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Time-fractional partial differential equations are foundational instruments in modeling 

neuronal dynamics. These equations are formulated by replacing the conventional time 

derivative of order α, where 0 < 𝛼 < 1, in the standard equation with the Caputo 

fractional derivative. This study introduces the Crank-Nicolson (C.N.) finite difference 

scheme as a solution method for a two-dimensional, time-fractional Semilinear 

parabolic equation under Dirichlet boundary conditions. An in-depth investigation into 

the consistency, stability, and convergence of the proposed scheme is also conducted. 

To corroborate the theoretical findings, two numerical experiments are carried out. The 

scheme's efficiency, in terms of absolute errors, order of accuracy, and computational 

time, is meticulously evaluated and discussed. The results demonstrate that the 

proposed scheme, while being conditionally stable, can be utilized effectively with a 

high rate of convergence to compute numerical solutions for the problem at hand. 
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1. INTRODUCTION

Fractional calculus, a branch of mathematics concerned 

with the properties of derivatives and integrals of non-integer 

orders, has been an area of interest since the inception of 

classical calculus. This mathematical field specializes in the 

resolution of time-dependent fractional differential equations, 

which entail fractional derivatives. 

Regarded as a pivotal tool for the exploration of dynamical 

systems, fractional calculus is valued for its non-local 

operators that encapsulate the historical progression of 

dynamics. The usage of fractional calculus and fractional 

processes has become a favored approach when grappling with 

the unique properties of long-term memory effects found in 

multiple domains of applied sciences. These fields range from 

finance and economic dynamics, biological systems and 

bioinformatics, nonlinear waves and acoustics, to image and 

signal processing, transportation systems, geosciences, 

astronomy, and cosmology. 

The development of fractional calculus has been 

incrementally built upon by an array of researchers including, 

but not limited to, Heaviside, Lagrange Riemann, Liouville, 

Gr ünwald, Euler, Fourier, and Abel [1]. The contemporary 

utilization of fractional calculus owes its popularity to the 

versatility of the differintegral operator, which amalgamates 

both integer-order derivatives and integrals as special cases. 

The fractional integral, for instance, may be employed to 

describe the cumulation of a quantity when the order of 

integration is undetermined, and can be inferred as a parameter 

of a regression model, as elucidated by Podlubny [2] and 

Kisela [3]. The fractional derivative, on the other hand, is 

frequently used to depict damping. Other applications span 

control theory of dynamical systems, optics and signal 

processing, fluid flow, diffusive transport, probability and 

statistics, viscoelasticity, electrical networks, dynamical 

processes in self-similar and porous structures, 

electrochemistry of corrosion, and rheology. 

Over the past decades, several analytical and numerical 

methods for solving fractional differential equations have been 

brought to bear. Analytical methods encompass the Fourier 

transformation method, the Laplace transformation method, 

and the green function method [4-6]. However, most fractional 

differential equations resist analytical solutions. Hence, the 

development of numerical schemes for these equations is 

imperative. Effective methods such as the finite difference 

method, the spectral method, and the finite element method 

have been utilized to solve time (space) fractional differential 

equations [7-9]. 

The numerical solutions of linear types of time (space)-

fractional equations have been the focal point of many authors 

[9-13], while Semilinear or nonlinear types have received less 

attention [14-17]. Nevertheless, research on these latter types 

is still in its nascent stages. 

Since, most of the mathematical models, that describe real 

would phenomena, involving non-linear fractional partial 

differential equations, and most of previous studies have 

focused on linear types, the aim of this work is to suggest a 

high order efficient numerical technique for a two-dimensional 

semi-linear time fractional equation with Dirichlet boundary 

conditions. Namely, we propose the linearly implicit Crank-

Nicolson finite difference scheme, and we show that the 

proposed scheme is consistent, conditionally stable and 

convergent with the help of mathematical induction. Moreover, 

we prove that the order of accuracy takes the form: 

𝑂(𝑘2−𝛼 + ℎ2), where α is the fractional order of the time-

derivative. In addition, the obtained numerical results of the 

studied test examples show that the proposed scheme can be 

used efficiently to compute the numerical solutions of the 
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governed problem. 

The rest of this paper is organized as follows: In section two, 

we state the mathematical formulation of the time fractional 

diffusion equation and present some literature review 

regarding the studied problem. In section three the derivation, 

consistency, stability and convergent of the finite difference 

scheme are considered in section four. Finally, some 

conclusions are given in the last section.  

 

 

2. TIME-FRACTIONAL DIFFUSION EQUATION 

 

Since the last decades, a lot of interest has been shown in 

solving the two-dimensional linear time fractional diffusion 

equation associated with Dirichlet boundary conditions: 

 

{
 
 

 
 

𝜕𝛼𝑢

𝜕𝑡𝛼
= 

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
+ 𝑓(𝑥, 𝑦, 𝑡),

 𝑢(𝑥 ,0, 𝑡) =  𝑎 (𝑥, 𝑡), 𝑢( 𝑥, 1 , 𝑡 ) =  𝑏 (𝑥, 𝑡),

𝑢(0 , 𝑦, 𝑡) =  𝑐 (𝑦, 𝑡), 𝑢(1, 𝑦 , 𝑡 ) =  𝑑 (𝑦, 𝑡),

𝑢(𝑥 , 𝑦, 0) =  𝑢0(𝑥, 𝑦), }
 
 

 
 

  

for 𝛼 ∈ (0,1), 0 < 𝑥 < 1, 0 < 𝑦 < 1, 0 < 𝑡 < 𝑇 

(1) 

 

where, 𝑎, 𝑏, 𝑐, 𝑑, 𝑢0 𝐶(𝑅
2), 𝑓 ∈ 𝐶(𝑅3). 

In fact, problem (1) has many applications, such as it is used 

to describe transport processes with long memory, where the 

rate of diffusion is inconsistent with the classical Brownian 

motion model [9]. 

There are various finite difference schemes such as explicit 

and implicit Euler and Crank - Nicolson schemes have been 

developed to solve this equation. For instance, Zhuang and Liu 

[18] solved problem (1) with the help of the implicit difference 

approximation technique. They used Caputo fractional 

definition for approximating the time fractional derivative. 

They proved that the implicit difference scheme was 

unconditionally stable and convergent with the help of 

mathematical induction. Later, Chen et al. [19], established the 

implicit and the explicit finite difference schemes for 

providing solutions for the problem (1). They discretized the 

time derivatives with the help of the Riemann-Liouville 

fractional derivative and showed the connection between the 

Riemann-Liouville and the Grünwald-Letnikov fractional 

derivatives. Thereafter, the authors could apply the Riemann-

Liouville definition for problem formulations and use the 

Grünwald-Letnikov definition for the derivation of the 

numerical solutions. The Fourier analysis technique is used for 

determining the stability and the convergence. Furthermore, 

they used the multivariate extrapolation method for improving 

the method accuracy.  

Zhang and Sun [20] presented two new Alternating 

Direction Implicit (ADI) schemes, which were based on the 𝐿1 

approximation and the backward Euler technique for solving 

problem (1). These ADI schemes have been constructed after 

adding the two small different terms that are different from the 

general ADI technique. They proved the solvability, 𝐻1 norm 

convergence and the unconditional stability. Cui [21] 

investigated the high-order compact finite difference process 

with the operator splitting method (ADI approach) for solving 

problem (1) by the approximation of the 2nd order spatial 

derivatives using the compact finite difference and applying 

the Grünwald-Letnikov discretisation scheme for time 

fractional derivatives. They proved that the method was 

unconditionally stable using the Fourier approach. 

Similar to their earlier study, Cui [22] suggested the 

compact ADI scheme for providing solutions to the problem 

(1). They used the Caputo derivative for approximating the 

time fractional derivative instead of using the Grünwald-

Letnikov as their earlier study. They approximated the second 

order derivatives with regards to the space variables by 

applying the compact finite difference. The Fourier analysis 

technique was used for proving the convergence for the 

compact finite difference.  

Later, Balasim and Ali [11] have proposed the group 

iterative methods to compute the numerical solutions of 

problem (1). Balasim [23] has investigated the convergence 

and stability of the group iterative schemes.  

In order to generalize some of previous results for nonlinear 

time fractional diffusion equations, in this work, we propose a 

numerical technique for a two-dimensional time fractional 

reaction diffusion equations of a Semilinear type associated 

with Dirichlet boundary conditions: 

 

{
 
 

 
 

𝜕𝛼𝑢

𝜕𝑡𝛼
= 

𝜕2𝑢

𝜕𝑥2
+ 

𝜕2𝑢

𝜕𝑦2
+ 𝑓(𝑥, 𝑦, 𝑡, 𝑢),

 𝑢(𝑥 ,0, 𝑡) =  𝑎 (𝑥, 𝑡) , 𝑢( 𝑥, 1 , 𝑡 ) =  𝑏 (𝑥, 𝑡),

𝑢(0 , 𝑦, 𝑡) =  𝑐 (𝑦, 𝑡) , 𝑢(1, 𝑦 , 𝑡 ) =  𝑑 (𝑦, 𝑡),

𝑢(𝑥 , 𝑦, 0) =  𝑢0(𝑥, 𝑦), }
 
 

 
 

  

for 0 < 𝑥 < 1, 0 < 𝑦 < 1, 0 < 𝑡 < 𝑇 

(2) 

 

where, 𝑎, 𝑏, 𝑐, 𝑑, 𝑢0 𝐶(𝑅𝑅), 0 ≤ 𝑢0, 

𝑓 ∈ 𝐶1([0,1] × [0,1] × (0, 𝑇) × [0,∞)) and satisfies 

Lipshtiz condition with respect to u: 

 
|𝑓(𝑥, 𝑦, 𝑡 , 𝑢1) −  𝑓(𝑥, 𝑦, 𝑡 , 𝑢2)|  ≤ 𝐿 |𝑢1 − 𝑢2|,  

 𝑢1 , 𝑢2, 𝐿 > 0 
(3) 

 

And 𝛼 ∈ (0,1) is the order of the time fractional derivative 

in Caputo sense [12, 15], which takes the form:  

 
𝜕𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡𝛼
=

1

(1− 𝛼)
 ∫

𝜕𝑢(𝑥,𝑦,𝜉)

𝜕𝜉

𝜕𝜉

(𝑡−𝜉)𝛼

𝑡

0
  (4) 

 

The existence, uniqueness and stability of problem (2) can 

be guaranteed by some references [24, 25]. Throughout this 

paper, we assume that the solution of problem (2) is positive 

for nonzero time values. 

 

 

3. THE LINEARLY IMPLICIT CRANK-NICOLSON 

METHOD (CNM) 

 

In this section, we propose a numerical approximation to 

problem (2). Namely, the linearly Crank-Nicolson method 

(CNM). Firstly, we derive its formula, then we investigate its 

consistency, stability and convergence. 

In this segment, the grid dimensions in relation to space and 

time for the positive integers I and N are respectively 

represented by ℎ =
1

𝐼
 and 𝑘 =

𝑇

𝑁
.The grid point in the space 

interval [0,1] is denoted 𝑥𝑖  = 𝑖ℎ , 𝑦𝑗  = 𝑗ℎ, 𝑖, 𝑗 =

0,1,2, … . , 𝐼 and the grid points for time are designated 𝑡𝑛  =
𝑛𝑘, 𝑛 = 0,1 ,2 … . . 𝑁 . In addition, we denote 𝑢𝑖

𝑛 =

𝑢(𝑥𝑖 , 𝑦𝑗  , 𝑡𝑛). 

 

3.1 Crank Nicolson formula 

 

The goal of this section is to derive Crank-Nicolson scheme 

for problem (2), which is one of the most popular methods in 
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practice. Moreover, it has high order of convergence in both 

space and time. 

In order to approximate Eq. (2) and Eq. (4) at the mush point 

(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

), we use the following approximations [10, 13]: 

 

𝜕𝛼𝑢

𝜕𝑡𝛼
|
𝑖

𝑛+
1

2 = [𝑤̃1𝑢𝑖,𝑗
𝑛 + ∑ (𝑤̃𝑛−𝑠+1 − 𝑤̃𝑛−𝑠) 𝑢𝑖,𝑗

𝑠𝑛−1
𝑠=1 −

 𝑤̃𝑛 𝑢𝑖,𝑗
0 +  𝜎 (

𝑢𝑖,𝑗
𝑛+1+ 𝑢𝑖,𝑗

𝑛

21−𝛼
)] +  𝑂(𝑘(2−𝛼))  

(5) 

 

𝜕2𝑢

𝜕𝑥2
|
𝑖

𝑛+
1

2 = [(
𝑢𝑖+1,𝑗
𝑛+1 + −2𝑢𝑖,𝑗

𝑛+1+ 𝑢𝑖−1,𝑗,
𝑛+1

2ℎ2
)] +

 [(
𝑢𝑖+1,𝑗
𝑛 + −2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛

2ℎ2
)] + 𝑂(ℎ2)  

(6) 

 

𝜕2𝑢

𝜕𝑦2
|
𝑖

𝑛+
1

2 = [(
𝑢𝑖,𝑗+1
𝑛+1 + −2𝑢𝑖,𝑗

𝑛+1+ 𝑢𝑖,𝑗,−1
𝑛+1

2ℎ2
)] +

 [(
𝑢𝑖,𝑗+1
𝑛 + −2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛

2ℎ2
)] + 𝑂(ℎ2)  

𝜎 =  
1

𝑘𝛼(2− 𝛼)
, 𝑤̃𝑠 = 𝜎 [(𝑠 +

1

2
)
(1−𝛼)

− (𝑠 −

 
1

2
)
(1−𝛼)

] 

(7) 

 

The nonlinear term can be approximated using Taylor 

expansion [16]:  

 

𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

, 𝑢 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

) ) =

 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1 
2

 ,
3

2
𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) −

1

2
 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−1)) + 𝑂(𝑘

2)  

 

Thus 

 

𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2
, 𝑢 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1

2
) ) = 

 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1 
2
 ,
3

2
𝑢𝑖,𝑗
𝑛 −

1

2
 𝑢𝑖,𝑗
𝑛−1) +  𝑂(𝑘2) 

(8) 

 

By substituting the above forms (5)-(8) in problem (2), we 

can get the Crank – Nicolson approximated formula as follows: 

 

[𝑤̃1𝑢𝑖,𝑗
𝑛 + ∑ (𝑤̃𝑛−𝑠+1 − 𝑤̃𝑛−𝑠) 𝑢𝑖,𝑗

𝑠𝑛−1
𝑠=1 − 𝑤̃𝑛 𝑢𝑖,𝑗

0 +

 𝜎 (
𝑢𝑖,𝑗
𝑛+1− 𝑢𝑖,𝑗

𝑛

21−𝛼
)]  

= 
1

2ℎ2
[(𝑢𝑖+1,𝑗

𝑛+1 + −2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (𝑢𝑖+1,𝑗
𝑛 + −2𝑢𝑖,𝑗

𝑛 +

 𝑢𝑖−1,𝑗
𝑛 )] +

1

2ℎ2
[(𝑢𝑖,𝑗+1

𝑛+1 + −2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖,𝑗−1

𝑛+1 ) + (𝑢𝑖,𝑗+1
𝑛 +

 −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗−1

𝑛 )]  

+ 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖,𝑗
𝑛−1). 

 

Multiplying both sides of the last equation by 𝛿 = 𝑘𝛼(2 −
 𝛼)21−𝛼 , yields that:  

 

[21−𝛼𝑤1𝑢
𝑛 + 21−𝛼 ∑ (𝑤𝑛−𝑠+1 − 𝑤𝑛−𝑠) 𝑢𝑖,𝑗

𝑠𝑛−1
𝑠=1 −

 21−𝛼𝑤𝑛 𝑢𝑖,𝑗
0 + 𝑢𝑖,𝑗

𝑛+1 − 𝑢𝑖,𝑗
𝑛 ] =  

𝛿

2ℎ2
[(𝑢𝑖+1,𝑗

𝑛+1 + −2𝑢𝑖,𝑗
𝑛+1 +

 𝑢𝑖−1,𝑗
𝑛+1 ) + (𝑢𝑖+1,𝑗

𝑛 + −2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 )] +
𝛿

2ℎ2
[(𝑢𝑖,𝑗+1

𝑛+1 +

 −2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖,𝑗−1

𝑛+1 ) + (𝑢𝑖,𝑗+1
𝑛 + −2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛 )]  

+𝛿 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖,𝑗
𝑛−1). 

So,  

 

𝑢𝑖,𝑗
𝑛+1 −

𝛿

2ℎ2
 (𝑢𝑖+1,𝑗

𝑛+1 + + 𝑢𝑖−1,𝑗
𝑛+1 + 𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 )

+  
2𝛿

ℎ2
 𝑢𝑖,𝑗
𝑛+1 

= 
𝛿

2ℎ2
 (𝑢𝑖+1,𝑗

𝑛 +  𝑢𝑖−1,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) 

− 
2𝛿

ℎ2
 𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗

𝑛 − 21−𝛼𝑤1𝑢𝑖,𝑗
𝑛  

+ 21−𝛼∑(𝑤𝑛−𝑠 − 𝑤𝑛+1−𝑠)𝑢𝑖,𝑗
𝑠  

𝑛

𝑠=1

+ 21−𝛼𝑤𝑛 𝑢𝑖,𝑗
0  

+ 𝛿 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖,𝑗
𝑛−1). 

It follows 

 

(1 + 2𝑟) 𝑢𝑖,𝑗
𝑛+1 − 

𝑟

2
(𝑢𝑖+1,𝑗

𝑛+1 + + 𝑢𝑖−1,𝑗
𝑛+1 + 𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) =

𝑟

2
(𝑢𝑖+1,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 )  

+(1 − 2𝑟 − 21−𝛼𝑤1)𝑢𝑖,𝑗
𝑛  +  21−𝛼 ∑ (𝑤𝑛−𝑠 −

𝑛−1
𝑠=1

 𝑤𝑛+1−𝑠)𝑢𝑖,𝑗
𝑠  + 21−𝛼𝑤𝑛 𝑢𝑖,𝑗

0   

+ 𝛿 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖,𝑗
𝑛−1). 

 

We obtain 

 

(1 + 2𝑟)𝑢𝑖,𝑗
𝑛+1 −

𝑟

2
 [𝑢𝑖+1,𝑗

𝑛+1 + 𝑢𝑖−1,𝑗
𝑛+1 + 𝑢𝑖,𝑗+1

𝑛+1

+ 𝑢𝑖,𝑗−1
𝑛+1 ]

= (1 − 21−𝛼𝑤1 −  2𝑟)𝑢𝑖,𝑗
𝑛

+
𝑟

2
 [𝑢𝑖+1,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛

+ 𝑢𝑖,𝑗−1
𝑛 ]

+  21−𝛼∑(𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1`)𝑢𝑖,𝑗
𝑠

𝑛−1

𝑠=1

+ 21−𝛼 𝑤𝑛𝑢𝑖,𝑗
0

+ 𝛿𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2
 ,
3

2
𝑢𝑖,𝑗
𝑛

− 
1

2
𝑢𝑖𝑗
𝑛−1 )  

(9) 

 

where, 𝛿 =  𝑘𝛼(2 −  𝛼)21−𝛼 , r =
𝛿

ℎ2
, 𝑤𝑠 = [(𝑠 +

1

2
)
(1−𝛼)

−

(𝑠 − 
1

2
)
(1−𝛼)

] 

For n=0, CN formula (9) becomes as follows: 

 

(1 + 2𝑟)𝑢𝑖,𝑗
1 −

𝑟

2
 [𝑢𝑖+1,𝑗

1 + 𝑢𝑖−1,𝑗
1 + 𝑢𝑖,𝑗+1

1 + 𝑢𝑖,𝑗−1
1 ] =

(1 −  2𝑟)𝑢𝑖,𝑗
0 +

𝑟

2
 [𝑢𝑖+1,𝑗

0 + 𝑢𝑖−1,𝑗
0 + 𝑢𝑖,𝑗+1

0 + 𝑢𝑖,𝑗−1
0 ] +

 𝛿𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

 ,
3

2
𝑢𝑖,𝑗
0  ). 

 

Lemma 3.1 [13] 

For s = 0,1, 2…, n 

• 𝑤𝑠 > 0 

• 𝑤𝑠+1 < 𝑤𝑠 , 𝑤𝑠+1
−1 > 𝑤𝑠

−1 

• ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) + 𝑤𝑛
𝑛−1
𝑠=1 = 𝑤1. 

 

The Crank – Nicolson difference formula (5) can be written 

in matrix form as follows:  
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{

𝐴 𝑈1 = 𝐵𝑈0 +  𝛿𝐹0 + 𝑍1 + 𝑍0

𝐴 𝑈𝑛+1 = 𝐵𝑈𝑛 + 21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1)𝑈
𝑠𝑛−1

𝑠=1

+21−𝛼𝑤𝑛𝑈
0 + 𝛿𝐹𝑛 + 𝑍𝑛+1 + 𝑍𝑛

}  (10) 

 

𝐴 =

[
 
 
 
 
 
 
 𝐴∗ −

𝑟

2
𝐼 0 ⋯ 0

−
𝑟

2
𝐼 𝐴∗ −

𝑟

2
𝐼 ⋯ 0

 ⋱

       ⋱

0 ⋯ 0 −
𝑟

2
𝐼 𝐴∗ ]

 
 
 
 
 
 
 

(𝐼−1)2×(𝐼−1)2

 

𝐵 =

[
 
 
 
 
 
 
 𝐵

∗
𝑟

2
𝐼 0 ⋯ 0

𝑟

2
𝐼 𝐵∗

𝑟

2
𝐼 ⋯ 0

 ⋱

       ⋱

0 ⋯ 0
𝑟

2
𝐼 𝐵∗ ]

 
 
 
 
 
 
 

(𝐼−1)2×(𝐼−1)2

 

𝐴∗ =

[
 
 
 
 
 
 
 (1 + 2𝑟) −

𝑟

2
0 ⋯ 0

−
𝑟

2
(1 + 2𝑟) −

𝑟

2
⋯ 0

 ⋱

       ⋱

0 ⋯ 0 −
𝑟

2
(1 + 2𝑟) ]

 
 
 
 
 
 
 

(𝐼−1)×(𝐼−1)

 

𝐵∗ =

[
 
 
 
 
 
 
 (1 − 2𝑟 − 2

1−𝛼𝑤1)       
𝑟

2
  0 ⋯ 0

𝑟

2
 (1 − 2𝑟 − 21−𝛼𝑤1)     

𝑟

2
⋯ 0

 ⋱

       ⋱

0 ⋯ 0          
𝑟

2
(1 − 2𝑟 − 21−𝛼𝑤1)]

 
 
 
 
 
 
 

(𝐼−1)×(𝐼−1)

 

𝑈𝑛 = [

𝑢1
𝑛

𝑢2
𝑛

⋮
𝑢𝐼−1
𝑛

]   , 𝐹𝑛 = [

𝑓1
𝑛

𝑓2
𝑛

⋮
𝑓𝐼−1
𝑛

],  

𝑢𝑖
𝑛 = [𝑢𝑖,1

𝑛 𝑢𝑖,2
𝑛 ⋯ 𝑢𝑖,𝐼−1

𝑛 ]
𝑇
, 𝑓𝑖

𝑛

= [𝑓𝑖,1
𝑛 𝑓𝑖,2

𝑛 ⋯ 𝑓𝑖,𝐼−1
𝑛 ]

𝑇
 

𝑓𝑖,𝑗
𝑛 =  𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛1

2

 ,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖𝑗
𝑛−1 ). 

𝑍𝑛 =  
𝑟

2
[𝑢0,1

𝑛 + 𝑢1,0
𝑛 , 𝑢0,2

𝑛  , … , 𝑢0,𝐼−2
𝑛 , 𝑢0,𝐼−1

𝑛

+ 𝑢1,𝐼
𝑛  ; 𝑢2,0

𝑛 , 0, … . ,0, 𝑢2,𝐼
𝑛 ; … . ; 𝑢𝐼,1

𝑛

+ 𝑢𝐼−1,0
𝑛 , 𝑢𝐼,2

𝑛 , … . , 𝑢𝐼,𝐼−2,
𝑛  𝑢𝐼,𝐼−1

𝑛 + 𝑢𝐼−1,𝐼
𝑛  ]

𝑇
 

 

Theorem 3.1 At each time level, (n+1), the linear system 

(10) is uniquely salable.  

 

Proof: Since A is diagonally dominant with positive real 

diagonal entries, then A is positive definite and nonsingular 

[26]. Hence, the linear system (10) is uniquely solvable.  

 

3.2 Stability analysis for C.N. method 

 

Suppose that 𝑢̃𝑖
𝑛 is the approximate solution of Eq. (2). As 

in studies [18, 27], we set 𝑒𝑖,𝑗
𝑛 = 𝑢̃𝑖,𝑗

𝑛 − 𝑢𝑖,𝑗
𝑛 , 𝑖, 𝑗 =

 0, 1 , 2 , … . , 𝐼 − 1, 𝑛 =  0, 1 , 2 , … . , 𝑁. 

Define ‖𝐸𝑛‖ =  𝑀𝑎𝑥1≤𝑖≤𝐼−1
1≤𝑗≤𝐼−1

 |𝑒𝑖,𝑗
𝑛 | 

Clearly, 𝑒𝑖,𝑗
𝑛  satisfies (9): 

For n=0, 
 

(1 + 2𝑟)𝑒𝑖,𝑗
1 −

𝑟

2
 [𝑒𝑖+1,𝑗

1 + 𝑒𝑖−1,𝑗
1 + 𝑒𝑖,𝑗+1

1 + 𝑒𝑖,𝑗−1
1 ] 

= (1 − 2𝑟)𝑒𝑖,𝑗
0 −

𝑟

2
 [𝑒𝑖+1,𝑗

0 + 𝑒𝑖−1,𝑗
0 + 𝑒𝑖,𝑗+1

0 +

 𝑒𝑖,𝑗−1
0 ] +  𝛿 [𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡1

2

 ,
3

2
𝑢̃𝑖,𝑗
0  ) −

 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡1
2

 ,
3

2
𝑢𝑖,𝑗
0  )]. 

(11) 

 

For n>0, 
 

(1 + 2𝑟)𝑒𝑖,𝑗
𝑛+1 −

𝑟

2
 [𝑒𝑖+1,𝑗

𝑛+1 + 𝑒𝑖−1,𝑗
𝑛+1 + 𝑒𝑖,𝑗+1

𝑛+1

+ 𝑒𝑖,𝑗−1
𝑛+1 ]  

= (1 − 21−𝛼 𝑤1 − 2𝑟) 𝑒𝑖,𝑗
𝑛 + 

𝑟

2
 [𝑒𝑖+1,𝑗

𝑛 + 𝑒𝑖−1,𝑗
𝑛 +

 𝑒𝑖,𝑗+1
𝑛 + 𝑒𝑖,𝑗−1

𝑛 ] + 21−𝛼 ∑ (𝑤𝑛−𝑠 −
𝑛−1
𝑠=1

 𝑤𝑛−𝑠+1) 𝑒𝑖,𝑗
𝑛 + 21−𝛼𝑤𝑛𝑒𝑖,𝑗

0  

+ 𝛿 [𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

 ,
3

2
𝑢̃𝑖,𝑗
𝑛 − 

1

2
𝑢̃𝑖,𝑗
𝑛−1) −

 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2

 ,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖,𝑗
𝑛−1 )]. 

(12) 

 

Based on (10), the above error formula can be written in 

matrix form as follows: 

 

{

𝐴𝐸1 = 𝐵𝐸0 +  𝛿𝐺0

𝐴𝐸𝑛+1 = 𝐵𝐸𝑛 + 21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1)𝐸
𝑠𝑛−1

𝑠=1

+21−𝛼𝑤𝑛𝐸
0 + 𝛿𝐺𝑛

}  

 
E0 is given, 

 

𝐸𝑛 = [

𝐸1
𝑛

𝐸2
𝑛

⋮
𝐸𝐼−1
𝑛

]   , 𝐺𝑛 = [

𝐺1
𝑛

𝐺2
𝑛

⋮
𝐺𝐼−1
𝑛

], 

𝐸𝑖
𝑛 = [𝑒𝑖,1

𝑛 𝑒𝑖,2
𝑛 ⋯ 𝑒𝑖,𝐼−1

𝑛 ]
𝑇
, 𝐺𝑖

𝑛

= [𝑔𝑖,1
𝑛 𝑔𝑖,2

𝑛 ⋯ 𝑔𝑖,𝐼−1
𝑛 ]

𝑇
 

𝑔𝑖,𝑗
𝑛 =  𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛1

2

 ,
3

2
𝑢̃𝑖,𝑗
𝑛 − 

1

2
𝑢̃𝑖𝑗
𝑛−1 ) −

𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛1
2

 ,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖𝑗
𝑛−1 ). 

𝑖, 𝑗 =  0, 1 , 2 , … . , 𝐼 − 1, 𝑛 =  0, 1 , 2 , … . , 𝑁 
 

Definition 3.1 [14] For any arbitrary initial rounding 

error 𝐸0, the difference approximation 𝐴𝑈𝑛+1 = 𝐵𝑈𝑛 + 𝑏𝑛 is 

stable, if there exists C > 0 , independent on  ℎ , 𝑘 such that 

‖𝐸𝑛‖ ≤ 𝐶‖𝐸0‖, or ‖(𝐴−1𝐵)𝑛‖ ≤ 𝐶,  ∀ 𝑛. 

 

Theorem 3.2 The C.N. finite difference approximation is 

stable, if (1 − 21−𝛼 𝑤1 − 2𝑟)  ≥ 0. 

Proof: To prove this theorem, we use the Mathematical 

induction. 

For n=0, set ‖𝐸1‖∞ =  𝑀𝑎𝑥1≤𝑖≤𝐼−1
1≤𝑗≤𝐼−1

 |𝑒𝑖,𝑗
1 | = |𝑒𝑝,𝑞

1 |, we have 

 

|𝑒𝑝,𝑞
1 | =  (1 + 2𝑟)|𝑒𝑝,𝑞

1 | −
𝑟

2
 (4|𝑒𝑝,𝑞

1 |)  

≤ (1 + 2𝑟)|𝑒𝑝,𝑞
1 | −

𝑟

2
 (|𝑒𝑝+1,𝑞

1 | + |𝑒𝑝−1,𝑞
1 | +

|𝑒𝑝,𝑞+1
1 | + |𝑒𝑝,𝑞−1

1 | )  

≤ |(1 + 2𝑟)𝑒𝑝,𝑞
1 −

𝑟

2
 (𝑒𝑝+1,𝑞

1 + 𝑒𝑝−1,𝑞
1 + 𝑒𝑝,𝑞+1

1 +

𝑒𝑝,𝑞−1
1  )|  

(13) 
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From (11) and (13), we obtain  

 

|𝑒𝑝,𝑞
1 | ≤ |(1 − 2𝑟)𝑒𝑝,𝑞

0 +
𝑟

2
 (𝑒𝑝+1,𝑞

0 + 𝑒𝑝−1,𝑞
0 + 𝑒𝑝,𝑞+1

0 +

𝑒𝑝,𝑞−1
0  )| + 𝛿 | 𝑓 (𝑥𝑝, 𝑦𝑞 , 𝑡1

2

 ,
3

2
𝑢̃𝑝,𝑞
0 ) − 𝑓 (𝑥𝑝, 𝑦𝑞 , 𝑡1

2

 ,
3

2
𝑢𝑝,𝑞
0 )|  

 

Since satisfies Lipchitz condition (3), we obtain  

 

𝑒𝑝,𝑞1≤1−2𝑟𝐸0∞+2𝑟𝐸0∞|𝑒𝑝,𝑞
1 | ≤ (1 − 2𝑟)‖𝐸0‖∞ +

2𝑟‖𝐸0‖∞ 

+𝛿𝐿 |
3

2
(𝑢̃𝑝,𝑞

0 − 𝑢𝑝,𝑞
0 )|. 

≤ ‖𝐸0‖∞ + 
3

2
 𝛿𝐿‖𝐸0‖∞ = (1 + 

3

2
𝛿𝐿) ‖𝐸0‖∞  

≤ (1 + 2𝛿𝐿)‖𝐸0‖∞. 

 

Thus ‖𝐸1‖∞ ≤ (1 + 2𝛿𝐿)‖𝐸
0‖∞ 

Now, supposes that ‖𝐸𝑠‖∞ ≤ 𝐶 ‖𝐸
0‖∞, where C=(1+2δL), 

s= 0, 1, 2, …., n., for n+, let |𝑒𝑝,𝑞
𝑛+1| = 𝑀𝑎𝑥1≤𝑖≤𝐼−1

1≤𝑗≤𝐼−1
 |𝑒𝑖,𝑗

𝑛+1|, we 

have  

 

|𝑒𝑝,𝑞
𝑛+1| =  (1 + 2𝑟)|𝑒𝑝,𝑞

𝑛+1| −
𝑟

2
 [4|𝑒𝑝,𝑞

𝑛+1|] . 

≤ (1 + 2𝑟)|𝑒𝑝,𝑞
𝑛+1| −

𝑟

2
 (|𝑒𝑝+1,𝑞

𝑛+1 | + |𝑒𝑝−1,𝑞
𝑛+1 | +

|𝑒𝑝,𝑞+1
𝑛+1 | + |𝑒𝑝,𝑞−1

𝑛+1 | ). 

≤ |(1 + 2𝑟) 𝑒𝑝,𝑞
𝑛+1 −

𝑟

2
 (𝑒𝑝+1,𝑞

𝑛+1 + 𝑒𝑝−1,𝑞
𝑛+1 + 𝑒𝑝,𝑞+1

𝑛+1 +

𝑒𝑝,𝑞−1
𝑛+1  )|. 

(14) 

 

From (12) and (14), it follows that 

 

|𝑒𝑝,𝑞
𝑛+1| ≤ |(1 − 21−𝛼 𝑤1 − 2𝑟)𝑒𝑝,𝑞

𝑛 +
𝑟

2
 (𝑒𝑝+1,𝑞

𝑛 + 𝑒𝑝−1,𝑞
𝑛 +

𝑒𝑝,𝑞+1
𝑛 + 𝑒𝑝,𝑞−1

𝑛  )| + |21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) 𝑒𝑝,𝑞
𝑠𝑛−1

𝑠=1 | +

 𝛿 |𝑓 (𝑥𝑝, 𝑦𝑞 , 𝑡𝑛+1
2

 ,
3

2
𝑢̃𝑝,𝑞
𝑛 − 

1

2
𝑢̃𝑝,𝑞
𝑛−1) −

 𝑓 (𝑥𝑝, 𝑦𝑞 , 𝑡𝑛+1
2

 ,
3

2
𝑢𝑝,𝑞
𝑛 − 

1

2
𝑢𝑝,𝑞
𝑛−1)|. 

 

Since satisfies Lipchitz condition (3), we obtain  

 

|𝑒𝑝,𝑞
𝑛+1| ≤ (1 − 21−𝛼 𝑤1 − 2𝑟) |𝑒𝑝,𝑞

𝑛 | + 
𝑟

2
 (|𝑒𝑝+1,𝑞

𝑛 | +

|𝑒𝑝−1,𝑞
𝑛 | + |𝑒𝑝,𝑞+1

𝑛 | + |𝑒𝑝,𝑞−1
𝑛 | ) + 21−𝛼𝑤𝑛|𝑒𝑝,𝑞

0 | +

  21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) |𝑒𝑖,𝑗
𝑠 | +  𝛿𝐿 |

3

2
(𝑢̃𝑝,𝑞

𝑛 − 𝑢𝑝,𝑞
𝑛 ) +𝑛−1

𝑠=1

1

2
 ( 𝑢𝑝,𝑞

𝑛−1 − 𝑢̃𝑝,𝑞
𝑛−1) |. 

≤ (1 − 21−𝛼 𝑤1 − 2𝑟) ‖𝐸
𝑛‖∞ + 2𝑟 ‖𝐸

𝑛‖∞ +
 21−𝛼𝑤𝑛‖𝐸

0‖∞ + 2
1−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) ‖𝐸

𝑠‖∞ +
𝑛−1
𝑠=1

 𝛿𝐿 [
3

2
|𝑒𝑝,𝑞
𝑛 | +

1

2
 |𝑒𝑝,𝑞

𝑛−1|]. 

≤ (1 − 21−𝛼𝑤1) 𝐶
𝑛‖𝐸𝑛‖∞ + 2

1−𝛼𝑤𝑛 ‖𝐸
0‖ +

 21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) 𝐶
𝑠 ‖𝐸0‖ +  𝛿𝐿 [

3

2
 𝐶𝑛 ‖𝐸0‖ +𝑛−1

𝑠=1

1

2
  𝐶𝑛−1 ‖𝐸0‖]. 

≤ (1 − 21−𝛼𝑤1) 𝐶
𝑛‖𝐸0‖ + 21−𝛼𝑤𝑛𝐶

𝑛 ‖𝐸0‖ +
  21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) 𝐶

𝑛 ‖𝐸0‖ +  2𝛿𝐿  𝐶𝑛 ‖𝐸0‖𝑛−1
𝑠=1     

 

= [1 − 21−𝛼𝑤1 + 2
1−𝛼𝑤𝑛  +   2

1−𝛼 ∑ (𝑤𝑛−𝑠 −
𝑛−1
𝑠=1

 𝑤𝑛−𝑠+1)  +  2𝛿𝐿 ]𝐶
𝑛‖𝐸0‖. 

= (1 +  2𝛿𝐿  ) 𝐶𝑛 ‖𝐸0‖ =  (1 +  2𝛿𝐿  )𝑛+1  ‖𝐸0‖. 

 

Thus  

‖𝐸𝑛+1‖∞ ≤  (1 +  2𝛿𝐿  )
𝑛+1‖𝐸0‖. 

So, ‖𝐸𝑛+1‖ ≤ (1 + 22−𝛼𝑘𝛼(2 −  𝛼)𝐿)𝑛+1‖𝐸0‖∞ 

                       ≤ (1 + 22−𝛼𝑇𝛼(2 −  𝛼)𝐿)𝑛+1‖𝐸0‖∞ 

 

Hence, there exists C>0, such that  ‖𝐸𝑛+1‖ ≤ 𝐶‖𝐸0‖∞ 

 

3.3 Convergence analysis of Crank – Nicolson method 

 

Let 𝑢𝑖,𝑗
𝑛 = 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) be the exact solution of problem (2) 

at mesh point (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛), 𝑖, 𝑗 =  0, 1 , 2 , … . , 𝐼 − 1, 𝑛 =

 0, 1 , 2 , … . , 𝑁 . 
 

Definition 3.2 

𝑒𝑖,𝑗
𝑛 = 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛  ) − 𝑢𝑖,𝑗

𝑛 , 𝑛 =  0, 1 , 2 , … . , 𝑁, 𝑖, 𝑗 =

 0, 1 , 2 , … . , 𝐼 − 1   

 

𝐸𝑛 =  [

𝐸1
𝑛

𝐸2
𝑛

⋮
𝐸𝐼−1
𝑛

], 𝐸0 = [

0
0
⋮
0

] , 𝐸𝑖
𝑛 = [𝑒𝑖,1

𝑛 𝑒𝑖,2
𝑛 ⋯ 𝑒𝑖,𝐼−1

𝑛 ]
𝑇
 

𝑖 =  0, 1 , 2 , … . , 𝐼 − 1  , 𝑛 =  0, 1 , 2 , … . , 𝑁 

 

By substitution 𝑒𝑖,𝑗
𝑛  in the C.N. Eq. (9), it follows that  

For n=0, 

 

(1 + 2𝑟)𝑒𝑖,𝑗
1 −

𝑟

2
 [𝑒𝑖+1,𝑗

1 + 𝑒𝑖−1,𝑗
1 + 𝑒𝑖,𝑗+1

1 + 𝑒𝑖,𝑗−1
1 ] 

=  𝛿 [ 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡1
2

 ,
3

2
𝑢(𝑥𝑖 , 𝑦𝑗 ,

3

2
𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡0)) −

𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡1
2

 ,
3

2
𝑢𝑖,𝑗
0 )] + 𝑇

𝑖,𝑗

1

2   

(15) 

 

For n>0, 

 

(1 + 2𝑟)𝑒𝑖,𝑗
𝑛+1 −

𝑟

2
 [𝑒𝑖+1,𝑗

𝑛+1 + 𝑒𝑖−1,𝑗
𝑛+1 + 𝑒𝑖,𝑗+1

𝑛+1 +

 𝑒𝑖,𝑗−1
𝑛+1 ]  

=  (1 − 21−𝛼 𝑤1 − 2𝑟) 𝑒𝑖,𝑗
𝑛 + 

𝑟

2
 [𝑒𝑖+1,𝑗

𝑛 + 𝑒𝑖−1,𝑗
𝑛 +

 𝑒𝑖,𝑗+1
𝑛 + 𝑒𝑖,𝑗−1

𝑛 ] +  21−𝛼 ∑ (𝑤𝑛−𝑠 −
𝑛−1
𝑠=1

 𝑤𝑛−𝑠+1) 𝑒𝑖,𝑗
𝑠 +  𝛿 [ 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1

2

 ,
3

2
𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) −

 
1

2
𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−1)) − 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1

2

 ,
3

2
𝑢𝑖,𝑗
𝑛 −

 
1

2
𝑢𝑖,𝑗
𝑛−1)] + 𝑇𝑖,𝑗

𝑛+1  

(16) 

 

Theorem 3.3 There exists C>0 such that: 

 

|𝑇𝑖,𝑗| ≤ 𝐶(𝑘
2−𝛼 + ℎ2) 

 

Proof: Let 𝑢𝑖,𝑗
𝑛 = 𝑢 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) be the exact solution of 

problem (2). 

 

𝑇
𝑖,𝑗

𝑛+
1

2 = (𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛 ) +   21−𝛼 𝑤1𝑢𝑖,𝑗
𝑛 − 21−𝛼 ∑ (𝑤𝑛−𝑠 −

𝑛−1
𝑠=1

 𝑤𝑛−𝑠+1) 𝑢𝑖,𝑗
𝑠 − 21−𝛼 𝑤𝑛 −

𝑟

2
[𝑢𝑖+1,𝑗

𝑛+1 + 𝑢𝑖−1,𝑗
𝑛+1 + 𝑢𝑖,𝑗+1

𝑛+1 +

 𝑢𝑖,𝑗−1
𝑛+1 − 4 𝑢𝑖,𝑗

𝑛+1]  −
𝑟

2
[𝑢𝑖+1,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 −

4 𝑢𝑖,𝑗
𝑛 ] –𝛿 𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1

2

 ,
3

2
𝑢𝑖,𝑗
𝑛 − 

1

2
𝑢𝑖,𝑗
𝑛−1) . 

 

Thus 
 

𝑘𝛼(2 −  𝛼) 21−𝛼  [𝑢𝑡
𝛼  (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1

2

) + 𝑂(𝑘2−𝛼)] −
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𝑘𝛼(2 −  𝛼) 21−𝛼 [𝑢𝑥𝑥(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1) + 𝑢𝑥𝑥(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) +

𝑂(ℎ2)]  

− 𝑘𝛼 [(2 −  𝛼) 21−𝛼𝑓 (𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛+1
2
 , 𝑢

𝑖,𝑗

𝑛+
1
2) +  𝑂 (𝑘2)] 

=𝑘𝛼(2 −  𝛼) 21−𝛼[𝑢𝑡 − 𝑢𝑥𝑥 − 𝑢𝑦𝑦 −  𝑓]𝑖,𝑗
𝑛+

1

2 + 𝑘𝛼(2 −

 𝛼) 21−𝛼 [𝑂(𝑘2−𝛼) +  𝑂( ℎ2) +  𝑂(𝑘2)] 
 

Thus |𝑇
𝑖,𝑗

𝑛+ 
1

2|  ≤ 𝐶(𝑘2−𝛼 + ℎ2), C>0.  

 

Remark 3.1 Based on Theorem 3.7, the C.N. formula (9) is 

consistent.  

|𝑇
𝑖,𝑗

𝑛+ 
1

2| → 0, ℎ , 𝑘 → 0 . 

 

Theorem 3.4 If (1 − 2𝑟 − 21−𝛼  𝑤1)  ≥ 0, there exists 𝐶 >
0 such that 

 

|𝑒𝑖,𝑗
𝑛+1|  ≤ 𝐶(𝑘2−𝛼 + ℎ2) , 𝑖, 𝑗 = 1, 2 , …… , 𝐼 − 1 ,

𝑛 = 0, 1 , ……… . , 𝑁 

 

Proof: Define ‖𝐸𝑛‖∞ = 𝑀𝑎𝑥1≤𝑖≤𝐼−1
1≤𝑗≤𝐼−1

 |𝑒𝑖,𝑗
𝑛 | . 

By using mathematical induction, we can prove this 

theorem as follows:  

For n=0, let ‖𝐸1‖∞ = |𝑒𝑝,𝑞
1 | = 𝑀𝑎𝑥1≤𝑖≤𝐼−1

1≤𝑗≤𝐼−1
 |𝑒𝑖,𝑗

1 |. 

 

|𝑒𝑖,𝑗
1 | ≤  |𝑒𝑝,𝑞

1 |= (1 + 2𝑟)|𝑒𝑝,𝑞
1 | −

𝑟

2
 (4|𝑒𝑝,𝑞

1 |). 

≤ (1 + 2𝑟)|𝑒𝑝,𝑞
1 | −

𝑟

2
 (|𝑒𝑝+1,𝑞

1 | + |𝑒𝑝−1,𝑞
1 | +

|𝑒𝑝,𝑞+1
1 | + |𝑒𝑝,𝑞−1

1 | ) . 

≤ |(1 + 2𝑟) 𝑒𝑝,𝑞
1 −

𝑟

2
 (𝑒𝑝+1,𝑞

1 + 𝑒𝑝−1,𝑞
1 + 𝑒𝑝,𝑞+1

1

+ 𝑒𝑝,𝑞−1
1  )| 

(17) 

 

From (15) and (17), it follows that  

 

|𝑒𝑖,𝑗
1 | ≤  |𝛿 [𝑓 (𝑥𝑝, 𝑦𝑞 , 𝑡1

2
 ,
3

2
𝑢(𝑥𝑝, 𝑦𝑞 , 𝑡0))

−  𝑓 (𝑥𝑝 , 𝑦𝑞 , 𝑡1
2
 ,
3

2
𝑢𝑝,𝑞
0 )]| +  |𝑇𝑝,𝑞

 
1
2 | 

 

Since satisfies Lipchitz condition (3), we obtain  

 

|𝑒𝑖,𝑗
1 | ≤ 𝛿 𝐿 |𝑢(𝑥𝑝, 𝑦𝑞 , 𝑡𝑛) − 𝑢𝑝,𝑞

0 | +  |𝑇𝑝,𝑞
 
1
2 |

=  𝛿 𝐿 |𝑒𝑝,𝑞
0 | + |𝑇𝑝,𝑞

 
1
2 | =  |𝑇𝑝,𝑞

 
1
2 |

≤  𝐶(𝑘2−𝛼 +  ℎ2)  
 

Thus |𝑒𝑖,𝑗
1 |  ≤

2𝐶

(21−𝛼 𝑤0)
 (𝑘2−𝛼 + ℎ2) . 

‖𝐸1‖ ≤  (
𝐶1

21−𝛼 𝑤0
) (𝑘2−𝛼 + ℎ2), 𝐶1 = 2𝐶 

 

Now suppose that  

 

‖𝐸𝑠‖ ≤  (
𝐶1

21−𝛼 𝑤𝑠−1
) (𝑘2−𝛼 + ℎ2), 𝐶𝑠 > 0, for 𝑠 =

 0,1,2, …… , 𝑛 

Set 𝑀𝑠= 
𝐶𝑠

21−𝛼 𝑤𝑠−1
, let 𝑀 = 𝑀𝑎𝑥 {𝐶, 𝐶1 , 𝐶2, ……… , 𝐶𝑛} . 

For n+1, Let ‖𝐸𝑛+1‖∞ = 𝑀𝑎𝑥1≤𝑖≤𝐼−1
1≤𝑗≤𝐼−1

 |𝑒𝑖,𝑗
𝑛+1| = |𝑒𝑝,𝑞

𝑛+1| 

 

|𝑒𝑖,𝑗
𝑛+1|  ≤  |𝑒𝑝,𝑞

𝑛+1| =  (1 + 2𝑟) |𝑒𝑝,𝑞
𝑛+1| −

𝑟

2
 [4 |𝑒𝑝,𝑞

𝑛+1|]. 

≤ (1 + 2𝑟) |𝑒𝑝,𝑞
𝑛+1| – 

𝑟

2
 [|𝑒𝑝+1,𝑞

𝑛+1 | + |𝑒𝑝−1,𝑞
𝑛+1 | +

 |𝑒𝑝,𝑞+1
𝑛+1 | +  |𝑒𝑝,𝑞−1

𝑛+1 |] 

≤ |(1 + 2𝑟)𝑒𝑝,𝑞
𝑛+1 − 

𝑟

2
 (𝑒𝑝+1,𝑞

𝑛+1 + 𝑒𝑝−1,𝑞
𝑛+1 + 𝑒𝑝,𝑞+1

𝑛+1

+ 𝑒𝑝,𝑞−1
𝑛+1 )| 

(18) 

 

From (16) and (18), it follows that  

 

|𝑒𝑖,𝑗
𝑛+1| ≤ |(1 − 21−𝛼 𝑤1 − 2𝑟)𝑒𝑝,𝑞

𝑛 +
𝑟

2 
(𝑒𝑝+1,𝑞

𝑛 + 𝑒𝑝−1,𝑞
𝑛 +

𝑒𝑝,𝑞+1
𝑛 + 𝑒𝑝,𝑞−1

𝑛 )| +  21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) |𝑒𝑖,𝑗
𝑠 | +𝑛−1

𝑠=1

 𝛿 |𝑓 (𝑥𝑝, 𝑦𝑞 , 𝑡𝑛+1
2

 ,
3

2
𝑢(𝑥𝑝 , 𝑦𝑞 , 𝑡𝑛) −  

1

2
𝑢(𝑥𝑝 , 𝑦𝑞 , 𝑡𝑛−1)) −

𝑓 (𝑥𝑝 , 𝑦𝑞 , 𝑡𝑛+1
2

 ,
3

2
𝑢𝑝,𝑞
𝑛 − 

1

2
 𝑢𝑝,𝑞
𝑛−1)| + |𝑇𝑝,𝑞

𝑛+ 
1

2| . 

 

Since satisfies Lipchitz condition (3), we obtain  

 

|𝑒𝑖,𝑗
𝑛+1| ≤ (1 − 21−𝛼 𝑤1 − 2𝑟)‖𝐸

𝑛‖∞ + 2𝑟 ‖𝐸
𝑛‖∞ +

21−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1) ‖𝐸
𝑠‖∞ +  𝛿𝐿 [

3

2
 |𝑒𝑝,𝑞

𝑛 | +𝑛−1
𝑠=1

 
1

2
|𝑒𝑝,𝑞
𝑛−1|] +  |𝑇𝑝,𝑞

𝑛+ 
1

2|. 

≤ (1 − 21−𝛼 𝑤1) 𝑀𝑛 (𝑘
2−𝛼 + ℎ2) + 21−𝛼 ∑ (𝑤𝑛−𝑠 −

𝑛−1
𝑠=1

 𝑤𝑛−𝑠+1) 𝑀𝑠 (𝑘
2−𝛼 + ℎ2) +  𝛿𝐿 [

3

2
𝑀𝑛  (𝑘

2−𝛼 + ℎ2)∞ +

 
1

2
𝑀𝑛−1 (𝑘

2−𝛼 + ℎ2)] +  𝐶(𝑘2−𝛼 + ℎ2). 

< [1 − 21−𝛼 𝑤1+ 2
1−𝛼 ∑ (𝑤𝑛−𝑠 − 𝑤𝑛−𝑠+1)  + 2 𝛿𝐿 +

𝑛−1
𝑠=1

 21−𝛼 𝑤𝑛] (
𝑀

21−𝛼 𝑤𝑛
) (𝑘2−𝛼 + ℎ2). 

= [1 + 2𝛿 𝐿] (
1

21−𝛼 𝑤𝑛
)  𝑀(𝑘2−𝛼 + ℎ2). 

 

Thus ‖𝐸𝑛+1‖  ≤  𝐶𝑛+1 (
1

21−𝛼 𝑤𝑛
) (𝑘2−𝛼 + ℎ2) , where 

𝐶𝑛+1 = [1 + 2𝛿 𝐿]M. 

 

 

4. NUMERICAL RESULTS AND DISCUSSION 

 

In this section, two numerical experiments are presented to 

show the efficacy and accuracy of the proposed method, with 

using Matlab (R2020a) software. For each example, we take 

different size-meshes: (I=5, 10, 20, 40). In order to make sure 

that the stability condition of Crank-Nicolson is satisfied and 

to increase the order of convergence, the time steps are chosen 

according to the following formula: 

 

𝑘 ≤ [
ℎ2(1−2(1−𝛼)𝑤1)

2(2−𝛼)Γ(2−𝛼)
]

1

𝛼
  (19) 

 

where, 𝑤1 = [(
3

2
)
(1−𝛼)

− ( 
1

2
)
(1−𝛼)

] 

Clearly, with this time-stepping technique, the order of 

convergence for CN method is O(h2). However, with this 

formula, we cannot take a small value to α, because in this case 
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the time step becomes too small and that leads to a very large 

mesh-size with respect to time. 

Moreover, we present the maximum absolute errors arise 

from using the proposed numerical schemes, using the formula: 

𝐸ℎ,𝑘 = max
1≤𝑖≤𝐼−1
1≤𝑛≤𝑁−1

|𝑢(𝑥𝑖 , 𝑡𝑛) − 𝑢𝑖
𝑛| . In addition, the numerical 

order of convergence (NOC) is computed using the formula 

[16]: 

 

𝑆ℎ,𝑘 =

log (
𝐸2ℎ,𝑘
𝐸ℎ,𝑘

)

log(2)
 

 

4.1 Numerical experiments  

 

Example 4.1 

Consider the following two-dimensional time fractional 

Semilinear diffusion equation: 

 

𝑢𝑡
𝛼 = 𝑢𝑥𝑥+𝑢𝑦𝑦 + (𝛤(2 + 𝛼)𝑡 − 2𝑡

(1+𝛼))𝑒𝑥+𝑦

− 𝑒2(𝑥+𝑦)𝑡2(1+𝛼) + 𝑢2 

0 < 𝑥 < 1, 0 < 𝑦 < 1, 0 < 𝑡 < 1 

 

with the initial-boundary conditions:  

 

𝑢(𝑥, 0, 𝑡)  = 𝑒𝑥𝑡1+𝛼 , 𝑢(𝑥, 1, 𝑡)  = 𝑒1+𝑥𝑡1+𝛼, 0 < 𝑥 < 1 

𝑢(0, 𝑦, 𝑡)  = 𝑒𝑦𝑡1+𝛼 , 𝑢(1, 𝑦, 𝑡)  = 𝑒1+𝑦𝑡1+𝛼 , 0 < 𝑦 < 1, 

𝑢(𝑥, 𝑦, 0)  =  0, 0 < 𝑥 < 1, 0 < 𝑦 < 1. 
 

The exact solution is: 𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦𝑡1+𝛼 .  

In Table 1, we present the maximum absolute errors (MAE) 

and numerical order of convergence (NOC), and the central 

processing unit times (CPUTs) in second, arise from using 

linearly Crank-Nicolson method for example 4.1, for α=0.95 

with taking different space and time steps. Moreover, to 

support the numerical findings, Figure 1 shows the numerical 

simulations of the exact, CNM solutions, for α=0.95, h=1/32.  

 

Table 1. Maximum absolute errors and numerical order of 

convergence obtained from using linearly C.N. methods for 

example 4.1, with α=0.95 

 
h k Eh,k Sh,k CPUT 

1/4 

1/8 

1/16 

1/32 

0.0243 

0.0056 

0.0013 

3.0497e-04 

0.0052 

0.0013 

3.0186e-04 

6.9768e-05 

…….. 

2.0000 

2.1066 

2.1132 

0.152891 

0.152856 

1.815655 

219.918794 

 

 
(a) Exact solution 

 
(b) CNM solution 

 

Figure 1. Exact and CNM solutions for Example 4.1, with 

α=0.95, h=1/32, at t=1 

 

Example 4.2 

Consider the following two-dimensional time fractional 

Semilinear diffusion equation: 

 

𝑢𝑡
𝛼 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + (

2𝑡(2−𝛼)

𝛤(3−𝛼)
− 2𝑡2) 𝑒𝑥+𝑦  

−𝑡3𝑒1.5(𝑥+𝑦) + 𝑢
3
2, 

𝑥, 𝑦 ∈ (0,1), 𝑡 ∈ (0,1), 
 

with the initial-boundary conditions:  
 

𝑢(𝑥, 0, 𝑡) = 𝑒𝑥𝑡2, 𝑢(𝑥, 1, 𝑡) = 𝑒1+𝑥𝑡2, 
𝑥 ∈ (0,1), 𝑡 ∈ (0,1) 

𝑢(0, 𝑦, 𝑡) = 𝑒𝑦𝑡2, 𝑢(1, 𝑦, 𝑡) = 𝑒1+𝑦𝑡2,  
 𝑦 ∈ (0,1), 𝑡 ∈ (0,1) 

𝑢(𝑥, 𝑦, 0) = 0, 𝑥, 𝑦 ∈ (0,1),  
 

The exact solution is: 𝑢(𝑥, 𝑦, 𝑡) = 𝑒𝑥+𝑦𝑡2 

In Table 2, we present the maximum absolute errors (MAE) 

and numerical order of convergence (NOC), and the central 

processing unit times (CPUTs) in second, arise from using 

linearly Crank-Nicolson method for example 4.2, for α=0.9, 

with taking different space and time steps. Moreover, to 

support the numerical findings, Figure 2 shows the numerical 

simulations of the exact, CNM solutions, for α=0.9, h=1/32.  
 

 
(a) Exact solution
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(b) CNM solution 

 

Figure 2. Exact and CNM solutions for Example 4.2, with 

α=0.9, h=1/32, at t=1 

 

Table 2. Maximum absolute errors and numerical order of 

convergence obtained from using linearly C.N. methods for 

example 4.2, with α=0.9 

 

h k Eh,k Sh,k CPUT 
1/4 

1/8 

1/16 

1/32 

0.0181 

0.0039 

8.3321e-04 

1.7857e-04 

0.0038 

8.9602e-04 

2.0308e-04 

4.5888e-05 

…… 

2.0844 

2.1415 

2.1459 

0.108368 

0.221917 

3.395496 

507.996491 

 

4.2 Discussions of numerical results  

 

Tables 1 and 2 show that the maximum absolute errors 

decrease, as we refine the space (time)-steps, which indicates 

that the numerical solution tends to the exact one. Hence the 

numerical convergence is satisfied, and that supports the 

theoretical results. In addition, with time-stepping formula 

(19), the numerical orders of convergence of CNM are larger 

than 2. Therefore, they are in a good agreement with the 

theoretical one. Furthermore, the required CPUTs increase, as 

we refine the space (time)-steps, and that because, when the 

space (time)-step is small, the number of required 

computational operations becomes large compared with taking 

large values to the space (time) steps. Moreover, from Figures 

1 and 2, it can be easily noticed that the numerical solutions 

obtained from using CNM are in good agreement with and 

very close to the exact ones. 

For most cases, the exact solution formula for the diffusion-

reaction problem (2) cannot be found. Therefore, the proposed 

numerical technique can help us to indicate whether, the 

solution of the governed problem (2) stays bounded in the time 

interval (0, T), as in examples 4.1 and 4.2. If so, this physically 

means, throughout this period of time, in the spatial domain, 

the diffusion impact is greater than the effect of the reaction. 

 

 

5. CONCLUSIONS 

 

In this paper, the Crank-Nicolson numerical finite 

difference scheme is proposed to solve a two-dimensional 

time-fractional Semilinear parabolic equation with 

homogeneous Dirichlet boundary conditions. We prove that 

the proposed scheme is consistent, conditionally stable and 

convergent. In addition, in order to support the theoretical 

findings, two numerical experiments are considered.  

We observed that the order of convergence of Crank-

Nicolson scheme, which takes the form: 𝑂(𝑘2−𝛼 + ℎ2) , is 

even higher than the order of Euler implicit (explicit) scheme, 

which takes the form: 𝑂(𝑘 + ℎ2)  [18]. Moreover, the 

numerical results confirm that the proposed method is 

convergent and provides an accurate strategic solution with a 

high order of numerical convergence (greater than 2), 

compared with other finite difference schemes, such as Euler 

implicit (explicit) scheme, which their numerical order of 

convergence should be less than 2. 
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