is H(𝑢, 𝑣) which 

can be seen in Eq. (6). The multiples that represent the 

augmentation of high-frequency features and the suppression 

of low-frequency features are represented by the notation 

𝑟ℎ and 𝑟𝑙 , accordingly. s is denoted as the sharpening 

coefficient, 𝐷0  is denoted as the radius of the cut-off 

frequency, and 𝐷(𝑢, 𝑣)  is denoted for the distance (𝑢, 𝑣) 

towards the centre of a filter.  

 

H(𝑢, 𝑣)= 
𝑟ℎ−𝑟𝑙

1+ [𝑠.
𝐷0

𝐷(𝑢,𝑣)
]
2𝑛 + 𝑟𝑙  (6) 

 

The traditional Butterworth filter formula takes into account 

considerations about high-frequency features as well as low-

frequency features. In this study, two improved exponential 

HAF functions that are able to process the high-frequency and 

low-frequency attributes have been selected. This was done so 

that the study could better address the occurrence of non-

uniform illumination and poor brightness, as well as enhance 

the specifics of the shadowy region of the image. The 

following is an explanation of the improved functions and 

procedures of the HAF filter: 

 

𝐻ℎ(𝑢, 𝑣)=(𝑟ℎ−𝑟𝑙). ⅇ𝜘𝑝( -𝑠.
𝐷0

𝐷(𝑢,𝑣)
)

𝑛
+ 𝑟𝑙   (7) 

 

𝐻𝑙(𝑢, 𝑣)=1- [(𝑟ℎ−𝑟𝑙). ⅇ𝜘𝑝 ( -𝑠.
𝐷0

𝐷(𝑢,𝑣)
)

𝑛
+ 𝑟𝑙]  (8) 

 

𝐻𝑓(𝑢, 𝑣)=𝐻𝑙(𝑢, 𝑣)B(𝑢, 𝑣)+𝐻ℎ(𝑢, 𝑣)G(𝑢, 𝑣) (9) 

 

After the high-frequency features and low-frequency 

features have now been screened by the homomorphic filter 

functions 𝐻ℎ  and 𝐻𝑙 , Eq. (11) can be generated by 

simultaneously performing the inverse Fourier transformation 

on each side of Eq. (10). 𝑧(𝑢, 𝑣)  can be denoted as the 

processed image by applying the HAFLAF algorithm, which 

can be seen in Eq. (17). 
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ℎ𝑓(𝑢, 𝑣)=ℎ𝑏(𝑢, 𝑣)+ℎ𝑔(𝑢, 𝑣) (10) 

 

𝑧(𝑢, 𝑣) = 𝑒ℎ𝑓(𝑢,𝑣) = 𝑒ℎ𝑏(𝑢,𝑣)𝑒ℎ𝑔(𝑢,𝑣) (11) 

 

3.1.2 Kuwahara Filter 

A method of spatial filtering known as Kuwahara Filter(KF) 

employs non-linear image smoothing in order to cut down on 

the amount of adaptive noise present in the input image. KF is 

appropriate for improving color image features. Reducing the 

contrast ratio of the image may increase the details of low-light 

conditions, although it is prone to illumination variation. In 

other words, KF is a noise reduction filtering method that is 

appropriate for use in situations that require the preservation 

of edges. Consider an image 𝐼𝑚(𝑠, 𝑡) with a square window 

with size 2x + 1 positioned in the centre of the image at a 

neighbourhood (𝑠, 𝑡). It is possible to split this square into four 

smaller square(SQ) sections, each of which will be SQ1, SQ2, 

SQ3, and SQ4. 

 

𝑆𝑄1(𝑠, 𝑡) = [𝑠, 𝑎 + 𝑥]𝑋 [𝑡, 𝑡 + 𝑥] (12) 

 

𝑆𝑄2(𝑠, 𝑡) = [𝑠 − 𝑥, 𝑠]𝑋 [𝑡, 𝑡 + 𝑥] (13) 

 

𝑆𝑄3(𝑠, 𝑡) = [𝑠 − 𝑥, 𝑠]𝑋 [𝑡 − 𝑥, 𝑡] (14) 

 

𝑆𝑄4(𝑠, 𝑡) = [𝑠, 𝑠 + 𝑥]𝑋 [𝑡 − 𝑥, 𝑡] (15) 

 

This implies that, after subdividing the symmetric square 

neighbourhood around each pixel of an image into four square 

sub-regions, the result of just the centre pixel is substituted by 

the mean across the most uniform sub-region, i.e., the sub-

region with that with the least standard deviation. As a result, 

the mean value of the most uniform region will be chosen as 

the centre pixel. A boundary to have a higher standard 

deviation depends heavily on where a pixel is in respect to an 

edge. If a pixel is close to the edge, it will take the value of the 

area with the least amount of texture and the smoothest 

surface. The filter uses the mean to produce the blurring effect, 

but since it considers the homogeneity of the areas, it 

guarantees that the edges will be preserved. 𝑃𝐷  is the detail 

image generated by subtracting Kuwahara output from the 

respective original image P. This processing method 

simplifies the calculation and detection process, but it will 

cause large errors in the calculation results. To balance this, 

0.1 was chosen as the tolerance value because a smaller 

tolerance value results in a denoised image that is more similar 

to the original image, with fewer artefacts or distortions.  

 

𝑃𝐷 = 𝑃 − 𝑃𝐾𝑢𝑤𝑎ℎ𝑎𝑟𝑎 (16) 

 

The focused region has been blurred by applying the 

Kuwahara Filter while the unfocused area has been left alone, 

and the details in the focused region have been recorded in the 

detail images. Now, weights are determined by assessing the 

strength of the features in these detailed images. 

 

3.1.3 Weighted image fusion of HAFLAF algorithm and 

Kuwahara Filter 

Image fusion aims to merge the outcomes of processing the 

same image using several algorithms in a way that highlights 

the features in the image to the greatest possible degree. A 

straightforward and widely used technique for fusing images 

is weighted average fusion. The core idea is to first compute 

an average value of the matching pixels over several pictures, 

presuming that its weighting coefficient would be optimal, and 

to induce fusion thereafter. The proposed weighted image 

fusion method of the HAFLAF algorithm and KF algorithm is 

shown in Figure 3. An image that is generated by the HAFLAF 

algorithm can be gained by using Formula (11), designated as 

𝐴(𝑥, 𝑦), as well as the image that is generated by the Kuwahara 

Filter technique may be acquired by using Eq. (16), marked as 

𝐵(𝑥, 𝑦) . The fused image is represented by the symbol 

𝐶(𝑥, 𝑦) , where 𝑥, 𝑎𝑛𝑑 𝑦  stand for the coordinate values of 

individual pixels within in the image. Below following is an 

example of the weighted image fusion technique: 

 

𝐶(𝑥, 𝑦) = 𝜇 𝐴(𝑥, 𝑦) + (1 − 𝜇)𝐵(𝑥, 𝑦) (17) 

 

In each of these, 𝜇 is the weight coefficient, and its values 

range from 0 to 1. The value of 𝜇 may be altered to meet the 

requirements. It has been determined via studies on several 

images that the ideal weight coefficient is between 0.3 and 0.6. 

The values of 0.3-0.6 is considered based on experiments that 

have shown that these values provide good results for Oryza 

Sativa plant leaf disease images. It is important to consider the 

characteristics of the input images. For example, if one input 

image has more relevant information than the others, a higher 

weight coefficient value may be assigned to that image. On the 

other hand, if the input images have similar levels of 

relevance, then a lower weight coefficient value may be 

assigned to each image to achieve a more balanced result. 

Following enhancement, the produced image may 

concurrently benefit from the strengths of the Kuwahara Filter 

method and the HAFLAF algorithm, overcoming their 

respective flaws and having a superior image quality. Figures 

4, 5 and 6 show the results that are achieved by adopting the 

image pre-processing approach that has been suggested. 

 

 
 

Figure 3. Weighted fusion of HAFLAF algorithm with KW 

filter 

 

 
 

Figure 4. Rice leaf blast (a) Original (b) HAFLAF output c) 

KF-output d) Weighted fusion output
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Figure 5. Rice bacterial leaf blight (a) Original (b) HAFLAF 

output c) KF-output d) Weighted fusion output 

 

 
 

Figure 6. Rice brown spot (a) Original (b) HAFLAF output 

c) KF-output d) Weighted fusion output 

 

3.2 Feature extraction 

 

The feature extraction phase is an important process of 

computer vision which aims to minimize the more irrelevant 

feature vectors into less relevant feature vectors. By using an 

optimal adaptable boosting cascade classifier (OABCC), we 

can locate the Oryza Sativa disease in an image by identifying 

its bounding boxes. For object identification, we present a 

cascade classifier technique. It is indeed a supervised learning 

method for training a cascade function using examples of 

positive disease images and negative disease images. The next 

step is to locate the disease portion on the images. In the 

proposed work, we feed the pre-processed images into cascade 

classifiers to build a robust classifier. Each level of the cascade 

classifier consists of a series of effective classifiers. Every 

component of this robust cascade classifier is trained using the 

Ada-boost method. The adaBoost classifier is a sequential 

learning technique that uses a greedy one-step algorithm as its 

foundation. It is reasonable to anticipate that using a post-

global optimization operation would further improve cascaded 

AdaBoost classifier performance. We use the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-

BFGS), a memory-constrained optimization technique, to 

optimize the performance of the OABCC. As an output of the 

OABCC method, an image would be generated in which the 

affected area has been located using a bounding box.  

Depending on the size of the bounding box determined by 

the OABCC model, a variety of detection boxes of varying 

sizes are created. The sought-after items are most likely 

located inside the detection regions. Additionally, the 

Intersection over Union (IOU) proportion of any box is being 

identified and the spotted box may be larger than the 

confidence threshold when there are numerous overlapping 

objects in the image to be detected. It is certain that miss 

recognition will occur in this type of situation, leading to a 

poor classification performance for overlapping items and, 

ultimately, it would end up with a lower average accuracy. So 

when the IOU ratio is higher than that of the confidence 

threshold, retention as well as suppressing strategies are put 

into effect. This does not remove the detection box but rather 

reduces its detection score. Using a threshold that is both high 

and realistically achievable enhances the detection 

effectiveness on overlapped items and generally boosts 

accuracy. To choose the optimal detection box for each item, 

Soft Non-Maximum Suppression (SN-MS) is utilised instead 

of the standard Non-Maximum Suppression (N-MS). The 

confidence threshold that is selected can have a substantial 

effect on the outcomes of an object detection system. Too high 

a threshold can result in missed detections, while too low a 

threshold can result in false hits and reduced accuracy. It is 

frequently essential to conduct an analysis that examines the 

trade-off between accuracy and recall in order to determine the 

appropriate confidence threshold. Plotting the precision-recall 

curve for the object detection system over a variety of 

threshold values is one method for finding the optimum 

confidence threshold. By examining the precision-recall 

curve, we can identify the threshold that maximizes the F1 

score, which is the harmonic mean of precision and recall. The 

F1 score is often used as a single metric to evaluate the overall 

performance of an object detection system. the confidence 

threshold is usually set between 0.1 and 0.9 [26], however a 

higher threshold may be preferred to reduce the number of 

false positives and increase precision. Hence for this study 0.7 

was chosen as confidence threshold. 

 

3.3 Oryza Sativa image classification 

 

An efficient adaptive boosting cascade classifier is used to 

train a CNN model, which is then used to make predictions 

about the likelihood of a given diseased leaf being of a certain 

type inside the taxonomy of Oryza Sativa leaf diseases. Figure 

7 depicts the ATRLeNet architecture employed in this method. 

It is based on the LeNet design [24]. The conventional LeNet5 

model is modified by introducing the atrous convolution layer 

in between. Using the same technology as the standard LeNet5 

model, the ATRLeNet model instead uses an atrous 

convolution kernel. Considering the same number of 

parameters, the receptive field size has grown while the 

training time has decreased. The classic LeNet5 improves 

network performance by adding more convolution-pooling 

layers. Even with a larger computation, issues like gradient 

disappearance and gradient explosion persist. This research 

builds the ATRLeNet model seen in Figure 7 by substituting 

the atrous-convolution layer for the normal convolution layer, 

keeping the same pooling and fully connected layer, and using 

the softmax function for output matching. When the network 

requires a wide receptive field, atrous convolution is often 

used. An atrous convolution is a viable option when both the 

number and size of convolution kernels have reached a 

computational ceiling. Atrous convolution, under the same 

circumstances of computation, may give a bigger receptive 

field for the network without increasing the number of 

parameters. Therefore, when the accuracy of atrous 

convolution is high enough, it outperforms the conventional 

LeNet5 in the analysis of complicated images and requires 

much less time to train. 

The ATRLeNet architecture that is employed in this 

technique consists of two convolution-ReLU- Max-pooling 

layer sets followed by an atrous convolution layer. All the 

features generated are concatenated and forwarded to the next 

convolution-ReLU- Max-pooling layer followed by a drop-

out, flatten, fully connected layer, drop-out, and soft-max 

classifier. The input layer chooses a 256x256 pixel image and 

utilises a multi-channel for depth perception. The initial set of 

layers consists of two convolutional layers. In both 

convolution layers, 40 filters of size 5*5 will be trained, and 

then the ReLU activation function and max-pooling of size 

2*2 will be used. The drop-out function comes next, once the 

convolutional layers have learned 20 filters of size 3*3. 500 
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densely nodes make up the flattened layer, and they're 

activated using a ReLU function. The depth of the output class 

is determined by the depth of its last fully connected layer. 

Finally, the soft-max classifier is utilised to provide 

predictions about the probability of each Oryza Sativa leaf 

disease class. Using the "multi-class cross-entropy" function, 

as shown in Equation, the model loss can be calculated. To 

fine-tune the proposed framework, we used efficient artificial 

fish swarm optimization (EAFSO) [22] instead of the standard 

Adam optimizer to choose the best weight parameters.  

 

Model Loss = -
1

𝑀
∑ ∑ 𝑝̂𝑎𝑏 log 𝑝𝑎𝑏

𝑁
𝑏=1

𝑀
𝑎=1   (22) 

 

 

 
 

Figure 7. Proposed ATRLeNet model 

 

 

4. RESULTS AND DISCUSSIONS  

 

The patterns of the dataset may have a significant impact on 

the performance metrics of classifiers. Two common datasets 

serve as the foundation for this study. The dataset 1 Rice Leaf 

Diseases Dataset is accessible through Kaggle's URL [27]. 

This collection contains 120 JPEG images, all of which show 

diseased Oryza Sativa plant leaves. There are 120 images in 

all, with 40 placed in all of the three broad disease categories 

(BLF, BS, and LS). Next, Huy Min Do's [28] Kaggle dataset 

has 2839 images of Oryza Sativa plant disease. This entire 

study’s major emphasis was on three distinct disease 

categories: RBLB, RLB, and RBS. The dataset is increased to 

5942 images after flipping and rotating the data. The 

procedures of cross-validation, followed by the estimate of 

performance metrics, are indeed responsible for the 

effectiveness of the evaluation. The accuracy of neural 

network classifiers is highly impacted by factors such as the 

type of training and validation data sets as well as 

distinguishing features. The classification performance of the 

Classification algorithm is affected by factors such as the 

distribution of the data, the value of k, and distance 

measurements. The classification performance of SVM 

classifiers is susceptible to being affected by the multi-class 

classification approach. Nevertheless, we were able to 

guarantee an objective outcome by using a cross-validation 

strategy in our study. The classification of diseases affecting 

Oryza Sativa needed an analysis of the optimum classification 

system. Disease classification is performed within the optimal 

parameters selected by the EAFSO Algorithm using the newly 

proposed ATRLeNet model. To analyse and validate the 

performance of the proposed ATRLeNet model, we used four 

alternative models: Artificial Neural Network (ANN), Support 

Vector Machine (SVM), K-Nearest Neighbours (KNN), and 

LeNet. To evaluate the effectiveness of the suggested model, 

we use a three-step process: first, we explore the model using 

unprocessed datasets. The second phase involves analysing the 

performance with the use of pre-processed datasets. Finally, 

we used a number of different meta-heuristic optimization 

techniques to validate that our proposed model is effective. 

 

4.1 Evaluating the effectiveness of Oryza Sativa disease 

classification on an unprocessed dataset  

 

The following section depicts the qualitative and 

quantitative analysis of the proposed EAFSO-optimized 

ATRLeNet model. The overall performance of the methods on 

both benchmark datasets is compared in Table 1 and Table 2. 

By using the feature extraction approach, and by optimising 

the model with the EAFSO methodology, we evaluate the 

performance of the model. When applied to dataset 1, 

optimised classification significantly increased overall 

accuracy (85.53%), precision (82.23%), F1-measure 

(78.46%), sensitivity (81.29%) and specificity (85.57%). 

Additionally, when applied to dataset 2 optimised 

classification significantly increased overall accuracy 

(88.61%), precision (85.39%), F1-measure (81.62%), 

sensitivity (84.45%) and specificity (88.73%).  

 

4.2 Performance analysis of Oryza Sativa disease 

classification 

 

The following section depicts the qualitative and 

quantitative analysis of the proposed EAFSO-optimized 

ATRLeNet model. The overall performance of the methods on 

both benchmark datasets is compared in Table 3 and Table 4. 

By using image pre-processing, and feature extraction 

approach, and by optimising the model with the EAFSO 
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methodology, we evaluate the performance of the model, 

which is also shown in Figure 8 and Figure 9. When applied 

to pre-processed dataset 1, optimised classification 

significantly increased overall accuracy (95.12%), precision 

(92.43%), F1-measure (88.58%), sensitivity (91.88%) and 

specificity (95.79%). Additionally, when applied to pre-

processed dataset 2, optimised classification significantly 

increased overall accuracy (98.82%), precision (95.68%), F1-

measure (95.27%), sensitivity (95.71%) and specificity 

(99.21%). 

 

Table 1. Performance evaluation of ATRLeNet- EAFSO model on unprocessed Dataset 1 

 
Model Accuracy Precision F1-Measure Sensitivity Specificity 

ANN 61.35% 52.33% 53.04% 53.04% 74.07% 

KNN 66.26% 55.52% 56.47% 55.31% 71.24% 

SVM 73.28% 65.47% 66.92% 66.91% 77.73% 

LeNet 74.86% 69.32% 68.64% 68.56% 77.49% 

ATR-LeNet- EAFSO 85.53% 82.23% 78.46% 81.29% 85.57% 

 

Table 2. Performance evaluation of ATRLeNet- EAFSO model on unprocessed Dataset 2 

 
Model Accuracy Precision F1-Measure Sensitivity Specificity 

ANN 64.43% 55.49% 56.20% 56.2% 77.23% 

KNN 69.34% 58.68% 59.63% 58.47% 74.4% 

SVM 76.36% 68.63% 70.08% 70.07% 80.89% 

LeNet 77.94% 72.48% 71.8% 71.72% 80.65% 

ATR-LeNet- EAFSO 88.61% 85.39% 81.62% 84.45% 88.73% 

 

Table 3. Performance evaluation of ATRLeNet- EAFSO model on pre-processed Dataset 1 

 
Model Accuracy Precision F1-Measure Sensitivity Specificity 

ANN 76.71% 70.33% 71.02% 71.67% 84.52% 

KNN 78.15% 69.01% 68.58% 69.35% 82.85% 

SVM 82.47% 76.13% 75.18% 74.83% 86.82% 

LeNet 88.15% 83.43% 82.87% 82.91% 91.17% 

ATR-LeNet- EAFSO 95.12% 92.43% 88.58% 91.88% 95.79% 

 

Table 4. Performance evaluation of ATRLeNet- EAFSO model on pre-processed Dataset 2 

 
Model Accuracy Precision F1-Measure Sensitivity Specificity 

ANN 84.05% 81.37% 81.01% 80.76% 85.63% 

KNN 85.67% 80.54% 79.43% 79.54% 89.26% 

SVM 91.71% 88.35% 88.07% 88.19% 94.17% 

LeNet 93.45% 90.41% 90.07% 90.24% 95.38% 

ATR-LeNet- EAFSO 98.82% 95.68% 95.27% 95.71% 99.21% 

 

 
 

Figure 8. Performance evaluation of the proposed model 

with ANN, KNN, SVM, LeNet on Dataset 1 

 

 
 

Figure 9. Performance evaluation of the proposed model 

with ANN, KNN, SVM, LeNet on Dataset 2 
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4.3 Comparison of classification accuracy and model loss 

with other optimization techniques 

 

In order to make sure that an ATRLeNet is learning the 

features of the input image dataset, it is crucial to keep an eye 

on the model's convergence as it is being trained. This can be 

accomplished, for example, by examining the convergence 

graph, which displays the pattern of the loss function and 

precision over the training epochs. In our research, we used 

five different optimization methods to examine the 

convergence graph of our ATRLeNet model to better 

understand how it was picking up the features that were 

present in the input image dataset. According to the 

convergence graph, the loss function initially dropped slowly 

before steadily approaching a steady state. The model's 

precision also rose quickly in the early epochs before 

plateauing at about 98.82%. Our observation that the training 

loss and accuracy and the validation loss and accuracy 

followed a comparable pattern demonstrated that our model 

was not overfitting to the training data.  
From Figure 10, we can observe that ATRLeNet-EAFSO 

outperforms the other four optimization techniques in terms of 

accuracy. ATRLeNet-EAFSO has attained a 98.82% accuracy 

level. ATRLeNet-WSSO has attained 88.62% accuracy, 

ATRLeNet-EAFSO-CSO has attained 86.09% accuracy, 

ATRLeNet-EAFSO-AFSO has attained an accuracy of 

83.72% and EAFSO-PSO has attained accuracy of 78.72%. 

We came to the conclusion that our ATRleNet-EAFSO model 

was successfully learning the features of the input images and 

was not overfitting to the training data based on our study of 

the convergence graph. 

 

 
 

Figure 10. Accuracy validation graph of various optimizers 

on ATRLeNet model 

 

 

5. CONCLUSIONS 

 

Using HAFLAF-KF and OABCC-ATRLeNet-EAFSO, this 

work proposes a model for disease classification in the leaves 

of Oryza Sativa plants. At the conception stage, we used the 

HAFLAF-KF algorithm to enhance the quality of the Oryza 

Sativa plant leaf images. In the first stage of the model, the 

OABCC model is used to locate the disease region on the leaf. 

This study presented a novel pre-processing and a 

classification model for Oryza Sativa plant diseases that use 

the EAFSO algorithm to fine-tune the parameters of the 

proposed ATRLeNet to improve accuracy, especially for 

diseases with similar but distinct causes. The ATR-LeNet 

model extracts features using various-sized convolution cores, 

then concatenates the features and conducts experimental 

research on the set of data. We may infer that the classification 

accuracy is close to 98.82% based on the data from 5942 

images utilised in the study. Experiment results validate a 

model for classifying diseases affecting the Oryza Sativa plant 

that uses a fusion of the HAFLAF-KF and OABCC-LeNet-

EAFSO. The research found that effective image pre-

processing may increase model accuracy in the classification 

of diseases affecting the Oryza Sativa plant. When compared 

to the proposed model using alternative bio-inspired 

optimization algorithms, the proposed EAFSO-optimised 

ATRLeNet model converges faster, saving computational 

time. The generalizability of the model may be improved by 

more work on augmenting the image data of Oryza Sativa 

plant diseases. 
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