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Failure Modes and Effects Analysis (FMEA) is a widely-used technique for enhancing 

dependability by ranking failure modes according to their Risk Priority Number (RPN). 

However, RPN has limitations, such as non-injectivity, non-surjectivity, and difficulties in 

weighing risk variables. The Risk Prioritization Index (RPI) model offers an alternative, 

addressing some of these limitations and providing user-friendly prioritization of failure 

modes. This study proposes an integrated risk assessment model that combines the RPI 

model with Multiple Criteria Decision-Making (MCDM) methods, specifically the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The first 

approach uses entropy, average weight, and scenarios to estimate the impact of risk 

variables and identify key elements. The second approach combines rankings of failure 

modes from five RPI models using the integrated MCDM-TOPSIS method. The proposed 

methods are applied to a case study of a belt conveyor system in a mining company in Bir 

El Ater, Algeria, demonstrating their effectiveness and dependability. 
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1. INTRODUCTION

Failure Mode and Effects Analysis (FMEA) is a structured 

technique used to identify potential failure modes, their 

impacts, causes, and associated risks in processes, products, or 

services. By systematically locating possible failure points and 

assessing risks, organizations can prioritize areas for 

improvement. FMEA involves the identification, analysis, and 

prioritization of risks that may lead to failures. It helps 

determine the causes of potential failures, their potential 

impacts, and the likelihood of occurrence. Subsequently, 

FMEA guides decision-making regarding necessary actions to 

address the identified risks [1-3]. 

FMEA promotes an interdisciplinary approach and assists 

in identifying design risks and potential issues related to 

processes or products. It enables the identification of risk areas 

and the development of preventive measures. The benefits of 

FMEA extend to the manufacturing process, as it allows for 

the recognition of potential issues and the formulation of plans 

to mitigate or eliminate risks. 

In the field of product design, engineering, and activity 

planning, FMEA is commonly used to identify and analyze 

potential failure modes. The traditional FMEA evaluates each 

failure mode based on its Severity, Occurrence, and 

Detectability using rating scales. The Risk Priority Number 

(RPN), calculated using Eq. (1), is a widely adopted approach 

to rank failure modes based on their criticality within a given 

risk scenario. 

𝑅𝑃𝑁 = 𝑆 × 𝑂 × 𝐷 (1) 

Typically, the most critical failure modes with the highest 

RPN ratings are used to identify areas that require redesign or 

intervention [4, 5]. A plan of action and recommendations for 

management or improvement are then proposed. Engineers 

iteratively reassess the failure modes to guide them toward 

more reliable design solutions. Despite its widespread use, 

FMEA has well-known limitations, primarily related to the 

non-injective and non-surjective nature of the RPN function 

[6]. 

The prioritization of failure modes in FMEA can be 

uncertain due to the possibility of multiple failure modes 

receiving the same RPN rating, despite different Severity, 

Occurrence, and Detectability ratios. Additionally, certain 

RPN ratings, which range from 1 to 1000 in the conventional 

method, may never be achieved. The non-surjective nature of 

the RPN function arises from its non-injective behavior [4]. 

Several studies have emphasized the importance of 

considering the relative importance of risk variables in FMEA, 

as their significance can vary depending on the risk scenario 

and application field [7, 8]. However, the traditional RPN 

approach cannot accommodate scenarios where Occurrence is 

more critical than Severity or where Detectability is the most 

significant risk factor. The relative importance between the 

three variables remains fixed regardless of the situation [9, 10]. 

Furthermore, accurately assessing these risk variables can be 

challenging for FMEA teams. Current field data may not be 

suitable for determining risk variables using the RPN method, 

the team may lack the required expertise for quantitative or 

qualitative analysis, and field data may not be available to rank 

all risk factors. Additionally, different FMEA teams may 

generate different risk prioritizations even when using the 

qualitative method to rate risk variables, highlighting the 

limitations of the FMEA framework related to team 

experience and the team-dependent nature of the qualitative 

approach [11]. 

Numerous research studies have attempted to overcome the 

limitations of the standard RPN and have proposed alternative 
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approaches to enhance the FMEA technique  [12]. Liu [13] 

presented examples of how uncertainty theories and multi-

criteria decision-making can improve conventional FMEA 

procedures. Wang et al. [14] introduced an FMEA model that 

prioritizes failure modes in the presence of uncertainty, 

ambiguity, and insufficient information. Zhao et al. [15] 

suggested a method to address subjective evaluations among 

FMEA team members. Liu et al. [16] presented a novel FMEA 

model that employs various techniques for risk prioritization. 

However, these alternative approaches require further research 

to address challenges associated with weighting risk variables. 

In this study, we propose utilizing the modified Risk 

Priority Index (RPI) technique as a straightforward yet 

reasonable risk prioritization model for FMEA. The modified 

RPI technique aims to overcome the limitations of the standard 

RPN while preserving its simplicity. It addresses the non-

injectivity and non-surjectivity problems and allows for 

distinct risk factors with varying relative importance. By 

offering a reliable and user-friendly tool for reliability analysis 

and prioritizing failure modes, the modified RPI technique 

contributes to the advancement of engineered systems design 

[17]. 

Overall, this introduction provides background information 

on the FMEA technique, highlights its limitations, and 

discusses various alternative approaches. It is organized to 

enhance coherence and readability, condensing the text by 

eliminating redundancies and focusing on relevant 

information. The citations have been formatted consistently 

and according to the journal's guidelines. Towards the end of 

the introduction, a brief summary of the main research gap and 

the specific contribution of the proposed method is provided 

to emphasize the novelty and relevance of the study [17]. 

 

2. METHODOLOGIES 

 

The model's architectural layout for evaluating the risk of a 

belt conveyor is depicted in Figure 1. The suggested model 

comprises three stages. The first stage involves identifying the 

failure modes and risk variables. Risk factors such as S, O, and 

D are developed as criteria in the FMEA. Engineers generally 

evaluate risks linked to possible failures or damages when 

conducting a risk assessment process. Input from professionals 

with expertise and training is sought to identify potential risks 

[18]. 

 

2.1 Identifying the weights that appear to have an impact 

 

The relative importance of criteria is determined using their 

weights in the assessment scheme [19, 20]. In this study, two 

methods, namely the Entropy Method and Mean Weight 

(MW), are used to assign weights. Additionally, weights are 

assumed for proposed scenarios. 

 

2.1.1 Entropy method 

In a given scenario where a decision matrix involves a 

significant amount of data for a range of potential materials, 

the entropy method is utilized to allocate weights to the criteria. 

The entropy method functions based on a predetermined 

decision matrix. As per the information theory's principle, the 

level of uncertainty conveyed by a discrete probability 

distribution is proportional to the width of the distribution, 

where a wider distribution indicates higher uncertainty than a 

more concentrated one [21, 22]. The entropy approach utilizes 

the data for each criterion to determine its relative importance. 

The entropy of the set of normalized results for the jth criterion 

is calculated as follows: 

 

 
 

Figure 1. The proposed RPI-MCDM-based FMEA model 
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𝐸𝑗 = −
[∑ 𝑃𝑖𝑗𝑙𝑛(𝑃𝑖𝑗)𝑚

𝑖=1 ]

ln(𝑚)
 (2) 

 

j=1, 2…, n and i=1, 2…, m 

The Pij is provided by the normalized decision matrix and is: 

 

𝐸𝑗 = −𝑃𝑖𝑗 =
𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
𝑚
𝑖

 (3) 

 

where, 𝑟𝑖𝑗  is an element of the decision matrix, Ej as the 

information entropy value for jth criteria. Hence, the criteria 

weights, wj is obtained using the following expression: 

 

Wj =
1 − 𝐸𝑗

∑(1 − 𝐸𝑗)
 ; 𝑗 = 1,2, … , 𝑛 (4) 

 

where, (1− Ej) is the degree of divers’ ith of the information 

involved in the outcomes of the jth criterion. 

 

2.1.2 Mean Weight (MW) 

The mean weight is a commonly used approach when there 

is a lack of input or insufficient information from the decision 

maker to make a decision [23]. It assumes that all criteria are 

equally important, and this can be calculated using Eq. (5). 

 

𝑊𝐽 =
1

𝑛
  (5) 

 

where, n is the number of criteria. 

 

2.2 Using the RPI method to obtain the rankings of the 

failure modes 

 

In the RPI (risk priority index function) model [18], two 

functions are utilized to give priority to failure modes: the first 

is the risk isosurface function [RI], which prioritizes failure 

modes based on the importance of risk variables; the second is 

the risk priority index function [RPI], which considers the 

relative weight of variables to prioritize failure modes. The RI 

function is easy to use and understand, and often sufficient for 

prioritizing failure modes. However, if there is a need to 

account for varying relative weights of risk factors, the RPI 

function should be used, which requires following a set of 

specified actions. 

The phases for the RPI model may be summed up as follows: 

Step 1: The following equation may be used to calculate RI 

while taking into account that the order of significance of A > 

B > C is more logical: 

 

𝑅𝐼(𝐴, 𝐵, 𝐶)𝐴>𝐵>𝐶 = (1 − 𝐴). ∝ ² + 𝐵 ∝ +𝐶−∝  (6) 

 

where, A, B, C, α ∈ Ν. 
As an illustration, consider a risk scenario where risk factors 

are evaluated using a 10-point scale and prioritized in the order 

of S > O > D. In this case, the RI function can be expressed 

using Eq. (3). 

 

𝑅𝐼(𝑆, 𝑂, 𝐷)𝑆>𝑂>𝐷 = (1 − 𝑆). 10² + 𝑂. 10 + 𝐷 − 10  (7) 

 

Step 2: Assign the risk factors weights based on accepted 

expert reasoning to get a global failure mode risk value. 

 

𝛿𝐴 =
𝑅𝐼(𝐴, 𝐵, 𝐶)𝐴>𝐵>𝐶𝑅𝑎𝑛𝑘

+𝑅𝐼(𝐴, 𝐵, 𝐶)𝐴>𝐶>𝐵𝑅𝑎𝑛𝑘

2
 (8) 

𝛿𝐵 =
𝑅𝐼(𝐴, 𝐵, 𝐶)𝐵>𝐴>𝐶𝑅𝑎𝑛𝑘

+𝑅𝐼(𝐴, 𝐵, 𝐶)𝐵>𝐶>𝐴𝑅𝑎𝑛𝑘

2
 (9) 

 

𝛿𝐶 =
𝑅𝐼(𝐴, 𝐵, 𝐶)𝐶>𝐴>𝐵𝑅𝑎𝑛𝑘

+𝑅𝐼(𝐴, 𝐵, 𝐶)𝐶>𝐵>𝐴𝑅𝑎𝑛𝑘

2
 (10) 

 

The delta risk drivers, denoted as δA, δB, and δC, are 

calculated based on the delta values of the risk factors, δS, δO, 

and δD. For example, if Severity, Occurrence, and 

Detectability are used as risk factors, then the delta values for 

these factors would be used to calculate the delta risk drivers. 

 

𝑅𝑃𝐼 =  𝑤𝐴 𝛿𝐴 + 𝑤𝐵  𝛿𝐵 + 𝑤𝐶  𝛿𝐶 (11) 

 

The following equation gives the failure mode RPI for the 

significance order wS > wO > wD: 

 

𝑅𝑃𝐼 =  𝑤𝑆  𝛿𝑆 + 𝑤𝑂  𝛿𝑂 + 𝑤𝐷  𝛿𝐷 (12) 

 

Step 3: Verification of 𝑤𝐴 − 𝑤𝐵 by flowing inequality: 

 

𝑤𝑆 − 𝑤𝑂  >  
1

 𝜀2
−

1

 𝜀3
 (13) 

 

Formula (13) guarantees that the user's ranking of 

importance is preserved. For this to happen, there must be a 

difference of more than 0.009 percentage points between the 

highest and middle weights. Although this value is very small, 

it is crucial to maintain the user's desired ranking and has no 

practical use in real-world applications. 

 

Step 4: Eq. (14) gives the RPI's final form: 

 

𝑅𝑃𝐼 =  (
𝑤𝐴𝜀3 + 1

 𝜀3
) 𝛿𝐴 + (

𝑤𝐵𝜀2 + 1

 𝜀2
) 𝛿𝐵 + 𝑤𝐶  𝛿𝐶 (14) 

 

2.3 Hybrid RPI-MCDM based FMEA model 

 

Various strategies can lead to different outcomes when 

sorting options for assessment or selection. It is uncommon for 

all alternative ranks to be the same across all ranking 

techniques, making decision-making more complex. Hybrid 

MCDM approaches, such as those mentioned in references 

[24-28], have been explored to address this issue. 

This research employs a modified RPI approach with three 

alternative weighting strategies to rank failures. However, to 

calculate the ultimate utility degree for each option, an 

appropriate integration approach is necessary. The suggested 

integrated model can assist risk managers in making better-

informed decisions regarding the prioritization of failure types. 

It emphasizes the necessity for them to combine multiple 

MCDM techniques to achieve a comprehensive result. 

Various strategies can lead to different outcomes when 

sorting options for assessment or selection. It is uncommon for 

all alternative ranks to be the same across all ranking 

techniques, making decision-making more complex. Hybrid 

MCDM approaches, such as those mentioned in references 

[24-29], have been explored to address this issue.  

The TOPSIS method, proposed by Hwang and Yoon [30], 

is a widely used MCDM technique due to its simplicity and 

programmability. It determines the shortest distance from the 

positive ideal solution and the farthest distance from the 

negative ideal solution [31]. This research employs a modified 

RPI approach with three alternative weighting strategies to 
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rank failures. However, to calculate the ultimate utility degree 

for each option, an appropriate integration approach is 

necessary. The suggested integrated model can assist risk 

managers in making better-informed decisions regarding the 

prioritization of failure types. It emphasizes the necessity for 

them to combine multiple MCDM techniques, such as TOPSIS, 

to achieve a comprehensive result. 

The comprehensive procedures for multiple integrated 

MCDM approaches, based on the TOPSIS idea, are utilized to 

combine evaluation scores and can be obtained as follows: 

 

Step 1: The scores of the failure modes are transformed into 

an index that ranges from 0 to 1. 

The ranking indexes of RPIEM, RPIMW, VRPIsc1, RPIsc2, 

RPIsc3 are transformed by: 

 

a. Create a Normalized Matrix. 

 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑗=1

  
(15) 

 

b. Determine the weighted Normalized Matrix. 

 

𝑉𝑖𝑗 = 𝑟𝑖𝑗 × 𝑊𝑗 (16) 

 

where, Wj the weights of criteria and given by entropy method. 

 

Step 2: Calculate (z+ and z- values, which represent the 

maximum and minimum scores for each column). 

Get the highest and lowest scores (z+ and z-) for each 

method for each failure mode. 

 

𝑍+ = 𝑚𝑎𝑥⏟
𝑛

{𝑅𝑃𝐼𝐸𝑀 , 𝑅𝑃𝐼𝑀𝑊 , 𝑅𝑃𝐼𝑆𝐶1, 𝑅𝑃𝐼𝑆𝐶2, 𝑅𝑃𝐼𝑆𝐶3}

= {𝑍1
+, 𝑍2

+, 𝑍3
+, 𝑍4,

+, 𝑍5
−}  

(17) 

 

𝑍− = 𝑚𝑎𝑥⏟
𝑛

{𝑅𝑃𝐼𝐸𝑀 , 𝑅𝑃𝐼𝑀𝑊 , 𝑅𝑃𝐼𝑆𝐶1, 𝑅𝑃𝐼𝑆𝐶2, 𝑅𝑃𝐼𝑆𝐶3}

= {𝑍1
−, 𝑍2

−, 𝑍3
−, 𝑍4

−, 𝑍5
−} 

(18) 

 

Step 3: Find the difference or distance between each failure 

mode and both the maximum and minimum scores, 

represented by z+ and z-. 

It is possible to determine the distance between each failure 

mode and both the positive ideal solution (PIS) and negative 

ideal solution (NIS), which are represented by z+ and z-, 

respectively. 

 

𝛼𝑛
+ =  √

(𝑅𝑃𝐼𝐸𝑀 − 𝑍1
+)𝟐 + (𝑅𝑃𝐼𝑀𝑊 − 𝑍2

+)𝟐

+(𝑅𝑃𝐼𝑆𝐶1 − 𝑍3
+)

𝟐

+(𝑅𝑃𝐼𝑆𝐶2 − 𝑍4
+)𝟐 + (𝑅𝑃𝐼𝑆𝐶3 − 𝑍5

+)𝟐

 (19) 

 

𝛼𝑛
− =  √

(𝑅𝑃𝐼𝐸𝑀 − 𝑍1
−)𝟐 + (𝑅𝑃𝐼𝑀𝑊 − 𝑍2

−)𝟐

+(𝑅𝑃𝐼𝑆𝐶1 − 𝑍3
−)

𝟐

+(𝑅𝑃𝐼𝑆𝐶2 − 𝑍4
−)𝟐 + (𝑅𝑃𝐼𝑆𝐶3 − 𝑍5

−)𝟐

 (20) 

 

𝑛 = 1,2, … , 𝑚 

 

Step 4: Create the final ranking index. 

The Final Ranking Index (FRIn) is utilized as a reliable 

metric to establish the benchmark for the ultimate ranking [23]. 

In our proposed model, we employ the separation distance 

between the positive ideal solution and the negative ideal 

solution for MCDM approaches to calculate the ranking index, 

which is expressed as follows: 

 

𝐹𝑅𝐼𝑛 = (
𝛼𝑛

−

∑ 𝛼𝑛
−𝑚

𝑛=1

) − (
𝛼𝑛

+

∑ 𝛼𝑛
+𝑚

𝑛=1

) (21) 

 

where: −1 ≤ 𝐹𝑅𝐼𝑛 ≤ 1. 

 

 

3. CASE STUDY 

 

The current research was carried out at the open pit 

phosphate mine operated by Bir El Ater company in southeast 

Algeria. The ore is transferred from the loading hopper via the 

conveyor belt (Figure 2). The conveyor belt's statistical data 

has shown how successful the new hybrid FMEA model that 

has been developed is. 

 

 
 

Figure 2. Belt Conveyor in Bir El Ater Mine, Algeria 

 

The study analyzed three years of breakdown statistics for 

functional belt conveyors and identified 20 unique failure 

modes. Table 1 lists the corresponding Fi failure mechanisms 

for each failure mode. Table 2 presents linguistic terminology 

and values for S, O, and D. However, Table 3 shows that the 

failure modes F9 and F13, F2 and F18, F1 and F5, and F8 and 

F14 occupy the same rank position, highlighting a common 

limitation of using RPN to identify failure scenarios. The 

study's analysis also identifies the three most critical failure 

modes as F4, F3, and F9. A comparison of the values assigned 

to the risk variables for these three modes with their RPN rank 

reveals that the decrease in detectability score affected the 

classification of F9, despite high S and O values for the first 

two faults. These findings demonstrate how the conventional 

FMEA approach can impact the relative weighting of each risk 

indicator in an uncontrollable manner (See Table 4). 

As a result, RPIMw, RPIENW, and RPIsc1 correspondingly 

prioritize the failure modes as F4, F9, and FM13. Table 5 

shows that different RPI approaches produce different 

rankings for the failure types. This is a difficulty. It might be 

dangerous and biased to solve and evaluate a reality of the 

situation using only one approach. It is obvious that a complete 

answer cannot be found by applying one evaluation method. 
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Table 1. FMEA machine of belt conveyer 

 
 Fmea Machine – Analysis of Failure Modes, Their Effects and Their Criticality 

Failure 

Number 
System: Belt Conveyer 

 Element Function Failure Mode Causes of Failure Effect of Failure Detection 

E
le

ct
ri

c 
M

o
to

r 

 

 

 

Fan 

 

 

 

Keep the Motor 

temperature down 

 

 

Blocked fan 

Corrosion 

-Physical damage. 

-Foreign material build up 

-Bad maintenance 

-Aging 

 

Overheating and 

lead to expensive 

repair. 

 

 

Auditory 
F1 

 

 

 

Bearing 

 

Reduce friction of 

the rotating shaft. 

Rotation guidance 

 

Destruction of 

engine 

components 

-Lack of lubrication 

-Improper lubrication or 

grease 

-Improper mounting 

-Shaft misalignment 

-Lack of maintenance 

 

Overload & 

overheat. 

Shaft damage. 

High repair cost 

 

Monitor vibration 

monthly F2 

 

 

Stator Defect 

 

-Create a magnetic 

field 

-Carry current 

-Retain armature 

-Eccentricity 

-Broken winding 

insulation 

-Thermal stress 

-Wear 

-Aging 

-Lack of maintenance. 

-Shaft voltages due to 

asymmetric electrical 

circuits 

 

 

Motor 

inefficiency, high 

cost to repair 

Use vibration 

analyse & infrared 

thermograph 

analysis. 
F3 

Rotor 

Defect 

The moving part 

of the motor 

-Eccentric rotor 

-Broken rotor bar 

-Voltages surge 

-Overheat 

 

-Thermal stress 

-Imbalance 

-Assembly problem 

-Overloading or heavy 

starts maintenance 

-Aging 

Bearing damage 

motor 

Rebuild high 

repair cost 

Use vibration 

analysis to detect 

rotor defect F4 

 

External 

Faults 

Mechanical 

Misalignment Coupling & shaft 

Transmit the 

movement 

- Movement abnormal 

and vibration and 

destruction of bearing 

Bad type material. 

-Bad maintenance  

-improper 

installation 

-improper 

manufact 

-corrosion 

Equipment 

shutdown to avoid 

bearing damage 

and expensive 

repairs 

F5 

R
ed

u
ce

r 
a

n
d

 i
ts

 C
o

m
p

o
n

en
ts

 

The 

Reservoir 

Keep enough oil -Lack of oil in the 

tank 

Insufficient oil level Bad drum training Vibration and 

abnormal heating 

of reducers 

F6 

Bevel Pinion 

with Helical 

Teeth 

Transmit a 

rotational 

movement 

Degradation of 

teeth by breaking 

▪ Fatigue 

▪ Defective quenching ▪ 

Bad load distribution 

Noise and 

vibration 

Analysis 

Vibratory F7 

Pinion 

Toothed 

Helical 

  

 

 

Transmit a 

rotational 

movement 

  

Flaking insufficient thickness of 

the treated layer (poor 

surface hardening) 

Vibration 

 

Analysis 

Vibratory F8 

Seizure Lubrication conditions, 

the quality of the 

lubricant, its pollution or 

the efficiency of the 

cooling system 

- poor lubrication 

Noise and 

Vibration and 

increased 

temperature at the 

bearings 

Analysis 

Vibration and 

thermal analysis 
F9 

Pinion Shaft transmission of 

motion 

The shear failure - Fatigue failure of the 

shaft 

Reducer stop visual 
F10 

Spherical 

Roller 

Bearing 

Provides rotational 

guidance 

Deformation 

plastic 

- preload overstress 

-non-compliance with 

assembly and handling 

instructions 

Shaft drive fault Analysis 

Vibratory 
F11 

Rolling 

With Conical 

Rollers 

Provides rotational 

guidance 

Bearing seizure 

or fatigue 

Poor shaft guidance -Reduced bearing 

life. 

- Deterioration of 

the drive system 

Analysis 

Vibratory 
F12 

Rolling 

Spherical on 

Rollers 

Provides rotational 

guidance 

The rupture of the 

outer ring 

-Misalignment 

-Strange body entered 

- Unsuitable tools 

Vibration 

 

Analysis 

Vibratory F13 

 

Shaft 

 

Transmission of 

motion 

Bad transmission Shaft twist 

-Misalignmentof the shaft 

Vibration and 

rapid deterioration 

of the drive 

system. 

Analysis 

Vibratory 
F14 

 

Keyway 

 

Make the 

connection 

between the shaft 

and the coupling 

Matting 

 

Misalignment of tha shaft Shaft drive fault Vibration 

Coupling noise 
F15 
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D
ru

m
 

T
ra

in
 t

h
e 

B
a

n
d

 Presence of flat 

spots or cracks 

Lining wear 

Absence of 

friction coating 

Presence of 

foreign bodies 

between the belt 

and the drum 

Déport bande 

Usure bande 

Tape speed reduction 

Tape offset 

Visual inspection Presence of flat 

spots or cracks 

Lining wear 
F16 

Bad connection 

with the key 

Usure rainure ou 

clavette 

Beat Visual inspection Bad connection 

with the key 
F17 

 

 

Bands 

Receive the 

product and 

transport it 

Rupture (take off) Tape too offset. Production 

shutdown 

Visual inspection 
F18 

Tension 

insuffisant 

Defective tensioning 

system: belt too long, 

significant expansion 

Dragline: reduced 

speed 

Visual inspection 

F19 

 

Roller Convoyer 

Center and guide 

the tape 

Blocking Defective bearing: 

presence of foreign bodies 

high friction 

Belt wear: flat on 

the rollers 

Visual inspection 

F20 

Table 2. Linguistic terms and values for S, O, D 

 
Linguistic Terms Score 

Severity (S) Occurrence (O) Detection (D) 

Very 

dangerous 

(VH) 

Failure is 

practically 

inevitable (FI) 

Absolute 

uncertainty 

(AU) 

10 

Hazardous 

(H) 

Very high (VH) Very remote 

(VR) 

9 

Extreme (E) Repeated failures Remote (R) 8 

Major (MA) High (H) Very low (RL) 7 

Significant 

(S) 

Moderately high 

(MH) 

Low (L) 6 

Moderate 

(MO) 

Moderate (M) Moderate (M) 5 

Low (L) Relatively low 

(RL) 

Moderately high 

(MH) 

4 

Minor (MI) Low (L) High (H) 3 

Very minor 

(VM) 

Remote (R) Very high (VH) 2 

None (N) 

Almost 

Nearly impossible 

(NI) 

certain (AC) 1 

 

Table 3. The conventional FMEA ranking 

 
Modes S O D RPN Priority 

F1 3 7 6 126 12 
F2 3 8 9 216 7 
F3 5 7 10 350 2 
F4 7 7 10 490 1 
F5 2 7 9 126 12 
F6 3 3 8 72 19 
F7 6 9 3 162 10 
F8 4 10 3 120 15 
F9 10 10 3 300 3 

F10 6 10 3 180 9 
F11 3 10 3 90 18 
F12 10 9 3 270 6 
F13 6 10 5 300 3 
F14 3 10 4 120 15 
F15 6 3 3 54 20 
F16 3 6 7 126 12 
F17 6 3 8 144 11 
F18 6 6 6 216 7 
F19 8 6 6 288 5 
F20 3 6 6 108 17 

 

In the RPIMw model, the ranking of failure modes is as 

follows for the top 3 positions: F4 (7-7-10) > F9 (10-10-3) > 

F13 (6-10-5). This indicates that the failure mode with a 

Severity score of (S=7), an Occurrence score of (O=7), and the 

highest Detectability score of (D=10) is considered the most 

crucial failure mode. 

The RPIENW model determined that the top three critical 

failure modes were F4 (7-7-10), F9 (10-10-3), and F13 (6-10-

5). 

The weight (Table 4) is estimated with, we use two methods: 

Entropy Method, and Mean Weight (MW). Moreover, 

assuming weights with a proposed scenario. 

 

Table 4. Different estimated weights 

 
Entropy Method 0.38857 0.230255 0.381175 

Mean Weight Method 0.3333 0.3333 0.3333 

Scenario 1 0.5 0.2 0.3 

Scenario 2 0.2 0.5 0.3 

Scenario 3 0.2 0.3 0.5 

 

Table 5. Rankings of the failure modes generated using 

various RPI methods 

 
RPIEM RPIMW SC1 SC2 SC3 RANK 

F4 F4 F4 F9 F4 1 

F9 F9 F9 F13 F3 2 

F13 F13 F13 F4 F2 3 

F3 F3 F19 F10 F13 4 

F19 F12 F12 F2 F9 5 

F12 F10 F3 F3 F19 6 

F2 F2 F17 F14 F17 7 

F17 F19 F10 F12 F5 8 

F10 F17 F18 F8 F10 9 

F18 F14 F2 F19 F14 10 

F14 F18 F7 F7 F12 11 

F7 F8 F8 F5 F18 12 

F5 F7 F14 F11 F16 13 

F8 F5 F16 F17 F1 14 

F16 F1 F1 F18 F6 15 

F1 F16 F5 F1 F8 16 

F6 F11 F6 F16 F7 17 

F11 F6 F15 F6 F20 18 

F20 F20 F11 F20 F11 19 

F15 F15 F20 F15 F15 20 

 

The RPIsc1 model ranks the failure modes and the top 3 

positions are as follows: F4 (7-7-10) > F9 (10-10-3) > F13 (6-

10-5). 

The RPIsc2 model ranks the failure modes in the following 

order for the top 3 positions: F9 (10-10-3) > F13 (6-10-5) > F4 

(7-7-10). 

The RPIsc3 model ranks the failure modes in the following 

order for the top three positions: F4 (7-7-10) > F3 (5-7-10) > 

F2 (3-8-9). 

The application of RPI with 5 different weight conditions 
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for the prioritization of failure modes resulted in 

inconsistencies, mainly due to changes in the order of 

significance that need to be established to reflect the intended 

risk scenario. The subsequent sections aim to illustrate and 

explain the implementation of the proposed risk prioritization 

approach in this study. 

In this study, a reliable method was proposed by combining 

multiple MCDM values to obtain the final results. Table 6 

shows the ultimate ranking of failure modes, which was 

evaluated using Eqs. (1)-(21). The results reveal that F4 is the 

most critical failure mode, followed by F9 and F13. 

 

Table 6. Results of the proposed integrated ranking method 

 
Modes F. αn- αn+ FRIn Rank 

F1 0.037926 0.071719 0.03147 15 

F2 0.072872 0.03708 -0.03179 5 

F3 0.078768 0.029649 -0.04392 4 

F4 0.105819 0.00322 -0.09254 1 

F5 0.043692 0.068921 0.023705 14 

F6 0.026142 0.08359 0.052978 17 

F7 0.045255 0.063251 0.0171 12 

F8 0.04624 0.064528 0.017381 13 

F9 0.096567 0.015069 -0.07334 2 

F10 0.069489 0.039934 -0.02613 8 

F11 0.028451 0.085908 0.053018 18 

F12 0.071007 0.037886 -0.02937 7 

F13 0.089423 0.021093 -0.06137 3 

F14 0.0539 0.05876 0.005186 11 

F15 0.003893 0.105439 0.093069 20 

F16 0.036888 0.072408 0.033038 16 

F17 0.0609 0.047235 -0.01169 9 

F18 0.053396 0.054092 0.001364 10 

F19 0.07183 0.036473 -0.03141 6 

F20 0.01571 0.095452 0.073257 19 

4. RESULTS AND DISCUSSION 

 

The proposed model is appropriate for the practical 

implementation of risk analysis and management. In the 

absence of any observed failure modes, expert judgment is 

relied upon to assess potential hazards. Based on evaluations 

of severity, likelihood of occurrence, and detectability, the top 

five fault modes are identified as F4>F9>F13>F3>F2, with 

significant attention given to noise-related problems such as 

the rotor fault (F4), seizing of pinion toothed Helical (F9), and 

rolling spherical on rollers (F13) which provide rotational 

guidance. The driving system has several critical flaws, 

including bearing damage, noise and vibration, and elevated 

bearing temperatures, which are the primary causes. 

The RPI-MCDM based FMEA model proposed is a 

trustworthy source of information that can assist experts and 

decision makers in comprehending the severity of risk 

associated with failure modes. Among the identified failure 

modes, F4, F9, F13, and FM3 are considered high-risk and 

demand immediate attention from risk managers for 

developing improvement strategies. F19, F12, F10, F17, and 

F18 belong to a lower risk category and can be prioritized for 

enhancement if adequate financial resources are available. 

This research proposes a more rigorous approach to 

determine the risk ranking of different failure types, which is 

an improvement over the traditional methods that relied on a 

single approach. The new method overcomes the issues of 

objectivity and subjectivity and results in a more suitable 

classification of risk. Figure 3 illustrates the rankings 

generated by the suggested approach and five other methods. 

The novel model identifies F4, F9, and F13 as the three critical 

failure modes, which differs from the outcomes of other 

models. 

 

 

 
 

Figure 3. Failure mode ranking obtained using different methods 
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The suggested method is deemed more dependable than 

using a single approach to rate risks since it considers multiple 

factors. Although a few integrated methods have been 

developed, combining them all can provide a more 

comprehensive and practical usability ranking. 

Table 6 compares the outcomes of the proposed method 

with two MCDM models, where F4 is the top-priority failure 

mode in all models. While VIKOR considers F3 as the second-

highest priority failure mode, EDAS and the proposed model 

suggest FM9 as the second priority. The discrepancy is due to 

the similarity in severity levels of the two failure modes 

resulting in equivalent weightage being assigned to severity 

and detection. The relative severity of various failure modes 

could be lost if only the final rankings are considered. The 

results were shared with the experts of the case company who 

confirmed the proposed method's practicality compared to 

other methods. 

The suggested model is capable of analyzing the influence 

relationships of risk parameters and prioritizing failure modes 

using the RPI-MCDM hybrid method. This approach 

overcomes the limitations of traditional FMEA methods. 

 

 

5. CONCLUSION AND FUTURE RESEARCH 

 

Since the 1950s, FMEA has been developed as a technology 

to identify possible faults before they occur. However, 

traditional FMEA approaches have limitations in producing 

comprehensive and acceptable analytical results. This study 

proposes an evaluation model, which classifies failure modes 

of systems and machines, in order to enhance failure modes in 

the mining industry. A belt conveyor is used as a reference 

case, as it is a crucial continuous conveying equipment in the 

mining industry. The study finds that vibration, temperature, 

wear, and lack of tightness of equipment are the factors that 

cause the most critical failure modes. Different risk ranking 

methods have varying concepts and calculation procedures, 

thus multiple methods can ensure more stable and objective 

analysis results. The proposed methodology is feasible and can 

be applied to various classification domains. 

The proposed model provides several contributions and 

conclusions, including:  

• The use of ENTROPY to determine dominant weights and 

consider interaction among evaluation factors. 

• The ability to overcome the limitations of FMEA by using 

RPI models with different scenarios and weights.  

• The proposed method integrates multiple MCDM 

approaches, utilizing TOPSIS to define the PIS and NIS, and 

calculates the Final Ranking Index (FRIn) of failure modes.  

• To enhance the quality of maintenance, identifying the 

most critical failure mode is essential. Although the proposed 

model has demonstrated improved results compared to prior 

methods, it still has some limitations. 

The current approach for evaluating possible failure modes 

relies on expert interviews and historical machine data, and 

incorporating up-to-date data can improve the objectivity of 

the analysis. Additionally, expanding the RPI model with 

more variables and exploring other MCDM techniques can 

enhance the analysis further. Fuzzy set theory or fuzzy-

MCDM can be used to account for data quality during the 

evaluation process. These improvements can lead to more 

accurate and reliable results in future studies. 
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