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With the advent of miniature sensor technology, it is now possible to collect data on 

various aspects of human movement under free-living conditions. This technology has 

the potential to be used in activity monitoring systems in several areas, including health, 

military, sports applications, and human monitoring. The majority of research in 

wearables technology is focused on skin-mounted sensors or embedded in tight clothes. 

However, most of our daily clothes are loose or contain wide parts. This paper is 

interested in analyzing measurements of an accelerometer embedded in loose clothes. 

Experiments are conducted using a wearable node embedded in an oblong piece of cloth 

to emulate loose clothes. The piece is attached to a participant's arm while performing 

daily activities. Measurements are collected and presented in both time and frequency 

domains. Finally, activity measurements are classified using SVM and KNN 

algorithms. Results indicate that the differences in measurements between loose and 

tight clothes are noticeable in both domains, but the degradation in classification 

accuracy is unneglectable. When the sensor was embedded in 10 cm long piece of cloth 

the classification accuracies are over 80% and 90% for SVM and KNN, respectively, 

which is approximate, 5% less than the tight clothes accuracies. 
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1. INTRODUCTION

Human activity tracking based on wearable devices has 

become more popular because it can be conducted without the 

limitation of time and location. It can be used in daily life 

perfectly and has become an essential part of several fields 

from sports and leisure to security systems. Tracking physical 

activities and behavior of humans commonly refers to 

automatically identifying physical activities performed by 

humans. Human activity tracking has become one of the most 

popular research topics due to the availability of many sensors 

and accelerometers, which are characterized by being low in 

cost and low energy consumption and it has greatly added to 

our understanding of human behavior [1-3]. 

With the development of wearable sensors technology, it 

becomes easier to wear sensors as external accessories, 

embedded in clothing, or implanted into the body. Although 

wearable technology made use of a wide range of sensor types, 

human activity tracking relies mainly on the use of sensors 

such as accelerometers and gyroscopes [4]. Accelerometers 

represent an efficient option for capturing, monitoring, and 

recognizing human motions [5]. Furthermore, it can be 

operated without any external ambient-based sensors or 

limitations in working conditions [6]. Most of the research in 

the human activity tracking field has shifted towards the use 

of sensor technology, based on time series recordings using 

sensor data to benefit from it in identifying the type of 

activities that an individual does, such as walking, standing, 

sitting, running, and jogging [7, 8] 

In recent years, there have been a lot of wearable electronic 

devices and technologies, such as heart rate monitors, 

smartwatches, trackers, smart glasses, and fitness devices [9]. 

Small wearable sensors may be in different locations on the 

human body, such as the hand, leg, finger, and wrist. Some 

sensors may be implanted into the body, even tattooed or 

affixed to the skin [10], or integrated into clothes. Using 

sensors in clothing opens up new possibilities in fitness and 

health tracking and activity recognition. Typically, machine 

learning Algorithms are used to interpret sensors 

measurements to track and monitor various body positions, 

such as the independent monitoring of humans for applications 

including assisted living [11], rehabilitation, and monitoring 

[12], and health monitoring systems [13-15], especially during 

COVID_19 [16], remote epileptic patient supervising system 

[17], sports applications [18], wheelchair movement control 

[19], detect information about crime locations [20], 

monitoring oil [21], and detection of human movements [22].  

The majority of recent studies have focused on wearable 

technology, where the accelerometer sensors are skin-

mounted or embedded in tight clothes. However, in our daily 

life, we generally wear loosely fitted clothes except for 

underwear garments and sports clothing. Loose clothes are 

worn for aesthetic and protective purposes to cover the whole 

body, but they have received very little attention in wearable 

technology in contrast to tight clothes. There is an emerging 

tendency to tackle the problem of loose-fitted sensors in 

various applications such as in medical, monitoring patients, 

tracking activity, and many more applications. A supposed 

scenario for wearables sensors embedded in loose-fitted 

clothes is in medical application where patients usually where 

loose scrubs and need to be monitored continuously. Instead 

of attaching the sensors to the patient they can be embedded in 

the scrubs. Examples of loosely fitted clothes might include 

working clothes such as lab coats, worker overalls, and turnout 
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coats. Other examples of loosely fitted clothes include 

traditional attire such as Arabic Thawb and Indian Sari, as well 

as party gowns and dresses. We expect they will be the 

dominant category among wearables in the next few years. 

Table 1 summarizes the recent works in wearable devices 

embedded into clothes. This paper presents a study of the 

differences in accelerometer measurements due to loose-fitted 

clothes compared to sensors embedded in tight clothes or skin-

mounted sensors. The rest of the paper is organized as follows. 

Section II explains the work methodology, the wearable node 

design while and the experimental setup. Results are viewed 

and discussed in Section III while Section IV concludes the 

paper. 

Table 1. Summarizes the recent works in wearable devices embedded into clothes 

Type Clothes Sensor Type Classify Method Acc Ref. 

Loose long-sleeve shirt Accelerometer Nearest centroid 89% [23]

Loose long-sleeve shirt Accelerometer Nearest centroid 75% [24]

Loose pants Flexible piezoelectric Rule-based 93% [25]

Loose patient scrubs Flexible piezoelectric Rule-based 88% [26]

Shirt loose-fitting Accelerometer Rule-based 96% [27]

E-jacket Optical-strain CNN-LSTM 90% [28]

Blazer Textile Cable DeepConv-LSTM 97% [29]

Loose-fitting fabric Piezo-resistive SVM 95% [30]

Loose shirt Inertial sensors SVM 91% [31]

2. METHODOLOGY

To quantify the effects of loose garments on activity 

tracking measurements, multiple sets of measurements are 

collected from a person undertaking several activities such as 

sitting, walking, running, up the stair, and down the stair. 

Measurements are collected using an accelerometer sensor, the 

sensor itself is attached to an oblong piece of cloth connected 

to the person arm to resemble a wide sleeve. Then, 

measurements are viewed in both time domains and frequency 

domains to be analyzed. Finally, selected features of the 

collected measurements from the time domain into typical 

classifiers that are widely used in activity tracking applications. 

2.1 Wearable sensor node 

There are four primary components in the designed 

wearable node such as microcontrollers for processing, 

acceleration sensor, communication wireless, and power 

supplies providing a direct voltage of 3.3V. The sensor is an 

ADXL345 board it consists of a 3-axis accelerometer and a 

16-bit analog-to-digital converter that outputs digital signals.

The range and resolution of the accelerometer are set to ±16 g

and 0.4 mg/LSB, respectively. The data is captured at a

constant sampling rate of 100 Hz.

Figure 1. Wearable node design 

Since, the sensor measures both dynamic accelerations 

resulting from motion or shock and static accelerations, such 

as gravity, data were normalized by subtracting each response 

average in the time domain. The microcontroller is attained by 

using the ESP32 board which is widely used in health, fitness, 

and sports research, that requires basic communications and 

processing abilities [32, 33].  

The microcontroller uses an I2C protocol to collect digital 

measurements from the ADXL345 sensor module, then send 

them to a personal computer, wirelessly, through Bluetooth 

protocol for processing. Figure 1 shows the final form of the 

designed wearable node. 

2.2 Experimental setup and data gathering 

The data for the experiment is derived from five activities 

such as sitting, walking, running, up the stair, and down the 

stair. The participant performs these activities with a 

rectangular (width ~ 5 cm, length ~   10 cm) non-stretchable 

piece of cloth attached to the participant arm. The node was 

placed in one of three locations such as at the top of the piece 

that is connected to the participant arm (Location 1), in the 

middle (Location 2), and at the free end of the piece (Location 

3) as shown in Figure 2.

Figure 2. Experiment setup shows the planned locations of 

the wearable node on the cloth relative to the human arm 

In the experiment setup, only one node is placed in one of 

the three locations, at a time. Location 1 is used to simulate the 

fixed node. While locations 2 and 3 were used to simulate the 

Location 3: loose 

5 cm 

5 cm 

2.5 cm   2.5 cm 

Location 2: medium 

Location 1: tight 
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loose-fitting node. This work used Location 1 measurements 

for comparison with the two other locations' measurements. 

The piece dimensions and the node locations are shown in 

Figure 2. The location of the sensor is strictly regulated. The 

x-axis is pointing to the front of the body, the y-axis to the right 

side of the body, and the z-axis to the ground. This regulation 

was used throughout the experiment to reduce vibration and 

enhance its experiment repeatability. 

Accelerometer measurements for each activity are recorded 

for approximately 8~10 seconds for sitting, walking, running, 

up the stair and down the stair. Since the sampling rate is 

100Hz, each experiment corresponds to the data set that 

contains approximately 8000~10000 points. The experiment is 

repeated four times per activity per node location, hence there 

are 4×5×3 data sets. Each data point consists of three 

measurements representing acceleration along X, Y, and Z-

axes. In the next section, only X-axis measurements were 

because the other two axes’ measurements are generally 

similar to X-axis measurements and show less variation 

between different activities and node locations than X-axis 

measurements. In total, 60 data sets are recorded as in Eq. (1): 

 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 

= 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑒𝑣𝑒𝑛𝑡 𝑐𝑎𝑠𝑒 

= 5 ∗ 3 ∗ 4 = 60 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡𝑠 

(1) 

 

 

3. RESULT AND DISCUSSION 

 

In this section, measurements in each data set are plotted 

with time to form a time response. Time responses for selected 

cases are viewed and compared. Since each case is repeated 

four times only a one-time response of each case was viewed. 

At the beginning to prepare the data for processing, it needs 

to remove the gravitational acceleration included in the 

measured accelerations. This was done by recording idle 

activity for a few seconds and subtracting the mean for each 

later measurement. This is typical procedure in accelerometer 

measurements, especially for commercial low-cost sensors. 

For feature extraction, accelerometer measurements are 

processed using first-order statistical features like mean, 

standard deviation, minimum, maximum, and root mean 

square. Later, frequency responses of the same sets are viewed 

and compared. Finally, two algorithms (SVM and KNN) are 

employed to classify the data sets based on selected statistical 

features in time domains. 

 

3.1 Time domain results 

 

To understand the differences between the five activity 

measurements, their time responses are viewed together in 

Figures 3, 4, and 5, each time domain response they were 

normalized by subtracting the average of each response. 

Started with Figure 3 presents the graphs representing 

acceleration measurements when the node is at location 1. 

First, sitting activity time response is shown in Figure 3(a) 

where tiny fluctuation (less than ±1g) is shown due to 

background noise and slight body movement. 

Next, in Figure 3(b) walking activity time response shows 

visible fluctuations (less than ±4g) that correspond to the 

participant steps and hand swinging movement. Similarly, 

Figure 3(c) shows the time response for running activity. It 

shows a large fluctuation (less than ±10g) compared to 

walking activity but in the same pattern. 

 
(a) Sitting activity 

 
(b) Walking activity 

 
(c) Running activity 

 
(d) Up the stair activity 

 
(e) Down the stair activity 

 

Figure 3. Time responses of the node at location 1 

 

The last two activities (walking up and down stairs) time 

responses are shown in Figure 3(d, e) respectively. These 

1227



figures show a jagged time response with acute dips in rhythm 

with the participant ascending/descending steps. The two 

responses look very similar to each other All the graphs in 

Figure 3 are typical responses that coincide with the result of 

previous related work. 

For location 2, acceleration measurements are shown in 

Figure 4. First, the sitting activity time response is shown in 

Figure 4(a) which is also within ± 1g. 

Next, in Figure 4(b) walking activity time response 

corresponds to the participant's steps and hand swinging 

movement with some noise due to the location of the sensor in 

the middle of loose a piece of clothing, the measurement range 

is within ±4g to with some peaks reach ± 8g.  

Similarly, Figure 4(c) shows the time response for running 

activity. It shows a large fluctuation when compared with 

running in location 1. The range of measurements is between 

± 8 and ±12. 

The last two activities (walking up and downstairs) time 

responses are shown in Figure 4(d, e) respectively. These 

figures show a clear jagged time response when compare with 

location 1. 

(a) Sitting activity

(b) Walking activity

(c) Running activity

(d) Up the stair activity

(e) Down the stair activity

Figure 4. Time responses of the node at location 2 

Thirdly, we present the graphs that represent acceleration 

measurements when the node is at location 3. First, sitting 

activity time response is shown in Figure 5(a) where tiny 

fluctuation grate than ±1g is shown due to increased variation 

of the loose garment. 

Next, in Figure 5(b) walking activity time response shows 

the participant's steps, the noise of data is increased due to the 

location of the sensor in the tip of loose a piece of clothing, 

and the range to ±8g. Similarly, Figure 5(c) shows the time 

response for running activity. It shows a large fluctuation 

when compared with running in locations 1,2. the range of data 

was between ± 14 to ±16. 

The last two activities (walking up and downstairs) time 

responses are shown in Figure 5(d, e) respectively. These 

figures show a jagged time response more it in locations 1, and 

2. The two responses are very similar to each other.

(a) Sitting activity
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(b) Walking activity 

 
(c) Running activity 

 
(d) Up the stair activity 

 
(e) Down the stair activity 

 

Figure 5. Time responses of the node at location 3 

 

3.2 Frequency domain result 

 

For the frequency domain, FFT is calculated for each time 

response and compared. The frequency response generated 

from Figures 3, 4, and 5 are shown in Figures 6 to 10. In each 

graph, the highest magnitude and its corresponding frequency 

are marked inside the graph. 

According Shannon-Nyquist theorem as shown in Eq. (2), 

the reconstructed signal bandwidth must be less than the 

sampling frequency (Fs). Since the accelerometer 

measurements were sampled at 100 Hz, the maximum 

frequency component in the response is 50 Hz. However, the 

next figures show that for all the activities, the frequency 

response diminishes greatly after 20Hz. This coincides with 

the fact the human activities in general exhibit relatively slow 

changes speed and directions even in the case of running. 

 

𝐹𝑠 ≥ 2 × 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞. 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 (2) 

 

In the next figures, it is noticeable that the amplitude values 

are different from one case to other. In sitting activity, as 

shown in Figure 6 the amplitude of locations 1 and 2 are 

approximately equal, but it increases in location 3, indicates 

the healthy state of the sitting (without any motion). 

 

 
(a) Sitting activity at location 1 

 
(b) Sitting activity at location 2 

 
(c) Sitting activity at location 3 

 

Figure 6. FFT of sitting activity at three locations 
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Figure 7 showed the effect of walking was on the x-axis 

greater than the sitting x-axis, where the maximum amplitude 

equal to 232.45 at 2.5 Hz in location 1. In location 2 amplitude 

equal to 570.08 at 2.4 Hz, then in the location 3 it reaches 

632.51 at 2.5 Hz. 

(a) Walking activity at location1

(b) Walking activity at location 2

(c) Walking activity at location 3

Figure 7. FFT of walking activity in three locations 

Figure 8 shown the FFT analysis of running activity. Where 

the maximum amplitude equal to 416.06 at 0.5 Hz in location 

1, in location 2 the amplitude equal to 460.39 at 4.1 Hz then in 

the location 3 it is increase equal to 586.01 at 3.7 Hz. 

(a) Running activity at location 1

(b) Running activity at location 2

(c) Running activity at location 3

Figure 8. FFT of running activity at three locations 

Figure 9 shown the FFT analysis of in up the stair activity. 

where the maximum amplitude equal to 401.2 at 1.4 Hz in 

location 1. In location 2 equal to 483.97 at 1.2 Hz, then in the 

location 3 it is increase equal to 657.431 at 1.2 Hz. 

(a) Up the stair at location 1

(b) Up the stair at location 2
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(c) Up the stair at location 3

Figure 9. FFT of up the stair at three locations 

Figure 10 shown the FFT analysis of down the stair activity, 

where the maximum amplitude equal to 490.85 at 1.3 Hz at 

location 1. In location 2 the amplitude equal to 589.89 at 1.3 

Hz then in the tip in increase equal to 788.28 at 0.2 Hz. 

(a) Down the stair at location 1

(b) Down the stair at location 2

(c) Down the stair at location 3

Figure 10. FFT of down the stair at three locations 

By examining the frequency responses in figures 6 to 10. 

Can be concluded, that the majority of the frequency 

components in all the activities are below 20 Hz. This is 

expected since we are dealing with human action. Walking 

activity shows higher values in magnitude than sitting activity, 

likewise, running activity shows higher values than walking, 

even beyond the 20 Hz limit. The frequency response exhibit 

shows a higher magnitude in location 2 compared to location 

1, likewise, location 3 shows an even higher magnitude. These 

magnitudes are appearing in larger and larger frequency 

components with location distance increase. This is due to the 

extra ripples in motion caused by the free end of the cloth piece. 

3.3 Classification methods 

This section investigates the classification of the collected 

data sets at the three locations based on the data collected from 

the experiment several classifiers face the limitations of the 

long training time and the large size of the data. In our method, 

we select two widely used algorithms the SVM and KNN 

which are already applied in many wearable-related types of 

research, these are types of deep learning algorithm that 

performs supervised learning for the classification or 

regression of data groups. These are can possible to classify 

the wearable data sensor due to it has can separate the feature 

and descriptors and resolves these problems in human activity 

recognition [34, 35]. 

In the confusion matrix, there are four parameters: True 

positives (TP), True Negatives (TN), False Positives (FP), and 

False Negatives (FN). The accuracy is calculated as Eqs. (3)-

(6). The classification accuracy for each algorithm are listed in 

Table 2, while F1-score values are listed in Table 3. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(6) 

Table 2. Accuracy for classification algorithm 

Algorithm  Location 1 Location 2 Location 3 

KNN 90% 85% 85% 

SVM 95% 80% 85% 

It is worth noticing that the accuracy at Location 2 is slightly 

higher than the accuracy at Location 3 in the SVM algorithm. 

This is expected because of both two reasons, first, the 

difference is small compared to the accuracy ratio, second both 

locations 2 and 3 are considered loose compared to location 1, 

so they give comparable results. 

Table 3. F1 score for classification algorithm 

Algorithm  Location 1 Location 2 Location 3 

KNN 0.67 0.82 0.57 

SVM 0.85 0.6 0.57 
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The Confusion matrix for the classification algorithms at 

locations 1, 2, and 3 are shown in Figures 11, 12, and 13, 

respectively. The results show that generally, both algorithms 

are capable of correctly classifying the activities. 

Most of the misclassification is due to the similarity 

between walking up the stair and down the stair activities. A 

more careful design for the feature extraction will lead to 

higher classification rates. Results show that the classification 

is slightly better at Location 1. This is due to the 

measurement’s fluctuations at location 3. For the SVM 

algorithm, the classification rates are 95%, 80%, and 85% for 

locations 1, 2, and 3 respectively. For the KNN algorithm, the 

rates are 90%, 85%, and 85% for locations 1, 2, and 3. 

 

 
(a) SVM classifier 

 
(b) KNN classifier 

 

Figure 11. Confusion matrix at location 1 

 

 
(a) SVM classifier 

 
(b) KNN classifier 

 

Figure 12. Confusion matrix at location 2 

 

 
(a) SVM classifier 

 
(b) KNN classifier 

 

Figure 13. Confusion matrix at location 3 

 

 

4. CONCLUSIONS 

 

This study aimed to analyze the effect of loose-fitting 

clothes on wearable sensors to demonstrate whether loose-

fitting clothing can be exploited to provide information about 

human movement using sensor data and compare it with 

sensor data that is worn directly on the body or embedded in 
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tight clothes. An experiment is conducted with a participant to 

measure the effect of loose clothing on the sensitive part by 

wearing a rectangular non-stretchable piece of cloth (~ 10 cm) 

attached to the participant’s arm. The sensor is placed at one 

of three locations, at the beginning of the piece (to simulate a 

sensor embedded in tight clothes, in the middle (~5 cm), and 

at the end of the piece (to simulate a sensor is embedded in 

loose clothes), while the participant is asked to do five daily 

activities: sitting, walking, running, walking up the stair, and 

walking down the stair. Experiments results showed that 

measurements from all activities in the case of loose cloth are 

larger and exhibit more fluctuation than in the case of tight 

clothes. This conclusion is also supported by the frequency 

domain response of the measurements at the three sensor 

locations. Finally, two widely used classification algorithms 

such as SVM and KNN are used to classify the five activities 

at each location. The results show that both SVM and KNN 

classification algorithms are capable of correctly classifying 

the activities when the sensor is embedded in loose clothes, 

within ~10 cm, and providing slightly less classification 

accuracy compared to tight clothes results. 
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