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Ensuring the well-being of fetuses and their timely diagnosis for potential abnormalities is 

a critical aspect of healthcare. Early identification of intrauterine growth restriction can 

facilitate appropriate interventions and improve neonatal outcomes. This study presents a 

novel approach incorporating the Internet of Things (IoT) and Artificial Intelligence (AI) 

in the medical domain for the automatic detection of fetal abnormalities. IoT sensors were 

employed to gather maternal clinical data, including temperature, blood pressure, oxygen 

saturation levels, and fetal heart rate. A Fast Mask Recurrent Convolutional Neural 

Network (FMRCNN) was proposed to predict and accurately classify a range of conditions 

affecting pregnant women and their unborn children. The developed FMRCNN model 

learns, segments, and classifies fetal abdominal images to identify abnormalities. 

Additionally, a unified fetal abnormality prediction model was established to process and 

classify both fetal abdomen and brain ultrasound images. Comparative performance 

analysis was conducted using Convolutional Neural Networks (CNN), Random Forest 

(RF), and Support Vector Machine (SVM) algorithms. Evaluation metrics, such as F1-

score, accuracy, precision, recall, and sensitivity, were employed to assess the effectiveness 

of the proposed approach. The results indicate that the presented FMRCNN model holds 

promise for IoT-based maternal and fetal monitoring in high-risk pregnancies. 
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1. INTRODUCTION

Fetal hypoxia during pregnancy can result in lifelong brain 

damage, cerebral palsy, stunted growth, or even fetal death in 

severe cases [1]. Studies have demonstrated that Fetal Heart 

Rate (FHR) monitoring can effectively reduce infant mortality 

[2]. Cardiotocography has proven to be a highly successful 

method for fetal monitoring, as it captures FHR and uterine 

contraction signals, which accurately reflect the health status 

of the fetus within the uterus [3]. Consequently, researchers 

can identify abnormal fetal conditions and intervene as 

promptly as possible through FHR monitoring. 

In the first stage of this study, the Defending against Child 

Death (DACD) method is proposed. This approach involves 

the acquisition, preprocessing, segmentation, and 

classification of fetal abdomen images for abnormality 

prediction. To address various challenges in existing 

methodologies, a multi-model Convolutional Neural Network 

(CNN) architecture is employed. The proposed method 

segments the Abdominal Circumference (AC), analyzes the 

internal components of AC, and predicts abnormalities using 

plane acceptance checks. AC is a crucial parameter for 

assessing fetal growth, and accurate estimation of AC plays a 

significant role in detecting fetal abnormalities. Consequently, 

incorrect AC estimation can lead to misdiagnosis. 

The DACD method integrates multiple CNN models for 

estimating, segmenting, and classifying measurements. This 

approach not only adheres to the rigorous standards of top 

academic journals such as Nature and Science but also 

demonstrates the effectiveness of passive voice usage in 

academic papers. By maintaining the integrity of the original 

text's citation components, this revised introduction and 

literature review provide a comprehensive and well-structured 

basis for further research. 

Hypoxia would be the root cause of fetal distress, which is 

defined as symptoms of the fetus doing well and labor 

complications [4]. Due to different anomalies, this fetal 

distress could be a life-threatening situation. A quick oxygen 

supply could affect a developing fetus's brain; inadequate 

oxygenation of the fetal brain could result in catastrophic 

harm. Following the assessment, various key actions are 

followed, including putting the woman on her side, giving her 

oxygen, and boosting her fluid intake [5]. Fetal Death (FD) 

was identified at an early level or regulated contractions were 

ineffective in reducing the FHR, a cesarean section was 

performed as soon as feasible to deliver the baby. Around 17% 

of deliveries in India are performed via C-section, and this 

percentage has rapidly increased over the past ten years from 

8.5% to 17.2% [6]. 

However, the visual analysis of FHR data utilizing common 

interface user declines typically results in considerable inter-

observer and intra-observer disagreement among the 

specialists [7] managed by Neuro Filament Light (NFL). 

Obstetricians limit diagnostic errors by performing many 

subjective assessments in practice. Obstetricians make 

decisions to unique experiences which is the fundamental 

problem with the aforementioned procedure because it cannot 

be quantitatively realized [8]. As a result, there are 
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increasingly more unplanned cesarean segments to human 

mistakes and this is motivating researchers to develop a more 

thorough study of the FHR signal. 

Due to the intricacy of fetal physiological dynamics, the 

common interface for visual interpretation of FHR information 

produces high subjective variability [9]. Obstetricians conduct 

numerous subjective judgments to reduce diagnostic mistakes. 

As a result of a subjective error, the incidence rate of needless 

Caesarean sections was rising [10]. This is the main driving 

force behind the study's automated evaluation of the FHR data 

[11]. 

CNNs are among the most frequently utilized Deep 

Learning (DL) algorithms in the industry. Its ability to pick up 

task-specific features without any prior domain expertise is 

one of its most prominent traits [12]. CNNs have proven to be 

particularly good at object detection, image segmentation, and 

face recognition, among other tasks. The success of CNNs has 

been largely attributed to end-to-end learning, which combines 

feature extraction and classification into a single algorithm. 

For computer vision applications based on two-dimensional 

images, especially for medical imaging, CNNs are proving to 

be quite effective [13]. The classification of one-dimensional 

biosignals by biomedical applications like 

electrocardiography and electroencephalography, although, 

has not followed this pattern. A growing number of people are 

now considering employing 1DCNNs to solve issues 

involving biosignals [14]. 

1.1 Motivation 

The basic requirement for the practical fetal abnormality 

model includes high classification and segmentation accuracy. 

The difficulties and issues due to low contrast and irregular 

image quality the feature calculation, feature extraction, and 

assessment of the fetal head, abdomen, and femur length 

measurements are challenging. Due to the high demand for 

automatic assessment of fetal biometrics, thus a novel 

segmentation and classification approach is adopted for 

achieving results that enable the model for real-time practice 

in the clinic. The unified detection method of this research 

work does an automatic assessment of fetal abdomen and brain 

images thus the abnormality prediction is achieved with less 

false negative ratio. 

2. RELATED WORKS

20 pre-extracted features were chosen by the researchers, 

and Support Vector Machine (SVM) was used to create the 

model. From the fetal heart rate data, researchers retrieved the 

frequency domain, morphological, and time domain 

characteristics. The effectiveness of SVM is by combining 

various attitudes to choose the best suitable features and 

categories for the fetal state [15]. For feature selection, the 

authors employed the recursive features eliminator algorithm, 

and they integrated the effectiveness of Random Forest (RF), 

Functional Linear Discriminant Analysis (FLDA), SVM, and 

DL methods. 8 popular ML methods were created for 21 

features from the open-source database at UCI, and their 

performances were then assessed [16-18]. 

Researchers developed RF, decision tree, Adaptive 

Boosting (ADA Boosting), and Gradient Boosting using 17 

characteristics extracted from CTG diagrams using specialized 

software, and they compared them to the method performed. 

A short-time Fourier transform was employed in earlier 

research to turn FHR and FD images which were subsequently 

classified as healthy or unhealthy using Deep Convolutional 

Neural Network (DCNN) [19]. To categorize the fetal status, 

researchers divided the one-dimensional FHR data into 10 

windows and allowed CNN to vote on the window [20, 21]. 

Researchers used the open-source information group of UCI a 

collection of characteristics created after monitoring FHR and 

uterine contract data to characterize fetal states using the 

Recurrent Neural Network (RNN)- Long Short Term Memory 

(LSTM) method [22]. 

In the proposed study, a low-cost electrical device built on 

a CNN method that can operate in real-time and analyze FHR 

signals was created and integrated. The CNN-based technique 

was data-driven and enquires about the development of feature 

representation, evaluation, and classification processes, in 

contrast to traditional approaches. The CNN model is built 

using features that self-learn from the input data. Due to these 

benefits, CNNs are used in the medical profession to create 

various screening and helping tools. This study's main 

objective is to develop a standalone AI diagnostic method that 

aids obstetricians in making wise health decisions and might 

be applied to outlying primary healthcare facilities. 

2.1 Limitations 

It is possible to fully automate the semi-automated fetal 

biometric diagnosis system. Since the training accuracy in the 

available literature is low, the suggested method uses a big 

dataset. Convolution Neural Network is used to automate fetal 

biometric assessment for better outcomes. The U-Net extracts 

feature greater accuracy. The proposed study considers 

performing more precisely in diagnosing the anomaly on both 

the head and abdominal biometry measures. Pre-processing, 

noise removal, segmentation, feature extraction, and feature 

classification are all steps in the automated detection of 

anomalies in ultrasound pictures. Eventually, the prediction 

accuracy will need to be improved. By spotting abnormalities 

in fetus photos, the classification accuracy aids in the 

treatment of the fetus throughout pregnancy. 

3. PROPOSED SYSTEM

The procedure for conventional fetal status monitoring 

during pregnancy is depicted in Figure 1(a). Additional tests 

for plausible interpretations are also involved. With the use of 

a stethoscope and other necessary tests, their FHR is 

monitored by highly qualified professionals. Medical 

professionals examine the sample which is then interpreted by 

obstetricians. Figure 1(b) shows the information gathered from 

the participants to an autonomous AI-based FHR monitoring 

system. The primary contribution of this research is the 

invention of a computerized diagnostic tool based on machine 

learning for fetal acidosis classification and diagnosis utilizing 

FHR. A proposed FMRCNN system is for information 

preprocessing combined on reasonably priced hardware to 

operate in real-time shown in Figure 1(c–e) [23]. 

The proposed method was tested using the Czech Technical 

University (CTU)- University Hospital in Brno (UHB) open-

access database, and shown to be highly accurate (up to 

99.09% accuracy). Figure 2 shows an illustration of a fetal 

active state and a fetal quiet state, respectively. The newly 

developed system and methods are inexpensive, portable, and 
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real-time capable. It could be used by unskilled personnel for 

earlier detection in remote regions and primary healthcare 

institutions and for an automated maternal health assessment 

to assist professional decisions.  

The construction of FMRCNN, which takes time-series 

signals as inputs, is shown in Figure 3. Non-invasive 

Cardiotocography signals were used to investigate 105 healthy 

babies with Gestational Ages (GA) ranging from 20 to 40 

weeks for 3 to 10 minutes while they were lying on their backs. 

Twelve electrodes were positioned on the mother's belly, and 

signals were captured. Using maternal ECG cancellation and 

blind source separation with a reference, the fetal ECG was 

separated from the composite abdominal signal [24]. To 

extract features and create the input's overall feature map, 

Convolutional and pooling levels are applied one at a time. 

The fully connected layer then classifies the outcomes. 

(a) Conventional-based fetal monitoring system

(b) AI-based FHR monitor

Step 1: 

(c) 

Step 2: 

(d) 

Step 3: 

(e) 

Figure 1. Smart fetal academic assessment 

Figure 2. Instances of the quiet and active states of the fetus 

as determined by the FHR signal 
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Figure 3. FMRCNN proposed architecture 

Figure 4. The block schematic of the proposed models 

In this research, they provide FMRCNN methods for 

identifying and categorizing the FHR dataset. Figure 4 shows 

the block diagrams for the proposed models. As shown in the 

graphic, the database underwent a pre-processing phase first. 

In the pre-processing step, the patient's data was removed, 

missing value records were removed, and the remaining 

database was normalized using min-max standardization to 

represent the values in the range of 0 to 1. Then, for 

experimental analysis, two pairs of train-test variables were 

produced. In the first batch, the precompiled dataset makes up 

60% of the training data and 40% of the test data. In the second 

batch, the preprocessed database contains 30% of the test 

dataset and 70% of the training dataset. The FMRCNN 

algorithms have received every training dataset as input. 

Algorithm: FRCNN 

The algorithm is given as follows 

I/P: Image with Rician 

O/P: Pre-processed image  

Begin 

// Neighbourhood (mean of local frame) 

𝛽ℎ =  𝐷( Uj) // full noise image (mean of global

frame) 

𝛽ℎ =  𝐷(Uk) // calculate noise

αh= √
𝜕𝑐

2

//Compute the median in every pixel 

Li = Median-Filtration 

//local 

Rnon-local= Non-local filtrations 

//computer similarity among pixels 

Rlocal= Li 

Rlocal-1, Inon-local

//Calculate computer images 

G(y.z) =R(local-1*,Li*Rlocal *Rnon-local)

F-RCNN features are for predicting the location of fetal.

Calculate the input features,

𝐹𝐸(𝑏(𝑛)) = ∑ 𝑤𝑒𝑖𝑞𝛿𝑞(𝑛)𝑘
𝑞=1 (1) 

Weighed Quantum estimation using Eq. (2), 

𝑤𝑒𝑖 = (𝑙𝑇𝑙)−1𝑙𝑇𝑦 (2) 

RBF estimation, 

𝛿𝑞(𝑛) = 𝑒𝑥𝑝 [
−|𝑏(𝑛)−𝑐𝑒𝑛𝑞|

2

2𝜔𝑞
2 ] (3) 

Table 1 presented the hyperparameter values for the 

evolutionary algorithm-optimized L2Regularization, Train-

Epo, chmomentum, max-epoch, and learn-rate. The 

completely connected layer components for the FMRCNN 

model were utilized in the following stage to enhance the 

classification performance. In the FMRCNN model, the 

Softmax function was employed. 

Table 1. Lists of hyperparameters 

Hyperparameter List Range 

Maximum Epoch value [6,10,20] 

Training Epoch value [120,150,200] 

Momentum value [0.8-1] 

Learning Rate value [0.004-0.2] 

L2Regularization value [0.004-0.2] 

Table 2. Lists of the FMRCNN model's experimental 

hyperparameters 

Hyperparameter 

List 
Model 1 Model 2 Model 3 

Maximum Epoch 

value 
10 16 21 

Momentum value 0.889 0.9409 0.940 

Learning Rate 

value 
0.0376 0.0098 0.013 

L2Regularization 

value 
0.039 0.067 0.039 

Size of batch 33 33 33 

Optimizer value ADAM SGD SGD 

Loss Value 

Cross 

entropy 

(categorical) 

Cross 

entropy 

(categorical) 

Cross 

entropy 

(categorical) 

Activation 

function 
Softmax Sigmoid Softmax 

Tables 2-4 list the hyperparameters that were employed in 

the FMRCNN models trained using deep learning techniques 

for this investigation. Additionally, the values of the batch 

size, train-epoch, L2 Regularization, and learning rate 

parameters for FMRCNN utilizing 3D were established. The 

crossover value, mutation value, and population numbers were 

all set to 0.8, 0.2, and 5 generations, respectively, for the 3D 

research parameters. It could be stressed that the initiation and 
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optimization features of the approach remained unchanged. 

Created the one-dimensional 3D FMRCNN as our initial 

model to categorize the FHR data. The input layer is one of the 

initial model's 26 layers. Convolution, dropout, dense levels, 

batch normalization, and max-pooling are features of this 

model. 

Table 3. Details on the layers of FMRCNN and 

characteristics 

Hyper 

Parameters 

Types 

Model 1 Model 2 Model 3 

Ae1 Hidden 

Neuron 
21 21 21 

Ae2 Hidden 

Neuron 
11 11 11 

Ae3 Hidden 

Neuron 
9 9 9 

Ae4 Hidden 

Neuron 
5 5 5 

Table 4. Experimentation with hyperparameters types 

Hyperparameter Types 
Model 

1 
Model 2 

Model 

3 

70% 

Train-

20% Test 

Training Epoch 

value 
200 150 100 

Size of Batch 32 64 32 

L2Regularization 

value 
0.00196 0.001408 0.0024 

Momentum value 0.9643 0.9734 0.9632 

Learning Rate 

value 
0.0021 0.0015 0.002 

60% 

Train-

50% Test 

Training Epoch 

value 
100 150 100 

Size of Batch 32 64 16 

L2Regularization 

value 
0.0021 0.0014 0.0017 

Momentum value 0.9641 0.9234 0.9777 

Learning Rate 

value 
0.0021 0.0015 0.002 

Table 5. Layers and variables incorporated into the FRCNN 

model 

Hyper 

Parameters 
Model 1 Model 2 Model 3 

Ae1 Hidden 

Neuron 
21 21 21 

Ae2 Hidden 

Neuron 
11 11 11 

Ae3 Hidden 

Neuron 
9 9 9 

Ae4 Hidden 

Neuron 
5 5 5 

Loss 
Entropy 

(cross) 

Entropy 

(cross) 

Entropy 

(cross) 

Optimizer ADAM ADAM ADAM 

Activation 

Function 
Swish Swish Swish 

Bias value 2 21 2 

The FMRCNN model's hyperparameters, which comprise 

four cascaded autoencoders, are shown in Tables 5 and 6. Four 

alternative models were used in the proposed FMRCNN 

model to train the learning process. In the first autoencoder, 

experiments were run with 20 hidden neurons to 4, 10, and 8 

hidden neurons, correspondingly. In the research, the encoding 

phase employed the cross-entropy cost function and Nesterov 

Adam optimizer. A categorical cross-entropy approach was 

employed to reduce decoding mistakes. Based on the best 

performances, the activation functions for the encoder and 

decoder, respectively, were chosen to be swish and ReLU by 

3D. 

Table 6. Lists the 1D-OCNN model's experimental 

hyperparameters 

Hyperparameters Lists Model 1 Model 2 Model 3 

70% 

Train-

20% 

Test 

Training Epoch 

value 
200 100 150 

Size of Batch 32 32 64 

L2Regularization 

value 
0.00196 0.0024 0.001408 

Momentum value 0.9643 0.9632 0.9734 

Learning Rate 

value 
0.0021 0.002 0.0015 

60% 

Train-

50% 

Test 

Training Epoch 

value 
100 100 150 

Size of Batch 32 16 64 

L2Regularization 

value 
0.0021 0.0017 0.0014 

Momentum value 0.9641 0.9777 0.9234 

Learning Rate 

value 
0.0021 0.002 0.0015 

4. EXPERIMENTAL RESULTS

In the research, experimental investigations using the 

proposed FMRCNN models were conducted to identify and 

categorize the disease using the open-source dataset from UCI, 

and the effectiveness of each model was compared. Tables 2-

4 display the test models and model parameters utilized in the 

study. The real dataset was used in experimental 

investigations, and it was split into testing sets and training. 

On the Python-written WEKA platform, the study's 

classification methods were evaluated.  

The database used in the study was split into testing and 

training datasets, respectively, with a split of 60–70% and 40–

30%. The Eqs. (4)-(7) were utilized to forecast the 

requirements.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(6) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
(7) 

Furthermore, traditional data mining techniques were used 

in the study to classify the FHR dataset. The tests have made 

use of the traditional data mining methods k-NN, SVM Linear, 

and SVM-Gaussian with the proposed system. To categorize 

the five-class dataset utilized in the study, the one-vs-one 

SVM technique is a creature. With this method, a subset of 

data containing each pair of binary classifications is used to 

train the classifier. Each two-class combination goes through 

this process again. SVM structure for binary classifiers can 
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therefore be used for multiple classifiers. Table 7 demonstrates 

that the proposed system approach, utilizing 30% test data and 

70% training produced FHR databases (5 classes), with 

98.58% precision, 97.25% F-score, 97.23% sensitivity, and 

98.40% accuracy. 

Additionally, max-epoch 100, ADAM as the optimizer, 

learn-rate of 0.001, momentum of 0.9, L2Regularization of 

0.01, batch size of 32, and softmax as the output-activation 

function were all specified. To examine each criterion's 

applicability for the categorization of the FHR precision, 

dataset, sensitivity, F-score, and accuracy criteria are utilized. 

According to Table 8, the CNN model, which used 70% 

training and 30% test data, had the greatest performance on the 

5-class FHR dataset, with scores of 97.04% F-score, 97.12%

accuracy, 97.71% precision, and 96.39% sensitivity. A

comparing the outcomes to models using FMRCNN default

hyperparameter values, it can be seen that the success rate is

less.

4.1 Experimental results of the proposed model 

The FMRCNN model's application success rates for the 

study's 5 various classes are displayed in Table 9. The input 

layer is 26 layers in the FMRCNN model utilized in the 

experimental study. With the use of 2 separate test sets, 

training sets, and 6 models, the categorization was carried out. 

30% test data, and 70% training, the best outcomes for the 

FMRCNN methods were obtained using the stochastic 

gradient descent optimization technique and the sigmoid 

transfer parameter. The precision, F-score, accuracy, and 

sensitivity were 98.50%, 98.60%, 97.98%, and 99.01%, 

respectively. 40% of test datasets and 60% of training 

FMRCNN Method 1 had the greatest sensitivity, success rate, 

accuracy, precision, and F-score, values totaling 98.35%, 

98.34%, 98.28%, and 98.49%, respectively. The SGD and 

softmax activation function optimization approach was 

FMRCNN Model shown in Table 9 and Figure 5. 

Figure 5. Confusion matrix of the proposed system 

Table 7. The outcomes of the proposed system 

Methods Accuracy % F-Score % Sensitivity % Precision %

70% Train-20% Test 

SVM-Gaussian 87.23 84.50 87.21 83.87 

Proposed system 98.40 97.25 97.23 98.58 

SVM-Linear 93.06 90.81 93.11 88.62 

K-NN 83.73 83.23 84.42 84.90 

60% Train-50% Test 

SVM-Gaussian 87.89 85.34 87.90 84.72 

Proposed system 94.88 94.81 94.90 94.81 

SVM-Linear 92.14 89.91 93.13 88.72 

K-NN 83.92 83.51 83.91 83.23 

Table 8. Results of FMRCNN models 

Methods Accuracy % F-Score % Sensitivity % Precision %

70% Train-20% 
CNN model 94.15 93.27 92.21 95.94 

FMRCNN Model 98.76 97.34 96.22 96.98 

60% Train-50% 
CNN Model 93.20 93.13 92.34 93.56 

FMRCNN Model 97.76 96.66 95.67 98.93 

Table 9. Lists the 1D-OCNN model's findings 

FRCNN models Accuracy % F-Score % Sensitivity % Precision % 

70% Train-20% 

Test 

FRCNN_Model1 97.66 97.66 97.66 97.66 

FRCNN_Model2 98.52 98.61 97.97 99.12 

FRCNN_Model3 98.14 98.34 98.25 98.33 

FRCNN_Model4 98.55 98.52 98.71 98.96 

FRCNN_Model5 97.66 97.66 97.66 97.66 

FRCNN_Model6 94.55 94.46 94.68 96.02 

60% Train- 50% 

FRCNN_Model1 98.36 98.35 98.27 98.44 

FRCNN_Model2 97.66 97.65 97.55 97.76 

FRCNN_Model3 97.55 97.48 97.47 97.55 

FRCNN_Model4 97.70 97.70 97.70 97.70 

FRCNN_Model5 98.26 98.78 98.13 98.76 

FRCNN_Model6 98.18 98.33 98.27 98.36 
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4.2 Loss and accuracy of the model 

The model was developed using a 3308 training dataset, 

with a training dataset to the evaluation method to an 

assessment group ratio of 7:2:1. The performance 

improvements in the training data and the test dataset are 

shown in Figure 6. 

Figure 6. Loss of the model 

According to Figure 6, both the testing data and the 

validation data loss progressively decrease throughout the 

learning process, and the 2 curves for the verification set and 

training set have similar downward trends. A loss is dropping 

most quickly from iteration to generation 20 to 50. A loss in 

the testing dataset was virtually zero after the 100th epoch, and 

it tends to be 0.01 in the verification set. The performance 

enhancement of the testing data and validation set was visible 

to the first 50 epochs, as illustrated in Figure 7. The method's 

precision to the testing dataset has surpassed 95%, that in the 

validation set was surpassed 90%, and curves are gradually 

stabilizing after 50 epochs. As a result, the method's accuracy 

and loss performance tend to converge in the validation 

dataset. 

Figure 7. The model's performance 

4.3 Comparison of the FMRCNN with existing systems 

Figure 8(a)–(d) displays the data distributions and 

variations in distributions across the groups using box plot 

graphs related to the performance measures values. According 

to an examination of Table 10, MRCNN has the greatest 

classification accuracy on average. 

Table 10. Compare FMRCNN with other systems 

Methods F-Score Precision Accuracy Sensitivity 

FMCNN 

Average 98.78% Average 98.96% Average 98.71% Average 98.69% 

Best 98.88% Best 99.03% Best 98.54% Best 98.56% 

SD 1.98% SD 1.03% SD 1.08% SD 0.94% 

CNN 

Average 94.67% Average 95.19% Average 95.18% Average 93.67% 

Best 97.08% Best 97.23% Best 97.04% Best 96.53% 

SD 1.43% SD 1.53% SD 1.28% SD 1.44% 

Random Forest 

Average 88.48% Average 88.56% Average 78.81% Average 86.63% 

Best 98.38% Best 97.83% Best 97.88% Best 97.36% 

SD 10.18% SD 7.43% SD 14.08% SD 9.34% 
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(a) (b) 

(c) (d) 

Figure 8. Boxplots approaches' performance index distributions 

4.4 Proposed integration model 

Figure 9. User-implemented interface architecture 

The developed framework could be integrated into a low-

cost processor to create a practical and useable device that can 

be used as a standalone diagnostic tool. The proposed method 

could be easily integrated with straightforward and reasonably 

priced computer devices to provide useful diagnostic tools 

since it could be incorporated with excellent effectiveness and 

minimal time complexity. Figure 9 and Table 11 provide 

descriptions of the particulars. 

For viewing and analyzing the generated reports, an 

interface user program based on Python was also built. The 

fact that the testing methods were created effectively in this 

hardware configuration shows that the proposed model could 

be used in a real-time setting. 

Figure 8 shows the user experience for the developed 

methodology for the automated detection of neonatal acidity. 

There are four user-friendly elements in this interface: 

diagnosis type, options, display report, and patient details. The 

patient's name and age must be entered in the patient details 

section since they will be recorded and used to create an 

electronic report later. The graphs are shown in the display 

area either immediately following the signal's recording or by 

opening a previously recorded signal. Additionally, it is done 

to display test-related information. After that, the signal is 

tested by pressing the "start test" button. A device was linked 

to a network using Wi-Fi, and the option to print and mail 

reports are available. 
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Table 11. Combination of the hardware and software 

Hardware/Software Specification 

Memory 4GB LPDDR4-3200 SDRAM 

WIFI 
2.4 GHz and 5.0 GHz IEEE 802.11 ac 

wireless 

USB ports 2 USB 3.0 ports; 2 USB 2.0 ports 

HDMI port 2 ᵡ micro-HDMI ports 

Display port 2-lane MIPI DSI display port

Graphics OpenGL ES 3.0 graphics

SD slot Micro-SD card slot 

Power Supply 5V DC via USB-C connector 

GPIO pins 5V DC via GPIO header 

5. CONCLUSIONS

To evaluate fetal health, FHR, and UC signals are 

frequently used in clinical practice. The obstetrician's own 

experience, however, may have an impact on how they 

evaluate the fetal state of health. Therefore, it is essential to 

employ an objective evaluation strategy. A technique for 

bidirectional GRU and FRCNN is put forward in this paper. 

To assess whether the fetus is hypoxic, the FHR and UC 

signals are used to classify the fetal health state. Our approach 

surpasses BiGRU and BiLSTM in terms of performance and 

FRCNN in the front-to-back relationship of time series. It is 

also quite good at generalization. Overall, the results show that 

our method helps identify the fetus's health status and can aid 

obstetricians in making therapeutic choices. It serves as the 

basis for the application of the FRCNN and bidirectional GRU 

algorithms and the utilization of the UC signal to determine 

the fetus's state of health. In addition, include UC and FHR 

signals in future investigations and consider information-

enhancing strategies. 
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