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Simulated speech signals often lack the genuine emotional nuances present in natural human 

voices, resulting in a less realistic representation of human speech. Establishing a connection 

between emotions and the shape of the human vocal tract may enable the generation of 

simulated speech that more closely resembles natural human voices. This study aims to 

simulate human vocal tract shapes using area functions, which represent the area of the tract 

as a function of the distance from the glottis. Six speakers from the EmoDB dataset are 

considered, each exhibiting the emotions of happiness, neutrality, and anger. Diverse area 

functions are derived from speech signals with these emotions for each speaker. While these 

resulting area functions are not identical for the same emotions across different speakers, 

they share similarities in the number of jump discontinuities observed within the respective 

area functions for each emotion. This analysis provides insight into the relationship between 

vocal tract shapes and emotions, potentially contributing to the development of more 

realistic simulated speech systems. 
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1. INTRODUCTION

Estimating the shape of the human vocal tract from acoustic 

measurements or properties is a challenging inverse problem 

that can be approached using various methods. Some 

approaches include measuring the poles and zeros of the input 

impedance at the lips when the glottis is assumed to be closed 

after excitation, or measuring the impulse response at the lips 

after excitation is applied at the mouth [1]. Alternative 

methods involve considering the linear prediction model as 

equivalent to the acoustic tube model, where the tube is 

composed of a large but finite number of cylindrical sections 

[2], or employing inverse filtering of speech signals [3]. 

Recently, machine learning techniques for speech inversion 

have gained popularity, although these methods primarily 

focus on identifying specific configurations rather than 

directly estimating the shape of the vocal tract [4]. 

Research on vocal tract shape estimation based on acoustic 

measurements has been active for several decades, with a 

focus on applications such as instilling emotion in synthesized 

speech [5-8]. For instance, Mathew et al. [9] investigated vocal 

tract parameter estimation using Vagmi and Praat for 

diagnosing voice disorders, while other studies have aimed to 

estimate vocal tract shape and length based on vowel spectra 

[10, 11]. Although researchers have explored various feature 

sets of speech signals for emotion detection and identification, 

the precise relationship between emotions and speech features 

remains unclear [12]. The speech produced by humans 

depends on the shape of the vocal tract and articulatory parts, 

which in turn are influenced by the speaker's linguistic and 

emotional state. However, different shapes of the vocal tract 

can produce the same speech spectrum. Incorporating a sample 

shape (one of many possible shapes) for a specific emotion 

may help to instill the emotional component in simulated 

speech. 

Previous work by Mongia and Sharma [13] discussed the 

use of psychological stress to determine the transfer function 

of a human vocal tract using popular methods like inverse 

filtering. Meanwhile, Li et al. [14] examined the relative 

contribution of the glottal source and vocal tract to the 

emotional content of speech signals. These studies suggest a 

connection between the emotion of a speech signal and the 

shape of the vocal tract. Consequently, determining the shape 

of the vocal tract for various human emotions becomes an 

important problem to address in order to instill emotion in 

synthesized speech. 

In this work, we propose a method to estimate the shape of 

the human vocal tract by analyzing speech signals with 

emotions. Our solution to this inverse problem is based on the 

observation that a specific shape of the vocal tract produces a 

certain speech spectrum at a particular resonating frequency. 

Short Time Fourier Transform (STFT) reveals that these 

resonating frequencies occur for short periods, during which 

the shape of the tract remains relatively constant. Assuming 

non-yielding tract walls and a recording instrument positioned 

near the mouth, the speech signal is approximately the same 

pressure wave (standing acoustic wave) that was inside the 

tract, as the energy carried by the standing wave must be 

conserved in the form of speech. This concept is further 

illustrated in Figure 1. 

Figure 1. Human vocal tract is a system that receives the 

glottal excitation as the input 
In response it produces an acoustic wave. This standing wave inside the tract 

is nearly the same as the speech signal produced at least for the duration of 

resonance owing to the conservation of energy 
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Air from the lungs passes through the vocal cords, 

producing glottal pulses that serve as the glottal excitation for 

the vocal tract system. The vocal tract assumes a specific shape 

to generate a speech signal with a particular emotion and 

linguistic content. Resembling a tube, the vocal tract 

experiences a standing wave generated by the glottal pulses. 

The pressure wave inside the tube is radiated out depending on 

the positioning of the lips, ultimately producing the speech 

signal. 

 

 

2. BACKGROUND THEORY AND RELATED WORKS 

 

Figure 2 shows the human vocal tract system with different 

speech articulating parts and the effective tract tube after 

neglecting nasal coupling. The shape of the tube, lips 

positioning, velum and tongue are the main articulatory parts. 

Air from the lungs creates vibration in the two vocal cords that 

produces certain pulses depending on the space between these 

two vocal cords i.e., the glottis. This produces a standing wave 

within the tract and lips position help radiating this wave as a 

voice sound. Throughout this work, the sounds produced by 

only the vocal tract is considered without coupling the nasal 

cavity i.e., the velum has closed the nasal cavity.  

 

 
 

Figure 2. Human vocal tract system and the human vocal 

tract tube 

 

In response it produces an acoustic wave. This standing 

wave inside the tract is nearly the same as the speech signal 

produced at least for the duration of resonance owing to the 

conservation of energy. 

This hypothesis is conveniently used by the earlier 

researchers of the problem [1-3, 5, 6]. The feasibility of the 

hypothesis can be easily understood by the fact that the vowels, 

the fricatives (both unvoiced and voiced) are produced by 

decoupling the nasal cavity. For example, Vowels are 

produced by exciting a fixed vocal tract with quasi-periodic 

pulses of air caused by vibration of the vocal cords [15]. The 

second hypothesis is to consider the system under study as a 

lossless system that is the conservation of energy is valid. This 

can be considered as the walls of the tubes are assumed to be 

non-yielding i.e., there is no absorption of the acoustic energy 

on the tube wall. Further, the recording instrument is held near 

to the mouth, i.e., all the pressure wave from the mouth is 

captured by the recording instrument.  

Sondhi shows that if the coordinate system is changed from 

rectangular to cylindrical, and the human vocal tract is 

assumed to be fairly of uniform cross-section, the tract with a 

regular bent can be straighten out without effecting the 

eigenvalues and eigenfrequencies substantially [16]. The 

change is in the range of 2% to 8% if the frequencies 

considered are below 4 kHz. Once, the vocal tract can be 

analyzed in terms of a straight tube with non-yielding walls, 

the relationship between the standing pressure wave inside the 

tube and the area function of the tube can be established as the 

Webster’s horn equation given by (1) [17]. Derivation is 

shown in Appendix A. 

 

𝛿

𝛿𝑥
[𝐴(𝑥)

𝛿𝑝(𝑥, 𝑡)

𝑑𝑥
] =

𝐴(𝑥)

𝑐2

𝛿2𝑝(𝑥, 𝑡)

𝛿𝑡2
 (1) 

 

where, A(x) is the area function i.e., change in area of the tract 

w.r.t. x. Again, x is the distance from the glottis. p is the 

pressure wave; c is the velocity of sound in air and t is the time. 

The pressure released from the glottis is quasi-periodic, for 

this period of time, the pressure can be suitably assumed to 

follow a sinusoidal function w.r.t. time and accordingly we can 

write [5]: 

 

𝑝(𝑥, 𝑡) = 𝑝(𝑥)𝑒𝑗𝜔𝑡  (2) 

 

where, ejωt represents the sinusoidal dependency with ω being 

the eigen frequency. Double differentiating (2) w.r.t. t, we 

obtain: 

 

𝛿2

𝛿𝑡2
𝑝(𝑥, 𝑡) = −𝜔2𝑝(𝑥)𝑒𝑗𝜔𝑡 (3) 

 

Putting this value in (1), we obtain: 

 

𝑝′′(𝑥) +
𝐴′(𝑥)

𝐴(𝑥)
𝑝′(𝑥) + 𝜆𝑝(𝑥) = 0 (4) 

 

where, '' represents double differentiation, ' represents single 

differentiation and 𝜆 =
𝜔2

𝑐
. 

Further (4) can be represented in the following popular form: 

 

𝑝′′(𝑥) +
𝛿

𝑑𝑥
(𝑙𝑜𝑔𝐴(𝑥))𝑝′(𝑥) + 𝜆𝑝(𝑥) = 0 (5) 

 

 
 

Figure 3. Standing wave and speech signal equivalence 

 

Let us consider the scenario of the standing pressure wave 

as shown in Figure 3. The standing wave p(x, t)=p(x)ejωt 

generated by the glottis reaches the lips after a time gap of L⁄c. 

Therefore, at the lips, the standing wave may be expressed as: 

 

𝑝(𝑥, 𝑡) = 𝑝(𝐿)𝑒𝑗𝜔𝑡 (6) 
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If the recording instrument is held near the mouth, this 

waveform given by (6) is recorded by the instrument is the 

speech signal s(t). Therefore, speech s(t) is the pressure wave 

p(t) (and not p(x, t), as x is now replaced with 𝐿, the length of 

the vocal tract which is a constant) once p(x)ejωt leaves the lips 

considering the recording instrument is held near the lips. 

Since, the walls of the tube are non-yielding, the energy of the 

wave p(x)ejωt inside the vocal tract must be the same as the 

energy of the pressure wave p(t) near the recording instrument. 

Thus, at eigen(resonating) frequency, for a short period of time 

the pressure wave and the speech signal may be related as 

given by the following Eq. (7): 

 

𝑝(𝑥)𝑒𝑗𝜔𝑡 = 𝑟(𝑡)𝑒𝑗𝜔𝑡 = 𝑠(𝑡) (7) 

 

where, r(t) is the envelope of the pressure wave (w.r.t. time t) 

and s(t) is the speech signal. Therefore, at resonance, for the 

solution of the (4) p(x), the pressure wave inside the vocal tract 

can be suitably replaced with s(t), the speech signal. It is 

important to note the transition of pressure wave as a function 

of two variables viz. distance from glottis and time to a 

function of one variable i.e., time only and representation of 

the speech signal. 

Eq. (4) is an eigenvalue problem. To solve, let p1(x) and p2(x) 

be two solutions of Eq. (4) corresponding to two eigenvalues 

λ1 and λ2 respectively. Using Eq. (7) the two solutions can be 

written as s1(x) and ss(x). These two solutions can be used to 

create the Wronskian function and subsequently use the Abel’s 

formula to solve Strum-Liouville equation Eq. (4). If a general 

second order homogeneous linear ODE of the form: 

 

𝑦,, + 𝑝(𝑥)𝑦 , + 𝑞(𝑥)𝑦 = 0 (8) 

 

has a pair of independent solutions y1 and y2 then the general 

solution is: 

 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 (9) 

 

The constants C1 and C2 can be found by considering the 

initial conditions (For example, for a mass spring damper 

system, the initial position and the initial velocity of the mass 

will serve the initial conditions), let us consider: 

 

𝑦(𝑥0) = 𝑎;  𝑦,(𝑥0) = 𝑏 (10) 

 

where, x0 is the initial value of the independent variable. 

Then: 

 

𝐶1 =
𝑦2

, (𝑥0)𝑎 − 𝑦2(𝑥0)𝑏

𝑊(𝑥0)
; 𝐶2

=
−𝑦1

, (𝑥0)𝑎 − 𝑦1(𝑥0)𝑏

𝑊(𝑥0)
 

(11) 

 

where, W(x0) is the value of the Wronskian function at x0. 

 

𝑊(𝑥) = 𝑦1𝑦2
, − 𝑦2𝑦1

,
 (12) 

 

Now using Abel’s formula for solving Strum-Liouville 

equation Eq. (4) [18], the solution is obtained as: 

 

𝐴(𝑥) = 𝑒
− ∫

𝑊′(𝑥)
𝑊(𝑥)

𝑑𝑥
𝐿

0  (13) 

 

where, W(x) is the Wronskian of s1(x) and s2(x), and W'(x) 

represents the first derivative of W(x). Derivation is shown in 

Appendix B. Eq. (13) relates the area function A(x) of the 

human vocal tract with the speech signal s(x). 

 

 

3. EXPERIMENTATION AND SIMULATIONS 

 

For the analysis, the Emo-DB Database is utilized [19]. The 

speech signals are recorded at 48-kHz sampling rate and then 

subsequently down-sampled to 16-kHz. The emotions 

considered are happiness, neutral and anger. In this study 6 

speakers are considered from the Emo-Db database having 

both male and female speakers. The details of the speakers, 

gender and age are shown in Table 1. The flowchart of the 

algorithm used to obtain A(x) is shown in Figure 4. The speech 

signal s(t) of a particular speaker with particular emotion is 

considered. To find out the resonating frequencies, STFT is 

performed on the selected signal s(t). Analysing the STFT of 

s(t), two resonating frequencies f1 and f2 are found out. Now 

two signal segments s1(t) at a particular time frame 

corresponding to f1 and s2(t) at a particular time frame 

corresponding to f2 are extracted. These two signal segments 

are of equal length. These s1(t) and s2(t) gives their Wronskian 

W. And finally, this W(x) and W'(x) gives the required area 

function A(x) from (13). However, (13) integrates from 0 to L 

and gives only one value. To get A(x) as a function, this 

interval from 0 to L is suitably modified as summation of n no. 

of intervals A(x) is obtained as n area blocks placed one after 

another. 

 

 
 

Figure 4. Flow chart of the algorithm to obtain A(x) from a 

speech signal of a particular emotion 
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Figure 5. Speech waveform of the Speaker 1 with happy 

emotion 

 

 
 

Figure 6. STFT of the speech waveform of the Speaker 1 

with happy emotion 

 

Speech signal of the speaker 1 with happy emotion is 

analyzed first. The speech waveform is shown in Figure 5 

while STFT of the signal is shown in Figure 6. The horizontal 

axis of Figure 5 shows the time in s, while the vertical axis 

shows the amplitude of the speech signal. Although the unit of 

the speech signal is not mentioned, the amplitude seems to be 

the output of a 16-bit ADC (range 0-65535). Figure 6 shows 

the STFT of the speech signal. STFT is basically selecting a 

window over the continuous-time signal, taking the Fourier 

Transform and then slide the window over the signal to the 

next interval, take the Fourier Transform and it is continued 

till the entire signal is covered. STFT provides the frequency 

information over a fixed period of time which is equal to the 

length of the window size. Thus, STFT provides the time-

frequency information simultaneously as a boxy graph. The 

resolution is limited by the uncertainty principle.  In this work, 

STFT is implemented by using python code scipy.signal.stft. 

The following formula is used for STFT in discrete form: 

 

𝑋(𝑚, 𝑘) = ∑ 𝑥 (𝑛 + 𝑚𝐻)𝜔(𝑛)𝑒−2𝜋𝑗𝑘𝑛 𝑁⁄  (14) 

 

where, X(m, k) is the STFT of the sequence x(n). m provides 

time information while k provides the frequency information. 

H is the hop size, ω(n) is the sampled window function of 

length N. In the Figure 6 the horizontal axis shows the time 

information while the vertical axis shows the frequency 

information. Zooming in the figure reveals the boxy nature of 

the plot, which is the resolution of the STFT (Figure 7). 

Improving the time localization spreads out the frequency 

spectrum and conversely improving the frequency localization 

spreads the time information. This resolution is limited by the 

uncertainty principle. 

From STFT of s(t) of (ref. Figure 6), the resonating 

frequencies f1 and f2 are selected, values being 500 and 1000 

Hz respectively. This is illustrated in the Figures 7 and 8. The 

extracted speech signal segments are s1(t) from 0.16 s to 0.176 

s and s2(t) from 0.384 s to 0.40 s. These are shown in Figures 

9 and 10 respectively for speaker 1. 

 

 
 

Figure 7. Selection of resonating frequency f1=500Hz and 

the speech signal segment s1(t) from 0.16 s to 0.176 s for the 

speech signal s(t) of the speaker 1 with emotion happiness 

 

 
 

Figure 8. Selection of resonating frequency f2=1000Hz and 

the speech signal segment s1(t) from 0.384 s to 0.40 s for the 

speech signal s(t) of the speaker 1 with emotion happiness 

 

 
 

Figure 9. Speech signal segment s1(t) from 0.16s to 0.176s 

 

The length of the vocal tract L is taken to be 17.5cm and 

mouth opening diameter is taken as 5cm in average to plot the 

normalized area function of the tract [20, 21]. Accordingly, 

A(L)=19.63cm2. Following the algorithm outlined in flowchart 

shown in Figure 4 and plugging in the values discussed above 

the area function of the vocal tract of the speaker 1 with 

happiness emotion is obtained and shown in Figure 11. The 

absolute values of the area function are used to obtain the 

Figure 11. 

Following the same procedure, the area function for the 

neutral and anger emotion of the speaker 1 is also obtained and 

shown in Figures 12 and 13 respectively. The resonating 
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frequencies f1 and f2 and the time frames of their corresponding 

speech signal segments s1(t) and s2(t) are mentioned in Table 

1. Table 1 also shows the different resonating frequencies, 

their corresponding speech signal segments for three different 

emotions viz. happiness, neutral and anger of the other 

speakers 2, 3, 4, 5 and 6. The area functions for these 3 

emotions for speaker 2 are shown in Figures 14-16, for speaker 

3 in Figures 17-19, for speaker 4 in Figures 20-22, for speaker 

5 in Figures 23-25. The area functions up to speaker 5 are 

shown here to restrict the no. of figures. However, the 

information of all the speakers including speaker 6 are shown 

in Table 2. 

 

Table 1. Table showing different resonating frequencies f1, f2, and the time frame of their corresponding speech signal segments 

s1(t) and s2(t) for three different emotions of the six speakers 

 
Speaker Gender Age (in years) Emotion f1(Hz) f2(Hz) s1(t) time frame s2(t) time frame 

Speaker 1 (03 in database) male 31 

happy 500 1000 0.16 to 0.176 s 0.384      to 0.40  s 

neutral 500 700 0.15 to 0.175 s 0.25 to 0.275 s 

anger 600 1400 1.24 to 1.26 s 1.50 to 1.52 s 

Speaker 2 (10 in database) male 32 

happy 800 1250 0.93 to 0.97 s 1.23 to 1.27 s 

neutral 130 2500 0.451 to 0.575 s 1.24 to 1.364 s 

anger 600 1400 1.275 to 1.3 s 1.7 to 1.725 s 

Speaker 3 (08 in database) female 34 

happy 250 500 1.01 to 1.08 s 1.25      to 1.32 s 

neutral 250 500 0.35 to 0.42 s 0.19 to 0.26 s 

anger 250 610 0.47 to 0.54 s 1.20 to 1.27 s 

Speaker 4 (09 in database) female 21 

happy 1250 1800 0.40 to 0.45 s 1.10      to 1.15 s 

neutral 200 700 0.46 to 0.56 s 0.8 to 0.9 s 

anger 300 500 0.68 to 0.78 s 0.8 to 0.9 s 

Speaker 5 (11 in database) male 26 

happy 500 700 0.13 to 0.18 s 0.55      to 0.60 s 

neutral 200 700 0.2 to 0.3 s 0.4 to 0.5 s 

anger 300 500 0.5 to 0.54 s 0.78 to 0.82 s 

Speaker 6 (12 in database) male 26 

happy 400 600 0.8 to 0.875 s 0.1    to 0.175     s 

neutral 600 700 0.23 to 0.28 s 0.225 to 0.275 s 

anger 380 500 0.28 to 0.32 s 0.81 to 0.85 s 

 

Table 2. Table showing number of jump discontinuities for three different emotions of the six speakers 

 
Speaker Emotion No. of jump discontinuities 

Speaker 1 happy 3 

 neutral 2 

 anger 4 

Speaker 2 happy 3 

 neutral 2 

 anger 2 

Speaker 3 happy 3 

 neutral 2 

 anger 4 

Speaker 4 happy 3 

 neutral 2 

 anger 4 

Speaker 5 happy 3 

 neutral 2 

 anger 4 

Speaker 6 happy 2 

 neutral 2 

 anger 3 

 

 
 

Figure 10. Speech signal segment s2(t) from 0.384s to 0.40s 

 

 
 

Figure 11. Area function of the vocal tract of speaker 1 for 

happiness emotion 
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Figure 12. Area function of the vocal tract of speaker 1 for 

neutral emotion 

 

 
 

Figure 13. Area function of the vocal tract of speaker 1 for 

anger emotion 

 

 
 

Figure 14. Area function of the vocal tract of speaker 2 for 

happiness emotion 

 

 
 

Figure 15. Area function of the vocal tract of speaker 2 for 

neutral emotion 

 

 
 

Figure 16. Area function of the vocal tract of speaker 2 for 

anger emotion 

 

 
 

Figure 17. Area function of the vocal tract of speaker 3 for 

happiness emotion 

 

 
 

Figure 18. Area function of the vocal tract of speaker 3 for 

neutral emotion 

 

 
 

Figure 19. Area function of the vocal tract of speaker 3 for 

anger emotion 
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Figure 20. Area function of the vocal tract of speaker 4 for 

happiness emotion 

Figure 21. Area function of the vocal tract of speaker 4 for 

neutral emotion 

Figure 22. Area function of the vocal tract of speaker 4 for 

anger emotion 

Figure 23. Area function of the vocal tract of speaker 5 for 

happy emotion 

Figure 24. Area function of the vocal tract of speaker 5 for 

neutral emotion 

Figure 25. Area function of the vocal tract of speaker 5 for 

anger emotion 

4. RESULTS AND DISCUSSION

In this section a brief discussion on the different figures is 

presented. Figure 5 presents the speech signal of speaker 1 (03 

from the Emo-DB) with happy emotion. From the waveform 

it can be seen that both voiced and unvoiced speech segments 

are present. Figure 6 presents the STFT of this particular 

waveform. The frequency seen is 8000 Hz which conforms the 

Nyquist sampling rate as the sampling frequency is down 

sampled to 16000 Hz. However, the frequency range of the 

speech signal can be seen below 4000 Hz, which justifies the 

straightening of the bend human vocal tract as explained in 

section 2. A bright spot around 500 Hz and 0.1 s can be noticed 

in Figure 6. This is the first resonating frequency and zooming 

in Figure 6 gives the Figure 7. And with this information, the 

speech signal segment s1(t) is extracted as discussed in section 

3. Similarly, another resonating frequency was found near 
1000 Hz after zooming in Figure 7 and shown in Figure 8.

Figures 9 and 10 shows the speech segments s1(t) and s2(t) 

of the speech signal s(t) of the speaker 1 and these are the two 

solutions considered in obtaining Wronskian of (13). 

Figure 11 shows the area function obtained for speaker 1 

with the happy emotion. The length of the tract is normalized 

to 17.5cm and the area of the tract to 19.63cm2 following the 

discussion in section 3. The area function shown in Figure 11 

shows some jump discontinuities. Figures 12-25 show 

different area functions obtained with the algorithm developed. 

All these area functions are normalized in length and the area. 

It is a known fact that formants do not completely specify 

the articulation of the tract [5] and also the acoustic to 

geometry mapping of the human vocal tract is non-unique [7]. 
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Although the area functions obtained for the same emotion of 

two different speakers cannot be related quantitatively, there 

are some qualitative similarities. To get a quantitative 

perspective, number of jump discontinuities of the area 

functions are counted. The result is summarized in the Table 

2. The jump discontinuities for happy and neutral emotion 

matches for all the speakers at 3 (2 for speaker 6), and 2 jump 

discontinuities respectively while the anger emotion shows 

variation at 4 for speaker 1, 3, 4, 5 and 2 for speaker 2 and 3 

for speaker 6. 

The area function of the speaker 3 with happiness emotion 

is shown in Figure 17 and with neutral emotion is shown in 

Figure 18. Also, the area function for the speaker 3 with anger 

emotion is shown in Figure 19. For speaker 4, the same area 

functions are shown in Figures 20-22. Same trend can be seen 

for speaker 5 in Figures 23-25. These results are tabulated in 

Table 2. The results may be expressed in simple statistics as 

No. of jump discontinuities for the three emotions can be 

averaged and expressed as: 

Happy=Average 3 with 1 outlier. 

Neutral=2 for all the speakers. 

Anger=Average 4 with 2 outliers. 

 

 

5. CONCLUSIONS 

 

The mapping of speech signal to area function of the vocal 

tract is not unique and it is not surprising to see two different 

area functions for same emotions. Hence it is difficult to 

quantify the area functions w.r.t emotions. However, there is 

some relative information of the tract shapes w.r.t the emotion. 

In this work an algorithm exploiting the resonance 

phenomenon is described to estimate the sample (i.e., one out 

of many possible configuration) area function of a human 

vocal tract from the speech signals of the speaker. This is based 

on the simple energy conservation principle. At a certain 

resonating frequency, a particular shape of the vocal tract 

would produce a speech signal with a certain emotion if the 

recording instrument is held near the mouth and the walls of 

the tract is non-yielding, then energy of the standing wave 

inside the tract must be equivalent to the energy of the speech 

signal recorded. At resonance, i.e., for a short period of time, 

the tract shape would not change substantially and the speech 

waveform would resemble the standing wave inside the tract. 

By utilizing this, the area function of the vocal tract is 

estimated. To get a quantitative perspective of the estimated 

shapes w.r.t the emotions, the number of discontinuities of the 

estimated shapes are counted. While the number matches for 

all the speakers in the case of happy and neutral emotions with 

3 (2 for speaker 6) and 2 jump discontinuities respectively, 

jump discontinuities for the anger emotion varies with 4 for 

speaker 1, 3, 4, 5 and 2 for speaker 2 and 3 for speaker 6. 

Although the number of jump discontinuities matches for 

different speakers with different emotions, for some speakers 

the jumps are not as big as that of some other speakers. This 

may be a prospective area for further investigation along with 

the effect of inserting these area functions in speech synthesis 

to produce speech with emotions. 
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NOMENCLATURE 

 

x distance from the glottis. 

c velocity of sound in air. 

t time 

L length of the vocal tract 

f resonating frequencies 

 

Greek symbols 

 

p pressure wave. 

ω eigen frequency. 

ρ density of air 

 

 

APPENDIX 

 

Appendix A: Derivation of Webster’s horn equation for a 

human vocal tract. 

 

 
 

Figure 26. Human vocal tract as a non-yielding tube 

 

A non-yielding tube of length L is considered as shown in 

Figure 26. Let the cross section of the tube is defined as an 

area function A(x), where x is the distance from the 0 position 

(glottis). Let us consider an air column inside the tube whose 

length is bounded between x and x+dx. The air column is not 

uniform and bounded by the shape of the tube. Let us consider 

a function ζ(x) that gives the distance from the glottis once the 

column is activated by the pressure p(x). Using conservation 

of mass: 

 

𝑝 =
−𝜌0

𝐴(𝑥)

𝛿

𝛿𝑥
(𝐴(𝑥)𝜁(𝑥)) (15) 

 

ρ0 is the original density of air in the air column (i. e. before 

applying pressure), 𝑝  is the new density of air in the air 

column after the pressure being applied, A(x) is the area 

function. 

In terms of pressure change: 

 

𝑝 = 𝑐2�̃� 

�̃� =
𝑝

𝑐2
 

(16) 

 

where, c is the velocity of sound in air. Putting the value of ρ 

from 16 in 15, we get: 

 

𝑝 = −𝑐2
𝜌0

𝐴(𝑥)

𝛿

𝛿𝑥
(𝐴(𝑥)𝜁(𝑥)) (17) 

 

Again, using Newton’s law: 

 

𝐴(𝑥)
𝛿𝑝

𝛿𝑥
≈ 𝜌0𝐴(𝑥)

𝛿2𝜁(𝑥)

𝛿𝑡2
 (18) 

 

Differentiating 18 w.r.t x and putting the value of 
𝛿𝐴(𝑥)𝜁(𝑥)

𝛿𝑥
 

from 17 we get: 

 

𝛿

𝛿𝑥
[𝐴(𝑥)

𝛿𝑝

𝛿𝑥
] =

𝐴(𝑥)

𝑐2

𝛿2𝑝

𝛿𝑡2
 (19) 

 

This is the required Webster’s horn equation. Replacing 

𝑝 of 19 with p(x, t) we get (1). 

 

Appendix B: Abel’s formula 

 

Let s1(x) and s2(x) be two solutions of: 

 

𝑠′′(𝑥) + 𝑙(𝑥)𝑠′(𝑥) + 𝑚(𝑥)𝑠(𝑥) = 0 (20) 

 

And let 

 

𝑊(𝑥) = 𝑠1(𝑥)𝑠2
′ (𝑥) − 𝑠1

′ (𝑥)𝑠2(𝑥) (21) 

 

Be their Wronskian: 

 

𝑊′(𝑥) = 𝑠1(𝑥)𝑠2
′′(𝑥) − 𝑠1

′′(𝑥)𝑠2(𝑥) (22) 

 

Since s1(x) and s2(x) are two solutions of 20: 

 

𝑠1
′′(𝑥) + 𝑙(𝑥)𝑠1

′ (𝑥) + 𝑚(𝑥)𝑠1(𝑥) = 0 (23) 

 

𝑠2
′′(𝑥) + 𝑙(𝑥)𝑠2

′ (𝑥) + 𝑚(𝑥)𝑠2(𝑥) = 0 (24) 

 

Putting the values of 𝑠1
′′(𝑥) and 𝑠2

′′(𝑥) in 22, we get: 

 

𝑊′(𝑥) = −𝑙(𝑥)𝑊(𝑥) (25) 

 

Putting 𝑙(𝑥) =
𝐴′(𝑥)

𝐴(𝑥)
 (comparing 20 with 4), we get: 
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𝐴′(𝑥)

𝐴(𝑥)
=

𝑊′(𝑥)

𝑊(𝑥)
 or 𝐴(𝑥) = 𝑒

− ∫
𝑊′(𝑥)

𝑊(𝑥)
𝑑𝑥

 (26) 

 

Which is Eq. (13) after considering the limit from 0 (starting 

point of the tube i.e., glottis) to L (the length of the tube. 
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