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 Module (or community) structure detection, which has been successfully applied to many 

fields, is vital step for understand network dynamic and complex systems. Module structure 

not only is a crucial character of networks, but also is multi-scale. Therefore, many multi-scale 

module detection algorithms are proposed to resolve the problem. But a highly important issue 

for multi-scale methods is that of how to select crucial partitions among multi-scale network 

partitions so that these partitions can effectively help people to understand complex system. 

To solve the problem, we propose a novel partition-based hierarchical clustering to select 

significant network partitions. Experiments on selection of benchmark and real networks 

demonstrate that the new method for selecting significant partitions is very effectively. 
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1. INTRODUCTION 

 

Many complex systems, such as biology, mathematics, 

sociology and physics can be abstracted as networks that only 

include nodes and edges. The merit is simple, but can provide 

significant convenience to perceive and explain mysteries of 

complex systems. The assembling property of network, i.e. 

community, has triggered a big activity to this field [1-3], 

which is considered to be capable of revealing the network 

structure. Many methods have been put forward to detect 

network communities, such as modularity [4] and its variations 

[5-7], and hierarchical clustering methods based on node [8] 

or edge similarity [9]. 

Although much progress has been obtained, many issues 

challenges existing community detection algorithms greatly in 

traditional single-scale approaches. Single-scale community 

detection algorithm may encounter the so-called resolution 

limit problem [10] (or termed underpartition) when applied on 

the real complex networks. For instance, the modularity 

orientated optimization is a branch of the single-scale 

community mining methods, which have been widely 

investigated. However, even the most recently reported 

infomap method [11], which is powerful for detecting non-

overlapping communities, also suffers from this problem [12]. 

Other local-based single-scale community detection methods 

have overpartition problem since they have a tendency to 

group together those nodes with the strongest connections but 

leave out those with weaker connections, so that the divisions 

they generate may consist of smaller (even including several 

nodes) and dense cores [13]. One of the potential reasons for 

the underpartition and overpartition phenomenon in the single-

scale community detection approaches is that the network 

itself has multi-scale community structures. Also, measuring 

the node similarity solely according to the links in the original 

observed network in existing methods will potentially result in 

the inaccuracy of the solutions. 

Another difficulty for existing community mining 

algorithms is that networks often have several levels 

organization [14-15], leading to different relevant 

communities at various scales. For instance, in the PPI 

networks, the protein complexes are often organized 

hierarchically [16-17]; the atomic-level networks of protein 

3D structures are characterized by multiple scales in time and 

space [18-19]. Single-scale community detection methods are 

not suitable for the analysis of the multi-scale networks in 

which there is not a single ‘best’ mesoscopic level of 

description, but rather multiple levels association with 

multiple scales in the network [20]. Some recent methods [21-

23] have been proposed to try to resolve the multiple scales of 

the complex system, but significant efforts are still needed. For 

instance, the stability method is a multi-scale community 

mining algorithm based on extended modularity idea, its 

performance will be affected by the inherent weaknesses of 

modularity definition as some networks. Another multi-scale 

map method is found to produce more groups without 

meaningful community structure at different scales. Apart 

from the two issues mentioned above, another most significant 

issue for people is that how to select crucial partitions among 

multi-scale network partitions, and these partitions can 

effectively help one to understand complex system. 

In this work, we propose a network partition-based cluster 

method to select significant partitions based on ISIMB multi-

scale method [24]. The proposed method first calculates 

similarity (or distance) between two partitions using 

normalization variation of information, and a similarity matrix 

is generated, second, hierarchical clustering with a defined 

objective function is employed to select significant partitions. 

Experiments on selection of benchmark and real networks 

demonstrate that the new method for selecting significant 

partitions is very effectively. Particularly, we apply the multi-

scale concept to mine and select protein complexes in PPI 

networks and reveal their hierarchical organizations, which 

open a new way to understand and insight into protein 

complexes. 
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2. METHODS 

 

The ISIMB method has been proposed based on ISIM 

similarity. ISIM similarity first define transition probability 

from node 𝑖 to node 𝑗 at the (𝑡 + 1)𝑡ℎ time is described below: 
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where, 𝛼 ∈ (0,1) parameter is a regulative factor, and 𝑆𝑃(𝑖, 𝑗) 
is the shortest path between node 𝑖 and node 𝑗, 𝑑𝑖 is the degree 

of node 𝑖, and 𝑈𝑖 denotes the sets of neighbours of node 𝑖, and 

𝑘(𝑘 ≠ 𝑖)  is a member of 𝑈𝑖 . The equation (1) can be 

calculated by iterative (equation 2) or convergent (equation 3) 

equations on whole network, and the ISIM node similarity 

between node 𝑖 and node 𝑗 is defined by equation (4). 
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For a network, ISIMB method first set some values (such as 

60) for parameter 𝛼, and then, a series of similarity matrix of 

the network are obtained according ISIM, third, the number of 

modules are selected via the number of eigenvalues of 

similarity matrixes that larger than 0.2, at last, we employ 

hierarchical clustering with similarity matrix and preset 

number of communities to mine multi-scale community 

structure. 

Using ISIMB method, we get a series of partitions of a 

network at different scales. However, one expects that the 

related or significant partitions can be identified from multi-

scale community structures easily. Before identifying the 

significant scales, we should give a definition of it. A related 

or significant scale in a series of states is stable and it is more 

persistent than others when changing the resolution scale of 

the topology because they are usually more important to 

understand the system. In this work, a significant partition with 

the same number of communities and modular structure 

should span more parameters (𝛼) than other scales. Here, we 

present a new method to detect related scales. The method uses 

hierarchical clustering to group different partitions revealed by 

the ISIMB method. The similarity between two partitions are 

measured by normalization variation of information (NVI) 

[25] which has all the properties of a proper distance measure. 
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where, 𝑋  and 𝑌  are two network partitions, 𝐻(𝑋)  is the 

entropy of 𝑋 and 𝐻(𝑋|𝑌) is the conditional entropy, i.e., the 

additional information needed to describe 𝑋 once we know 𝑌. 

𝐼(𝑋; 𝑌) is defined by equation 6. 
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where, 𝐾 and 𝐾 ′ are the number of network partitions 𝑋 and 𝑌 

respectively. 

First, the distances among 60 partitions (a partition is 

similar with a node in traditional way) which are labeled by a 

series of digits from 1 to 60 in order are computed and a 

distance matrix is generated. Second, the hierarchical 

clustering is performed and the number of clusters (𝑛𝑐) are set 

from 1 to 60. Third, an objective function F  is defined based 

on the average of intra-cluster distance and average inter-

cluster distance. 
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where, 𝑋 and 𝑌 are two network partitions, 𝑛𝑐 is the number 

of clusters, 𝑛𝑝 and 𝑛𝑞 are the number of partitions in clusters 

𝐶𝑝  and 𝐶𝑞  respectively. In contrast to traditional cluster 

methods, the cluster methods used here is constrained 

clustering because the partitions in one cluster need to be 

ordinal. Therefore, for the final clustering result, it not only 

satisfies the minimum of the objective function F  but also 

makes the following equation 0. 
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where, 𝐶𝑛𝑢𝑚𝑏𝑒𝑟  is the number of partitions in a cluster, 𝐿𝑖 (1, 

2, …, 60) is the label of partition 𝑖. At last, we select a partition 

to represent the cluster. For a given cluster, we compute the 

average NVI of each partition among other partitions, and pick 

the partition that has the minimum average of the NVI to 

represent the given cluster. 

 

 

3. RESULTS 

 

3.1 The performance of ISIMB method 

 

The performance of ISIMB method is tested on both 

synthetic and real-world benchmark networks with other 

multi-scale methods, Stability, Map and RB [26] methods. The 

stability method detects module by optimizing a function 

‘Stability’. The modular structure generated by stability 

method significantly depends on a time scale (Markov time). 

Using different time scales, one can obtain various community 

structures with different scales. Hence the Markov time acts 

effectively as a resolution regulator that reveals multi-scale 

community structures from fine to coarser as the Makov time 

grows. In particular, some standard partitioning measures, 

such as modularity, correspond to ‘Stability’ with different 

time scales. Likewise, the Map method reveals multi-scale 

community structure also using Markov time. In the Map 

method, the community detection problem is interpreted as 

compression of the description length of a random walk. In 

order to reveal multi-scale community structure, Map method 
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introduces dynamic Markov time into the process of map 

encoding. The RB method finds community structures in 

networks by minimizing the energy of the spin glass, and 

reveals modules at different scales using a resolution regulator 

in the energy. Different from other three methods, the 

resolution regulator in RB method varied from big to small: as 

one decreases the resolution regulator, communities in the 

network are merged, and more big communities are generated. 

When the resolution regulator is 1, the function energy in the 

RB method is the standard modularity quality function. In 

addition, the community results detected by four multi-scale 

methods are compared with real partitions (or real community 

structure) using Normalized Mutual Information (NMI, see 

equation 9). Given two partitions 𝜒 = (𝑋1, 𝑋2, ⋯ , 𝑋𝑛𝑋)  and 

𝛾 = (𝑌1, 𝑌2, ⋯ , 𝑌𝑛𝑌)  of a network, with 𝑛𝑋  and 𝑛𝑌 

communities, respectively:  
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where, 𝑁 is the number of nodes in a network, 𝑛𝑖
𝑋and 𝑛𝑗

𝑌are 

the number of nodes in the communities 𝑋𝑖 and 𝑌𝑗 respectively, 

𝑛𝑖𝑗
𝑋𝑌 is the number of nodes shared by the communities 𝑋𝑖and 

𝑌𝑗: 𝑛𝑖𝑗
𝑋𝑌 = |𝑋𝑖 ∩ 𝑌𝑗|. The larger the NMI value, the better the 

community partition. 

 

 
 

Figure 1. H 15-2 network structure (A) and two hierarchical 

community structures (B) 

 

The first synthetic network is the H 15-2 network, which 

describes a homogeneous in degree network with two 

predefined hierarchical levels. It contains 256 nodes in total, 

and 15 edges are placed in the most internal community with 

16 nodes. 2 edges are linked among the most internal 

communities and form the most external community including 

64 nodes, and 1 edge is linked with any other node at random 

in the network. The H 15-2 network (see Figure 1A) has 

hierarchical community structures (see Figure 1B): the first 

level includes 16 communities and each community has 16 

nodes, and the second level includes 4 communities and each 

community has 64 nodes. Form the definition of community 

(or module) in which group of vertices within which 

connections are dense, but between which connection are 

sparse, we can infer that 16-way partition is more stable than 

4-way partition because the nodes in 16-way partition are more 

densely connected than the nodes in 4-way partition. Therefore, 

a better multi-scale community detection method should find 

two phenomenons. The one is that the method should find 

hierarchical community structures (both 16-way and 4-way 

partitions in H 15-2 network), and the other one is that the 

multi-scale community detection should find more stable 

network partition, that is the 16-way partition should span 

more parameters (the parameters are resolution regulators in 

ISIMB and RB methods, and are Markov time in Stability and 

Map methods. see Figure 2) than 4-way partition. 

Figure 2 illustrates the multi-scale community structures 

discovered by four multi-scale community detection methods 

of ISIMB, Stability, Map and RB methods. We can see that 

ISIMB and Map methods detect both 16-way and 4-way 

partitions successfully by varying α in ISIMB and the Markov 

time in Map. Likewise, For the Stability and RB algorithms, 

they also successfully find the two partitions. These results 

mean that all four methods show good performance on the first 

phenomenon mentioned above. For the second phenomenon, 

the 16-way partition found by ISIMB persists longest in four 

methods which indicates that the performance of ISIMB is best. 

Furthermore, for the Stability and RB algorithms, although 

they also successfully find the two partitions, the 4-way 

partition is a more stable partition than the 16-way partition in 

the two method. In fact, Stability and RB methods are 

extension of Modularity, so they may suffer from the same 

resolution limit problem. 

 

 
 

Figure 2. The multi-scale community structures of H 15-2 

network discovered by four multi-scale community detection 

methods 

 

The ISIMB method is then applied to another large synthetic 

network named LFR benchmark proposed by Lancichinetti et 

al. In the LFR benchmark [27], some parameters should be 

decided by a user: (1) the number of nodes 𝑁, the average 

degree < 𝑘 >  and maximum degree < 𝑚𝑎𝑥 𝑘 > . (2) 

Minimum for the micro community sizes < 𝑚𝑖𝑛 𝑐 >  and 

maximum for the micro community sizes < 𝑚𝑎𝑥 𝑐 >. (4) The 

number of overlapping nodes (micro communities only) <
𝑜𝑛 >, the number of memberships of the overlapping nodes 

(micro communities only) < 𝑜𝑚 > . (5) Minimum for the 

macro community size < 𝑚𝑖𝑛 𝐶 >, maximum for the macro 

community size < 𝑚𝑎𝑥 𝐶 > . (6) Mixing parameter for the 

macro communities < 𝑚𝜇 1 > , mixing parameter for the 

micro communities < 𝑚𝜇 2 > . The parameters used to 

generate the synthetic network are: 𝑁 = 1000, 𝑘 = 𝑚𝑎𝑥 𝑘 =
16, 𝑚𝑖𝑛 𝑐 = 𝑚𝑎𝑥 𝑐 = 10, 𝑜𝑛 = 𝑜𝑚 = 0, 𝑚𝑖𝑛 𝐶 = 𝑚𝑎𝑥 𝐶 =
50, 𝑚𝜇 1 = 0.03 and 𝑚𝜇 2 = 0.08. Then, according to the 

LFR, the generated synthetic network will have two 

hierarchical community structures with 40 communities and 

20 communities respectively. The first level will have stronger 

community structure than the second level because its 

communities have stronger local features set by the parameters. 

Figure 3 compares the results from the four multi-scale 

algorithms. We also use the two phenomenons mentioned 

above to measure the four multi-scale algorithms. From this 

figure, the four algorithms can discover the two hierarchical 

community structures which are perfectly consistent with the 

predefined community structures (NMI is equal to 1). But, 
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only ISIMB method correctly reveals the more importance of 

the 40-way partition by a longer time of persisted α compared 

to the 20-way partition. Although the Stability, Map and RB 

methods also successfully discover the predefined two-layer 

hierarchical community structures, they regard the 20-way 

partition as more stable. Overall, comparing with other three 

method, ISIMB method can find stable and significant 

community structure from networks more effectively. 

 

 
 

Figure 3. The multi-scale community structures in the LFR 

synthetic network reveled by four multi-scale methods 

 

The third benchmark network is the Karate network with 34 

nodes and 78 edges [28]. The network is widely used to test 

various module detection methods, and is naturally divided 

into 2 clusters. Figure 4 shows the multi-scale modular 

structure detected by four methods. From this figure, we can 

see that ISIMB captures two stable phases with 4 and 2 

communities respectively. The 2-way partition (Figure 5A) 

agrees exactly with the benchmark (NMI is equal to 1). Figure 

5B shows the stable structure of the 4-way partition which has 

large modularity found by the ISIMB on the Karate network. 

Apart from the large modularity, the 4-way partition also has 

higher partition density than 2-way partition. Compared to 

ISIMB, the Stability method discovers only one stable 

partition with 2 communities. But the Map does not detect any 

stable partition, even 2-way partition. The RB method 

discovers both 4-way and 2-way partition, but the 2-way 

partition is not consistent with the real partition (NMI is equal 

to 0.8372). 

 

 
 

Figure 4. Multi-scale modular structures of Karate network 

detected by four methods 

 
 

Figure 5. The community structures of 2-way (A) and 4-way 

(B) partition detected by ISIMB method 

 

3.2 Selection of significant community structure on 

benchmark networks 

 

The network partition-based method is first applied to detect 

significant community structure on three benchmark networks 

mentioned above: H 15-2 network, LFR synthetic network and 

Karate network, and the results are shown in Figure 6. From 

the figure we can see that the two significant modular structure 

with 16 and 4 communities in H 15-2 network are discovered 

by our method. Likeness, the significant community structure 

in LFR synthetic network are also revealed by our method. In 

the Karate network, the plot of the result is the same as the plot 

in ISIMB in the figure 4, which means that the significant 

community structure is also detected by our method. 

 

 

 
 

Figure 6. The significant community structure on three benchmark networks 

 

3.3 Selection of significant modular structure on PPI 

network 

 

Our method is then applied to detect hierarchical protein 

complexes in protein-protein interaction (PPI) network. The 

network includes 334 proteins and 1,879 interactions, and the 

334 proteins are composed by 8 yeast protein root complexes 

and 70 protein subcomplexes. In PPI networks, protein 

complexes generally correspond to module (or community) 

structures. Protein complexes not only exhibit community 

structure, but also display multiple scales because they are 

organized hierarchically. First, we employ ISIMB method to 

reveal multi-scale of protein complexes. But, a most 

significant issue for biologists is that how to select crucial 

partitions among multi-scale network partitions, and these 

partitions can effectively cover proteins complexes in 

biological networks. The multi-scale of the PPI network is 

analyzed by ISIMB method and the results are shown in Figure 

7. 

 

 
 

Figure 7. The multi-scale and significant community 

structure of the PPI network 
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From the Figure 7, we can see that the original multi-scale 

structure (blue line) does not reveal significant community 

structure because they do not have more persistent phenomena. 

After significant community selection, more stable 

community structure is discovered (red line in Figure 7), such 

as, 65-way partition, 58-way partition, and so on. Apart from, 

the significant partitions (or states) of the PPI network are 

measured using the real protein complexes, and 4 evaluation 

indexes [29], 𝑅𝑒 𝑐 𝑎𝑙𝑙𝑐  (see equation 11), 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛𝑐  (see 

equation 12), 𝑅𝑒 𝑐 𝑎𝑙𝑙𝑝  (see equation 13) and 𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛𝑝 

(see equation 14) are computed. The 𝑅𝑒 𝑐 𝑎𝑙𝑙𝑐  and 

𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛𝑐 are defined at complex level and the other two 

are defined at complex-protein pair level. Let S  be a cluster, 

𝐶 be a reference complex, 𝑉𝑆 be the set of proteins contained 

in 𝑆 and 𝑉𝐶 be the set of proteins contained in C . The match 

score is defined by equation 10. 
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evaluation indexes are defined as follows: 
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where, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐶𝑖 , 𝑆𝑗) = |𝑉𝐶𝑖 ∩ 𝑉𝑆𝑗|. 

In order to verify the performance of our method, four 

single-scale methods (such as ClusterONE, CFinder, CMC 

and MCODE) are employed to discover protein complexes. 

Comparing these methods, the 2 stable states are also the 

winner in the 4 indexes. For example, the values of indexes of 

ClusterONE, CFinder [30], CMC and MCODE [31] are 1.6, 

1.0899, 0.8868 and 1.3037 respectively (See Table 1). These 

results indicate that the new method for selecting significant 

partitions is very effectively because the 2 stable partitions are 

consistent with real protein complexes, and also that the 

methods for revealing multi-scale community is successful. 

 

Table 1. The performance on 4 evaluation indexes in various of methods 

 
Methods No. communities Recallc Precisionc Recallp Precisionc Total 

ISIM 
65 0.5190 0.5538 0.2193 0.5539 1.8460 

58 0.4937 0.5690 0.2415 0.5629 1.8670 

ClusterONE 52 0.4231 0.5577 0.2108 0.4048 1.6000 

CFinder 504 0.5128 0.1667 0.2246 0.1858 1.0899 

CMC 45 0.1923 0.3111 0.1472 0.2361 0.8868 

MCODE 17 0.1795 0.6471 0.1070 0.3702 1.3037 

 

 

4. CONCLUSION 

 

Many complex systems in nature can be described by 

networks, and then be resolved easily. One of significant 

characterization in complex networks is community or 

modular structure. Comparing with single-scale community 

structure, detecting multi-scale community structure is 

important for understanding the structure and dynamics of 

complex network. Selection of crucial partitions among multi-

scale network partitions can be applied in many fields. For 

example, multi-scale module structure in PPI network can 

reveal evolution of protein complex or proteins with similar 

function, and selection of crucial partitions among multi-scale 

community structure in PPI networks can find more stable 

protein complexes or groups of proteins with similar functions. 

Furthermore, take social network as an example, multi-scale 

community structure should be able to reveal evolution of 

people in friendship, collaboration or others, and selection of 

crucial partitions among multi-scale community structure in 

social network can find more stable friendship or collaboration. 

Although some multi-scale community structure detection 

methods have been proposed, few algorithms for selecting 

significant network partition are designed. In the work, we 

introduce a network partition-based cluster method for 

selecting significant community structure which can help one 

to understand complex system. Comparing with other single-

scale and multi-scale methods, our method can select 

significant network partitions effectively. 

Although the proposed algorithm is efficient, it has 

problems for further discussion. For example, the performance 

of ISIMB is measured on both synthetic networks and real-

world networks, but the measured method is qualitative (by 

two phenomenons), not is quantitative. So, a quantitative 

method should be proposed to measure different multi-scale 

community structure detection algorithms. The second 

problems are that the proposed method in this work relies on 

ISIMB method totally. Therefore, the proposed method may 

inherit some drawbacks from ISIMB method. Such as, the 

proposed method cannot select crucial partitions from very 

sparse networks.  
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