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The rise in prominence of the logistics industry necessitates a boost in its efficiency. A 

notable hurdle to this lies in the classification of goods, based on the unique trademark of 

express packages, a problem with a direct bearing on delivery efficiency. Traditional 

methodologies for inspecting packaging appearances struggle with accuracy in recognizing 

a variety of scales, necessitating the use of multiple detection systems. Additionally, they 

fail in accurately ascertaining the precise location and size of the express packaging 

trademark. To rectify this, the study presents the development and application of a detection 

technique christened PTD-YOLO (Packing Trademark Detection algorithm based on 

YOLO, PTD-YOLO). This technique bolsters the YOLO v5 algorithm through 

improvements in three key areas. The first is the restructuring of the FSRP (Focus module 

with Structural Re-Parameterization) module, aimed at enhancing pre-backbone features. 

The second involves the integration of a novel prediction head, designed to bolster the ability 

of PTD-YOLO in detecting smaller-scale targets. Lastly, an attention mechanism has been 

incorporated within the head part, to better distinguish relevant features of detected objects. 

The performance of the PTD-YOLO has been validated via rigorous ablation and 

comparative experiments, proving its effectiveness and reliability. 
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1. INTRODUCTION

The labor-intensive nature of packaging classification, 

combined with the high workload and limited inspection time, 

renders the current methodology for packaging appearance 

inspection suboptimal [1]. At present, manual visual 

inspection forms the backbone of this process, leading to a 

myriad of challenges, including the potential for subjective 

results, inconsistencies, oversights, misidentification, and 

arbitrary classifications. This manual approach hampers the 

efficiency of detection, a concern heightened by the escalating 

demand for product customization. Moreover, the precision of 

detection holds significant implications for the evaluation of 

both product quality and pricing. 

As production continues to evolve, there has been an 

amplification in the demand for a diverse range of packaging 

types and sizes. This diversification further compounds the 

difficulty of manually identifying and classifying the 

packaging surface. In response to these challenges, the 

development of an intelligent express sorting and handling 

system has become a pressing need, with accurate packaging 

trademark identification forming a critical component of this 

endeavor. 

For automated packaging trademark inspection, innovative 

appearance inspection methods need to be formulated. 

Contemporary inspection methods are based on algorithms 

that identify specific areas in camera images for detection, and 

target detection algorithms are integral to these methods [2]. 

Over time, a series of robust target detection algorithms have 

been developed, each producing commendable recognition 

results. The progression of these algorithms can be broadly 

categorized into three stages. 

The first stage was marked by object detection algorithms 

predominantly focusing on precise image segmentation. 

Angelova and Zhu [3] proposed a method that detects low-

level regions for full-object segmentation, which distinguishes 

various types of objects through fine-grained recognition. 

Gould et al. [4] highlighted the intricate relationship between 

object detection and multi-class image segmentation, 

introducing a hierarchical region-based method that linked 

these tasks based on a coherent probabilistic model. Moreover, 

Carreira and Sminchisescu [5] presented a framework that 

formed a regular image grid based on Constrained Parametric 

Min-Cut problems (CPMC), thereby maximizing the category 

of segmentation. However, these algorithms, being task-

specific, lacked the versatility required for wider application. 

Following this, the focus shifted to the application of 

inspection technology based on machine vision. Paliwal et al. 

[6] integrated morphological, color, and texture features to

distinguish five grain types through a neural network. This

method achieved approximately 90% accuracy in some grains,

despite variations in size and appearance. In another study,

Meng et al. [7] designed a machine vision system to assist with

mechanical inter-row weeding. They used the hue component

for image processing and computed the H component for

generating grayscale images to mitigate the adverse impact of

light. This technique enabled the system to determine the

endpoint of the images, thereby tracking the edge of weeds

effectively. Additionally, Qureshi et al. [8] considered two

critical fruit features, texture and shape, and utilized support

vector machines as a classifier for their experiments. The

method demonstrated high precision in various environments.

Despite these advancements, the field continues to grapple 

with several challenges, not least due to the increasing 
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diversification of the manufacturing landscape. Consequently, 

the use of Convolutional Neural Networks (CNN)-based 

object detection algorithms, renowned for their strong 

representational power and high versatility, has begun to 

supplant conventional methods. 

These CNN-based defect detection networks can be 

subdivided into two structures: one-stage and two-stage 

algorithms [9]. A series of two-stage algorithms, including 

Fast R-CNN [10], Mask R-CNN [11], and Faster R-CNN [12], 

were proposed by Girshick et al. [10-12]. While these 

algorithms are known for their accuracy, their relatively slow 

speed makes them less suited for packaging trademark 

detection. To address this, one-stage algorithms have been 

developed which transform the classification problem into a 

regression problem. These algorithms directly predict position 

information, leading to an improvement in speed [13].  

A diverse array of strategies have been employed in prior 

research to improve the accuracy and efficiency of object 

detection models, though these approaches often remain ill-

suited for the unique challenges presented by carton damage 

detection scenarios. Carton damage detection scenarios are 

characterized by low color contrast and variable damage sizes, 

making it susceptible to errors. 

A compelling contribution in the domain of multi-scale 

targets in ship detection was proposed by Guo et al. [14]. A 

novel model was proposed that ameliorates the backbone 

module and enhances spatial adaptability via a novel loss 

function. Empirical results revealed that the proposed model 

exhibits superior multi-scale detection capability and mobile 

platform portability. 

In a different approach, Han et al. [15] devised a lightweight 

model and improved the network structure employing the K-

means++ clustering algorithm. The modified model has shown 

an enhancement in the detection performance of small-size 

targets. 

Zhang and Wen [16] directed their efforts towards 

mitigating the high maintenance cost of wind turbine blades 

(WTB). A surface defect detection algorithm for WTB, 

dubbed SOD-YOLO, was developed. A fusion of the K-means 

algorithm and attention mechanism to YOLO v5 was 

implemented following the collection of a WTB dataset. This 

model resulted in a 7.82% mAP and 28.3% increase in 

detection speed. 

Simultaneously, Qi et al. [17] made improvements to the 

YOLO network structure for tea chrysanthemum detection 

during different stages. The methodology combines data 

augmentation, transfer learning, and other methods for the 

flowering stage detection. With a mAP of 92.49% on the test 

set, it demonstrated a remarkable performance and can be 

trained on a single GPU. 

Aiming at avian detection, Siriani et al. [18] proposed an 

enhanced YOLO v4 model to locate birds. The incorporation 

of the Kalman filter allowed tracking of chickens in low light 

environments. This algorithm achieved a high-performance 

rate in bird detection even in high noise images. 

Despite these advancements, the need for an efficient 

algorithm tailored to packaging appearance inspection is 

apparent. In response to this challenge, a package appearance 

damage target detection algorithm, known as PTD-YOLO 

(Packing Trademark Detection algorithm based on YOLO), is 

proposed. This method reconstructs the Focus module, 

introduces an additional detection scale, and improves the 

prediction header structure, making it more compatible with 

the packaging appearance inspection task. Compared with 

existing target detection algorithms, PTD-YOLO achieved 

high accuracy [14-18]. 

Three crucial contributions are put forward: 

(1) Considering the limited data of packaging appearance, 

model reparameterization technology was introduced into 

the Focus module to enhance the mining of existing data 

features. A deeper network structure was designed 

through multiple branches. 

(2) To accommodate various sizes of trademark images, a 

four head prediction structure was constructed. This new 

prediction head collaborates with the original three heads 

to meet the detection needs of drastically changing target 

scales. 

(3) Based on the reconstructed Focus and four-head 

prediction structure, the PTD-YOLO algorithm was 

proposed. By introducing an attention mechanism in the 

head before the output of object detection, the box 

reflection problem was overcome. This method assists the 

algorithm in targeting high-latitude features more related 

to the target trademark. 

 

While these contributions mark a step forward in packaging 

appearance inspection, further investigations are warranted to 

fully realize the potential of these techniques in real-world 

applications. The expansion of this domain of research may 

provide further improvements and efficiencies in the field, 

facilitating enhanced packaging quality, and the delivery of 

superior products to consumers.  
 

 

2. PTD-YOLO 
 

The YOLO algorithm, widely recognized as an object 

detection technique, is designed to deliver both the class 

probability and positional coordinates of objects. Among its 

various iterations, YOLO v5 has been a prominent variant. 

Comprising four modules—input, backbone, neck, and 

prediction head—YOLO v5 has displayed exceptional speed 

and precision, delivering commendable performance on open-

source databases. However, its efficacy for detecting and 

counting trademarks on packaging images in industrial 

environments has been found wanting. The challenge arises 

from the small target nature of trademark detection on a carton 

surface, coupled with the multitude of detection tasks. 

Additionally, issues like trademark distortion and package 

reflection due to specific shooting angles adversely affect its 

detection speed. 

To address these limitations, enhancements have been 

proposed to the Packing Trademark Detection algorithm based 

on YOLO (PTD-YOLO) (as shown in Figure 1). This paper 

outlines a strategy to augment the performance of PTD-YOLO 

in three distinct ways, which is anticipated to be effective in 

detecting targets on express packaging. These modifications 

have been suggested with the objective of enhancing its 

detection capabilities for packaging targets. 

Initially, the Focus module has been restructured into the 

Focus module with Structural Re-Parameterization (FSRP). 

This innovative approach allows the creation of new slices 

from multiple slices. Following this, a small target detection 

layer was incorporated to detect trademarks of varying sizes, 

thus expanding the detection range and bolstering the image 

feature extraction capability. Finally, an attention mechanism 

has been introduced in the Prediction Head module to ensure 

more accurate brand positioning. This revised algorithm has 

undergone training through transfer learning. 
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Figure 1. Structure of PTD-YOLO 

Figure 2. Structure of FSRP module 
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2.1 Focus module with Structural Re-Parameterization 

In YOLO v5, the multi-layer structure effectively 

segregates the target area of the image. The original approach 

involved the entry of images into the network through the 

Focus module, whereby a slice operation is conducted on the 

image of each channel. However, for small target detection, 

direct subsampling tends to omit small target information from 

the original image, leading to sub-optimal feature extraction of 

small targets, which could potentially result in missed 

detection. 

To tackle this issue, the FSRP module was developed, based 

on the Focus module (as shown in Figure 2). The underlying 

principle of FSRP is to amalgamate the four slices in focus in 

pairs according to the channel, to form four new slices, which 

are subsequently merged. The objective of FSRP is to enhance 

early feature selection via two slices. Taking cues from ResNet, 

the FSRP module leverages a deeper network structure with 

multiple branches. However, such an approach also induces 

lower network parallelism and higher memory consumption, 

potentially hindering the future deployment of PTD-YOLO on 

terminal devices with limited computational capabilities. 

Therefore, in an attempt to resolve these issues, the FSRP 

module integrates the RepVGG model reparameterization 

technique. This strategy amalgamates the advantages of multi-

branch network structures with the high parallelism and low 

memory access of straight cylinder network structures. 

RepVGG distinguishes between the training and inference 

networks, and its multi-branch network structure lacks an 

activation function during training. 

In the FSRP module, the RepVGG structure is recombined 

through three steps: the fusion of convolution (Conv) and 

batch normalization (BN), unification of convolution kernels 

of different sizes into the same size, and fusion of convolution 

kernels of uniform size into a single convolution kernel. 

Finally, the four reparameterized slices are concatenated 

through fusion and input into the backbone. 

By applying these principles, the study endeavors to provide 

a more robust algorithm for detection tasks, specifically 

targeting industrial packaging scenarios. It is envisaged that 

this will offer a significant boost to detection speed and 

efficiency, opening new avenues in express packaging 

management. Further research in this direction could 

potentially expand the applications of this algorithm, 

contributing to the broader field of object detection and 

classification. 

2.2 Prediction head with four scales 

In the conventional single feature scale approach, features 

are directly detected from the original image, leading to the 

extraction of only the most conspicuous features and the 

potential loss of high-level components. YOLO v5, with its 

three feature scales, aims to deepen high-level feature 

extraction, but is less suitable for the detection of small-scale 

trademarks on express packaging. 

The Backbone network of YOLO v5 functions primarily as 

a classification network and does not undertake localization 

tasks. Those are delegated to the Head network, which is 

responsible for detecting tasks on feature maps extracted by 

the Backbone. It can be observed that while the original YOLO 

v5 algorithm can detect at three scales, providing relatively 

balanced results, it lacks effectiveness in small target detection. 

Given the large target scale of the packaging trademarks 

being analyzed in this context, minimal target detection is a 

crucial requirement. As such, an addition has been proposed 

to this system in the form of a Prediction Head with Four 

Scales (PHFS) (as shown in Figure 3). The PHFS is designed 

to work in tandem with the original three heads and is 

anticipated to effectively match the detection requirements of 

the drastically varied target scale. 

Figure 3. Four head structure 
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An additional feature scale has been integrated to enhance 

the recognition of subtle changes at the image edge. 

Furthermore, feature fusion is performed on the down-

sampled image, mitigating information loss due to resolution 

reduction. The fused feature scale, therefore, contains 

information from previous scales, thereby improving detection 

effectiveness. Specifically, an upsampling and tensor stitching 

has been introduced to the Neck part of the YOLO v5 

algorithm. This process involves the extraction of an extra 

layer of features and the performance of an additional tensor 

stitching, expanding the amount of data in the feature 

dimension and enhancing model accuracy for small target 

detection. 

Higher-resolution images are indispensable for the 

detection of smaller targets, necessitating the extraction of 

deeper features. The feature extraction structure of the newly-

added prediction head, therefore, introduces multi-scale 

dilation convolution. This dilated convolutional layer equips 

the lightweight CNN to extract deeper features and to more 

effectively expand the algorithm’s receptive field. 

The feature extraction structure of the newly-added 

prediction header is comprised of a multi-branch 

convolutional layer and a dilation convolutional layer (as 

shown in Figure 4). Each branch of the feature extraction 

structure is connected to a dilation convolution operation of 

varying size after a normal convolution operation, to obtain 

higher-resolution features. To curb computational cost, 

multiple 1×1 convolutional layers are utilized to increase 

network depth and width. Furthermore, a nonlinear excitation 

layer is appended to the 1×1 convolutional layer to enhance 

network expressiveness. A residual structure is incorporated 

into the feature extraction structure of the new prediction head 

to increase feature expression, as the mere modification of the 

convolution kernel size proves insufficient. Lastly, the feature 

extraction structure of the new prediction head integrates four 

3×3 convolutional layers, enabling the model to capture deeper 

features. 

Figure 4. Structure of dilated convolution 

Through the application of these principles, this study 

aspires to augment the capabilities of the algorithm for 

detection tasks, specifically in the context of industrial 

packaging scenarios. It is envisaged that this enhanced system 

will provide substantial improvements to detection speed and 

efficiency, heralding new possibilities in the management of 

express packaging. It is anticipated that further exploration in 

this direction could broaden the applications of this algorithm, 

contributing significantly to the wider field of object detection 

and classification. 

2.3 Enhanced predictive head module 

The prediction head serves as a critical constituent in target 

detection algorithms, primarily containing convolutional 

neural networks, as it significantly impacts detection result 

precision. The detection of packaging trademarks, particularly 

those of monochromatic nature, challenges the capture of 

essential high-order features. In addition, multiple stacked 

cartons in images present complexities in identification due to 

the phenomenon of local reflections. 

Fortunately, the introduction of attention mechanisms has 

led to fresh avenues in the study of visual characteristics [19], 

allowing the distribution of various weights to features for 

subsequent tasks, thereby homing in on more pertinent 

features. When contrasted with traditional convolutional 

neural networks, visual models leveraging attention 

mechanisms have achieved remarkable triumphs in numerous 

fields. 

This leads to the incorporation of the attention mechanism 

into the predictive header structure of PTD-YOLO, thus 

refining the original YOLO v5 prediction header structure, as 

shown in Figure 5. This innovative approach allows for the 

capture of comprehensive global information and nuanced 

contextual details, enabling precise positioning of package 

trademarks, even in scenarios characterized by low-

discrimination or reflective surfaces. 

2.4 Training strategy 

Considering the constrained dataset for carton trademark 

images, a training strategy employing transfer learning is 

utilized during the model training process. Transfer learning 

[20] has been extensively applied across various sectors,

enhancing training by fine-tuning parameters and successively

optimizing the model.

For the present study, a pre-training phase is adopted, using 

a packaging image dataset sourced from the internet to procure 

a pre-trained model. This model is then updated and optimized 

through additional packaging image datasets, obtained via 

cameras and mobile phones, as depicted in Figure 6. The 

training procedure is divided into two steps: 

(1): PTD-YOLO’s backbone network, CSPDarkNet-53, is 

trained on a packaging image set collected from the network 

to yield a pre-trained model. 

(2): The pre-trained model is subsequently loaded into PTD-

YOLO, fixing the parameters of the pre-trained backbone 

network, before training PTD-YOLO using the packaging 

image dataset captured by cameras and mobile phones. The 

parameters of the Neck and Head at the backbone are the only 

ones updated and retrained. 

Images of packaging trademarks obtained from the network 

share fundamental features, such as color, outline, and texture, 

with images procured through cameras and mobile phones. 
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These shared attributes are considered lower-level information 

and reside near the input end, retaining a significant amount of 

this information, resulting in the features extracted by the 

backbone part being generalizable. 

In the present study, the pre-trained model is achieved by 

pre-training the model with the packaging image dataset 

collected from the network, which boasts a larger size and 

greater diversity, thereby resulting in superior model 

performance. The weights from the pre-trained model are then 

loaded into PTD-YOLO, and the parameters of the pre-trained 

Backbone model are frozen, subsequently reducing the 

number of network layers. 

This approach addresses the issue of overfitting, which can 

stem from insufficient data, while also requiring less training 

data. The result is increased training efficiency and an 

enhancement of the model's generalization capability and 

robustness. 

 

 

 
 

Figure 5. Improve structure of prediction head 

 

 
 

Figure 6. Training strategy of PTD-YOLO 
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3. EXPERIMENTAL PROCEDURE AND FINDINGS 
 

3.1 Parameter configuration for training 
 

The training of the code was expedited via CUDA, executed 

on an RTX 3090 24G graphics card, under the Windows 11 

operating system. The deep learning framework, PyTorch, in 

its 11.0 version was harnessed for the creation of the model. 

Complementarily, the computational resources included an 

Intel i7-12700KF CPU, paired with a 64GB memory. 
 

3.2 Indices of evaluation 
 

The experiment was gauged on the grounds of precision P, 

recall R, average precision AP, and mean average precision 

mAP. AP was computed as the area bordered by the Precision-

Recall (P-R) curve and the coordinate axis. For each of the n 

categories, True Positives (TP), False Positives (FP), and False 

Negatives (FN) were calculated, according to the defined 

formula as follows: 
 

TP
P

TP FP
=

+
 (1) 

 

TP
R

TP FN
=

+
 (2) 

 
1

0

( ( ) )AP P R dR=   (3) 

 

( )AP
mAP

n
=


 (4) 

 

3.3 PTD-YOLO ablation experiment 
 

The effects of technological advancements, such as FSRP, 

PHFS, and Attention on the recognition accuracy of PTD-

YOLO were perceptively examined through ablation 

experiments as reflected in Table 1. 

Following the introduction of FSRP, an enhancement of 

0.8% was recorded in the mAP of the PTD-YOLO model. 

With the further application of a four-head detection structure, 

the mAP noted an incremental rise of 1.5%. The integration of 

an attention mechanism into the prediction header fostered a 

more effective extraction of features from the convolutional 

structure, culminating in a mAP ascent of 0.3%. The combined 

effects of these advancements resulted in a remarkable boost 

in detection accuracy. Particularly, FSRP+MFS exhibited a 

mAP improvement of 2.3%. When FSRP was combined with 

a prediction header equipped with an attention mechanism, a 

performance enhancement of 1.7% was observed, translating 

to a mAP of 97.7%. When the four-head structure was coupled 

with an attention-stimulating predictive head, a mAP 

improvement of 2.5% was recorded. Remarkably, the four-

head structure excelled over the other two enhancements, with 

the first seven ablation experiments demonstrating that the 

four-head configuration resulted in superior mAPs (1.5%, 

2.3%, and 2.5% higher than baseline, respectively). The 

convergence of all three enhancements exhibited the most 

profound effect, signifying a 3.1% mAP increase, thus, 

affirming the efficacy of the proposed algorithm. 

 

Table 1. Comparative analysis of experimental results from 

various modules of PTD-YOLO 

 
Module mAP% 

YOLO v5 95.6% 

YOLO v5+FSRP 96.4 

YOLO v5+PHFS 97.1 

YOLO v5+Attention 95.9 

YOLO v5+ FSRP+PHFS 97.9 

YOLO v5+ FSRP + Attention 97.3 

YOLO v5+PHFS+ Attention 98.1 

YOLO v5+ FSRP+PHFS+ Attention 98.7 

 

3.4 Performance comparative experiment 

 

In order to assess the superiority of the PTD-YOLO, it was 

compared with several conventional algorithms including the 

Two-Stage algorithms, the well-known SSD algorithm and a 

series of YOLO algorithms under One-Stage detectors. For the 

task of carton logo detection, YOLO v2, YOLO v3, YOLO v3-

tiny, YOLO v4, YOLO v4-tiny, YOLO v5, and YOLO v5-tiny 

were chosen for comparison with PTD-YOLO. The Mean 

Average Precision (mAP) was employed as the evaluation 

index in this analysis. Identical hyperparameters were 

employed in the training and testing of each model. The 

outcomes of the detection are delineated in Table 2. 
 

Table 2. Detection performance comparison among different 

algorithms 
 

Algorithm mAP% 

Fast R-CNN 62.3 

Faster R-CNN 70.1 

YOLO v2 80.6 

YOLO v3 84.2 

YOLO v3-tiny 79.3 

YOLO v4 90.7 

YOLO v4-tiny 88.2 

YOLO v5 95.6 

YOLO v5-tiny 87.2 

SSD 78.2 

PTD-YOLO 98.7 
 

On scrutinizing the results depicted in Table 2, it can be 

discerned that the Two-Stage detection algorithms, Fast R-

CNN and Faster R-CNN, despite exceeding 60% in detection 

accuracy, fall short of meeting the research objectives and 

industrial standards for carton logo detection, possibly due to 

their inadequacy in detecting small-scale trademarks. The SSD 

algorithm likewise fails to attain high accuracy. Conversely, 

the YOLO series algorithms demonstrate substantial progress, 

with mAP values surpassing 80%. YOLO v4 and v5 

algorithms have even attained mAP values over 90%, 

signaling their potential for practical implementation. Out of 

the eleven algorithms evaluated, PTD-YOLO achieves 

superior performance, marking a maximum improvement of 

36.4% in detection accuracy compared to the Two-Stage 

algorithm. Even in comparison with the improved YOLO v2, 

v3, v4, and v5, this algorithm displays improvements varying 

from 3.1% to 18.1% in detection accuracy, suggesting a more 

precise estimation of trademark position and size distribution. 

In sum, PTD-YOLO surpasses in both detection accuracy and 

real-time express packaging surface logo detection, offering 

superior comprehensive performance and practical utility. 

Figure 7 showcases an exemplary application of PTD-YOLO. 
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Figure 7. Illustrative Diagram of a Practical Application of 

PTD-YOLO 

3.5 Constraints of PTD-YOLO 

Despite the commendable accuracy of the proposed PTD-

YOLO algorithm in tasks of carton trademark recognition, 

thus paving the path for potential future applications, certain 

limitations are also observed. 

(1): The introduction of the FSRP module, while enhancing 

the accuracy of carton trademark detection, necessitates the 

incorporation of a new detector to broaden the detection range 

and distribution. However, akin to conventional object 

detection models, the implementation of any new modules 

demands robust terminal device support to ensure successful 

deployment of the model in practical production tasks, thereby 

escalating the economic costs. 

(2): Furthermore, stability of the algorithm becomes a 

paramount consideration for the successful application of 

object detection algorithms in the realm of carton trademark 

detection. Given that these algorithms are primarily devised 

and evaluated in experimental environments, performance 

comparisons are often conducted within limited theoretical 

frameworks. Hence, to effectuate the application of these 

object detection algorithms in real-world scenarios, their 

stability must be ascertained under conditions of continuous 

operation. 

4. CONCLUSION

The PTD-YOLO algorithm is put forward in this work as a

response to challenges within deep learning algorithms 

pertinent to carton appearance trademark detection. Notably, 

the algorithm advances the FSRP module to facilitate multiple 

coverage, ensuring exhaustive extraction of early features and 

thwarting the omission of smaller targets. With the varied size 

diversity of carton appearance trademarks taken into account, 

the algorithm unveils an improved prediction head and 

detection scale. Consequently, detection precision is refined 

across trademarks of diverse sizes, addressing the hurdles 

associated with low color discrimination and detection of 

small target packaging appearance trademarks. Experimental 

data validates the enhancement of detection accuracy and 

detection ability for small target trademarks facilitated by 

PTD-YOLO. 

The work also brings forth a carton appearance trademark 

detection model that is tailored for general terminal equipment. 

Given the constraints posed by limited hardware resources and 

diverse deployment environments, implementing such models 

constitutes a significant challenge. Therefore, the pursuit of 

more streamlined and stable models for carton appearance 

trademark detection emerges as a promising direction for 

future research. 

In the context of real-world application, the scalability and 

adaptability of the proposed PTD-YOLO algorithm hold 

significant implications. While the results obtained are 

encouraging, further exploration is essential to advance the 

efficacy of these models in diverse operational environments, 

potentially incorporating adaptive mechanisms to optimize 

performance based on specific use-cases. The model's 

capabilities in accommodating hardware limitations and 

environmental variations set the stage for significant 

advancements in this field, lending potential for future 

explorations to take this work further. Lastly, the algorithm's 

capacity to effectively enhance detection accuracy in small 

target trademarks presents an important direction for 

subsequent studies, promising to drive more effective and 

nuanced understandings in the area of carton appearance 

trademark detection. 
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