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This paper discusses the use of advanced monitoring techniques for optimal control of building 

management systems (BMS) in public buildings, with the objective of guaranteeing the 

appropriate air quality, minimizing energy consumption. The paper reviews the current state 

of BMS technologies, and the challenges associated with reducing energy consumption in 

public buildings. It then discusses the potential benefits of advanced monitoring techniques 

and their application in BMS, including improved energy efficiency, occupant comfort, and 

indoor air quality. The analysis conducted highlights the challenges in establishing a direct 

relationship between monitoring data and HVAC system control, emphasizing the potential of 

Machine Learning algorithms in addressing this issue. 
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1. INTRODUCTION

COVID-19 pandemic has brought significant attention to 

the importance of indoor air quality (IAQ) in public shared 

buildings and on the role of mechanical ventilation systems in 

maintaining a healthy indoor environment [1, 2]. 

With the need for increased air exchange rates and filtration 

to reduce the risk of virus transmission, many buildings have 

had to make changes to their Heating, Ventilation and Air 

Conditioning (HVAC) systems to meet new guidelines and 

regulations [3]. 

It is now widely recognized that proper ventilation, air 

filtration, and IAQ monitoring are essential in maintaining a 

safe and healthy indoor environment, not just during a 

pandemic, but also for long-term health and productivity of 

building occupants. These measures have a significant impact 

on the energy aspect of building operations [4]. Accordingly, 

it is expected that in the next few years there will be an 

increased attention to appropriately manage such two 

contrasting aspects: the need to ensure safe and healthy indoor 

environments through proper ventilation, air filtration, and 

IAQ monitoring, and the need to optimize energy consumption 

in HVAC systems [5]. 

One way to balance such two objectives is by using 

advanced building automation systems and artificial 

intelligence-based algorithms to optimize HVAC system 

operation based on real-time occupancy and environmental 

data [6]. These approaches can control the HVAC system to 

provide optimal indoor air quality while minimizing energy 

consumption. It will require a holistic approach that considers 

the interplay between building design, operation, and 

maintenance to achieve the best balance between indoor air 

quality and energy efficiency. 

Data-driven methods are essential to achieving the balance 

between indoor air quality and energy efficiency and will 

become increasingly important as building design and 

operation become more focused on sustainability and occupant 

health [7]. There is a wealth of environmental monitoring data 

available that can be used to optimize building energy 

efficiency, but often this data is not fully utilized. Many 

building management systems (BMS) have sensors and 

monitoring equipment in place to measure parameters such as 

temperature, humidity, CO2 levels, and energy consumption, 

but this data is not always analyzed and used in real-time [8, 

9]. 

By adopting machine learning algorithms to analyze data 

from environmental sensors, it is possible to identify patterns 

and anomalies that may indicate inefficient building systems 

or energy waste [10]. For example, machine learning models 

can be used to identify the most energy-intensive areas of a 

building or detect equipment malfunctions that are causing 

excessive energy consumption [11]. 

Overall, by leveraging the vast amounts of environmental 

monitoring data available, building managers can gain 

valuable insights into building performance and energy use, 

and take action to optimize building systems for energy 

efficiency and cost savings. Smart monitoring systems can 

also be used to detect faults or inefficiencies in building 

systems, enabling early detection and repair. For example, a 

smart monitoring system might detect a faulty HVAC system, 

enabling maintenance staff to repair the system before it 

consumes excess energy or causes occupant discomfort.  

The topic of environmental monitoring, through devices 

connected in an Internet of Things (IoT) framework, and its 

connection with the usage and real-time control of energy in 

public buildings is gathering increasing interest, in 
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consideration of the growing energy costs [12]. 

IoT technologies can be used for both collecting and 

exchanging environmental data, to inform building users of 

any anomalous situation and to directly interact with the 

operation control of the various energy systems active in the 

building [13]. 

The topic has become even more relevant in combination 

with the post-Covid restrictions, which have imposed some 

additional constraints related to the ventilation of rooms for 

the mitigation of the spreading of the disease. Concerns about 

air quality, indoor comfort and the currently high energy prices 

now make the development of advanced control logics and the 

definition of optimal operating modes of HVAC and lighting 

systems an impelling priority in most country. A significant 

margin of improvement of current HVAC systems is provided 

by the fact that air conditioning and ventilation systems are 

usually designed for certain operating conditions and certain 

levels of occupancy, which in some cases only occur very 

rarely. This is particularly true in public buildings, where 

levels of occupancy may greatly change during the day, and 

the design of energy systems sized respect to the less favorable 

occupancy conditions may lead to significant wastes of energy 

most of the day. 

In this paper, we first overview the research topic, with a 

particular reference to recently carried out monitoring 

activities in public buildings. Then, we present the 

development and implementation of a new monitoring system, 

based on the use of sensors capable of monitoring 9 different 

environmental variables, namely, lighting, CO2, VOC, noise, 

gas, temperature, humidity, particulate matter, occupancy). In 

combination with classic contact sensors (to be aware of the 

opening of windows and door), we describe how they can be 

adapted to a specific context, with the purpose of optimally 

regulating the operation of air conditioning systems.  

The idea presented by the authors is indeed to demonstrate 

the potential of smart monitoring methods, specifically those 

based on CO2 concentration analysis, in shared-public 

buildings with non-regular occupancy patterns, such as 

academic buildings, in which traditional BMS may not be 

effective, as they rely on fixed schedules and occupancy 

patterns that do not account for the dynamic and unpredictable 

nature of such a kind of shared-public buildings. 

Smart monitoring systems based on CO2 concentration 

analysis can provide for example real-time data on occupancy 

levels and ventilation rates, allowing building managers to 

adjust heating, cooling, and ventilation systems accordingly 

[14]. 

Overall, the authors suggest that smart monitoring systems 

have great potential to improve energy efficiency and 

sustainability in shared-public buildings where occupancy 

patterns can be especially complex and unpredictable.  

The methods of Artificial Intelligence (AI) and the various 

data collection methodologies can be interesting for modelling 

the complex and non-linear interaction between the different 

variable [15, 16]. Although there are many research studies 

and literature available on the use of artificial intelligence in 

Smart Buildings, only a limited number of recent studies have 

practically implemented machine learning techniques to 

optimize the HVAC operation for energy efficiency and 

indoor environment control. These studies [17, 18] have 

primarily focused on specific elements related to thermal 

comfort and building control, which can have substantial 

impacts on building energy consumption. However, there 

remain open questions regarding the integration of safety 

measures. 

The paper is organized as follows: after the introduction in 

which the importance of reducing energy use in public 

buildings and the role of building management systems (BMS) 

in achieving this goal, the following sections introduces the 

concept of advanced monitoring techniques as a means to 

optimize BMS control. In the second section, the existing 

literature on the challenges associated with reducing energy 

use while maintaining occupant comfort and indoor air quality 

is discussed, and the current state of the art in BMS technology 

and on advanced monitoring techniques, including sensor 

technologies, data analytics, and machine learning algorithms 

is also briefly recalled. The third section describes the 

methodology used in the study, including the types of sensors 

and monitoring equipment used, the data collection process, 

and the analysis methods employed. In the fourth section we 

present the results of the study, including any insights gained 

from the data collected and the analysis performed in a specific 

context. Section includes visualizations such as charts, graphs, 

and maps. Then the possible implications of our results and 

their significance for reducing energy use, the limitations of 

our study and areas for future research are discussed. The final 

section summarizes the key findings of the study, emphasizing 

the significance of advanced monitoring techniques in 

optimizing BMS control for public buildings. The section also 

highlights the potential role of Machine Learning algorithms 

in this context, underscoring their possible use for achieving 

optimal energy efficiency and indoor environmental quality.  

 

 

2. REDUCING ENERGY USE WHILE MAINTAINING 

OCCUPANT COMFORT AND IAQ IN BUILDINGS: 

STATE OF THE ART 

 

Energy consumption in buildings for ventilation and 

climatization is significant. It is estimated that buildings 

consume up to 40% of the world's energy and are responsible 

for approximately 30% of greenhouse gas emissions [19]. 

HVAC systems are the primary energy consumers in buildings, 

accounting for up to 60% of a building's energy use. IAQ is 

also very relevant for internal building environments today. 

However, ventilation can be energy-intensive, particularly 

in buildings with high occupancy levels or where air quality is 

poor. There are several types of HVAC systems that can be 

used for public buildings. The type of system used depends on 

factors such as the size of the building, the number of 

occupants, the local climate, and the energy efficiency goals 

of the building owners. Building managers can use advanced 

monitoring techniques such as occupancy sensing and energy 

disaggregation to optimize HVAC system performance and 

reduce energy consumption while maintaining good IAQ. For 

example, by using occupancy sensors to detect when rooms 

are unoccupied, HVAC systems can be adjusted to reduce 

ventilation rates and save energy [20]. 

Correct regulation of HVAC systems can be challenging, 

especially in buildings with varying occupancy levels. In such 

cases, it is important to adopt demand-controlled ventilation 

systems, which can adjust the ventilation rates based on the 

actual occupancy of the zones [14]. This can be achieved using 

direct and indirect occupancy sensors, like CO2 sensors, that 

can detect the occupancy level and adjust the ventilation rates 

accordingly.  

Typical energy end-uses in shared buildings are shown in 

Figure 1. Those values range from about 25% for buildings 
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dedicated to Lodging to over 60% for buildings dedicated to 

public assembly [21].  

Figure 1. Energy end-uses in shared buildings 

Educational and healthcare buildings are highly significant 

within the realm of public shared buildings due to their 

substantial energy consumption, making them a focal point for 

analysis and investigation [22, 23]. In such buildings, the 

HVAC share is always greater than 50%, representing the 

strong influence of these systems on the overall energy 

consumption. Accordingly, while it is crucial to prioritize the 

principles of sustainable architecture in new constructions [24] 

existing buildings often face limitations in implementing such 

principles a specific attention must be given to the HVAC 

system in the stages of design and operation of the building, 

and actions must be undertaken to rationalize the energy use. 

The energy waste in public buildings is often attributed to 

the HVAC system operating at maximum capacity during 

phases of reduced occupancy. One solution to this issue is to 

implement smart monitoring systems that can adjust the 

HVAC system based on real-time occupancy data. This would 

ensure that the HVAC system only operates at the necessary 

capacity, reducing energy waste and costs. 

Data-driven models can provide more accurate and reliable 

predictions for building energy management compared to 

physically based theoretical analysis alone. This is because 

data-driven models can capture the complex and often non-

linear relationships between different variables. By using real-

time monitoring data to train and update the model, it can adapt 

to changing conditions and improve its predictions over time. 

Therefore, incorporating data-driven models into energy 

management strategies can help to optimize energy use, reduce 

costs, and improve indoor comfort and air quality. BMS are 

automated systems that are used to control and monitor various 

building functions, including HVAC, lighting, and energy use 

(Figure 2). The main goal of BMS is to optimize building 

performance while reducing energy consumption and 

minimizing operational costs. BMS can be especially effective 

in public buildings, where energy costs are often high and 

occupancy levels can vary greatly throughout the day. 

BMS work by collecting data from various sensors 

throughout the building, such as temperature sensors and 

occupancy sensors, and using that data to make decisions 

about how to optimize the building's performance. For 

example, the BMS might adjust the HVAC system based on 

occupancy levels in different areas of the building or adjust the 

lighting system based on the amount of natural light available. 

Figure 2. Example of building energy management system 

BMS can also be used to identify areas where lighting is 

being used unnecessarily or identify equipment that is 

consuming excessive amounts of energy. 

3. METHODOLOGY: MONITORING INDOOR AIR

QUALITY FOR DEMAND CONTROLLED

VENTILATION

This section describes the methodology used in the study, 

including the types of sensors and monitoring equipment used, 

the data collection process, and the analysis methods 

employed. The proposed approach involves utilizing 

temperature sensors to gather data on energy needs and CO2 

sensors to monitor ventilation requirements, in order to 

support the operation of the HVAC system.  

3.1 CO2 concentration and connection with occupancy 

Monitoring CO2 levels indicates indoor air quality and 

ventilation system effectiveness in maintaining good IAQ and 

preventing airborne transmission. CO2 levels can be used to 

identify poorly ventilated areas, which can increase the risk of 

airborne transmission of infectious diseases like COVID-19. 

A consistent indoor air concentration of less than 800 ppm 

CO2 is likely to indicate that a space is well ventilated, while 

an average of 1500 ppm CO2 concentration over the occupied 

period in a space can be considered an indicator of poor 

ventilation [25]. In areas with continuous talking, singing, or 

high levels of physical activity, higher levels of ventilation 

may be required to keep CO2 levels below 800 ppm, given the 

higher risks of transmission. 

It is important to take CO2 measurements at different times 

and with different occupancies to get a better indication of how 

the ventilation system is working under different conditions. 

However, there are some situations where CO2 monitoring 

may be less informative, such as areas that rely on air cleaning 

units or large open spaces with high ceilings. Overall, 

consulting with a ventilation engineer or occupational 

hygienist can help determine whether CO2 monitoring is 

required and which type of monitor is best suited for a 

particular situation. By monitoring CO2 levels, building 

managers can take appropriate measures to optimize 

ventilation and reduce the risk of airborne transmission of 

infectious diseases. In a closed volume the rise of CO2 

concentration (C{CO2}) depends on the number of occupants.

Using an estimate of the production rate ṙ, expressed in l/min 

(e.g., using the production rate as a function of the activity of 

the individual), knowing the volume V of the room, and 

measuring the CO2 concentration variation with time 
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(
dC{CO2}(t)

dt
), then Eq. (1) may be used to estimate the number 

of occupants, nocc: 

V
dC{CO2}(t)

dt
= ṙ nocc. (1) 

Eq. (1) can be also reformulated in terms of the volume 

available for each person (V/nocc), which can be considered an 

accurate variable as long as the height of the room does not 

exceed the other two dimensions: 

V

nocc
= ṙ

1
dC{CO2}(t)

dt

 (2) 

From Eq. (2), it is easy to understand how the variation of 

CO2 concentration can be related to the number of occupants 

if the rate of generation, strongly correlated with age, activity, 

and occupant’s behavior, is known. If air ventilation is also 

considered, then the air ventilation rate Q can be imposed with 

a mechanical device (or may correspond to the one available 

under natural conditions, for instance if windows or doors are 

open), and the new equation becomes: 

V
dC{CO2}(t)

dt
= ṙ nocc − 𝑄(C{CO2}(t) − Cext) (3) 

where: Q is the air flow rate due to ventilation (mechanical of 

natural), in m3/s, and Cext is the outdoor CO2 concentration. 

CO2 concentration variation in the room can be written in 

explicit form, and thus its value at time t, can be estimated as: 

C{CO2}(t) = C0(t = 0) exp (−
Q

𝑉
t) 

+ (Cext +
ṙ nocc

𝑄
) (1 − exp (−

𝑄

𝑉
t)) 

(4) 

In all the equations, a fundamental role is played by the CO2 

production rate �̇�, which depends on different elements (age, 

weight, and type of activity); typical values of exhalation per 

person for some typical indoor activities, obtained according 

to the values [26], where major details about the synthetic 

description summarized in Eqs. (1)-(4) can be obtained. The 

idea is to define the appropriate value of ACR, Q, to maintain 

a maximum value of CO2 concentration in the room. In this 

way, after a first phase of increase of CO2 concentration, an 

equilibrium condition is reached. If students are not in the 

room, the concentration decreases according to: 

C{CO2}(𝑡) = 𝐶0 + (𝐶0 − 𝐶𝑒𝑥𝑡) ∙ 𝑒− 
𝑄

𝑉
 𝑡 (5) 

In real-world conditions, there are many variables that can 

affect indoor air quality and the concentration of carbon 

dioxide (CO2) in a public shared building, including the 

number of occupants, their activity level, the ventilation rate, 

and other factors such as opening doors or windows and so on. 

This complexity can make it difficult to accurately predict 

changes in CO2 concentrations in real-time conditions using a 

physically based model alone [27]. In a controlled and closed 

room environment, a physical model can provide reasonably 

accurate predictions of the trend of CO2 concentration over 

time. Factors such as the room's geometry, the number of 

occupants, and the air flow rate can be incorporated into the 

model to estimate CO2 levels. However, in real conditions, 

there are numerous variables that are challenging to control or 

accurately measure. These can significantly impact CO2 

concentrations and render a purely physical model inadequate. 

3.2 Sensors for smart monitoring 

Measurements in the internal environment of buildings are 

indeed common and widely conducted for various purposes 

[28]. Monitoring and measuring different parameters within 

indoor spaces provide valuable insights into the performance, 

comfort, and safety of the built environment. The three most 

common measurements in indoor spaces are: 

- Temperature sensors, used to measure the temperature of

the air in a room or space. This information is used to adjust

the HVAC system to maintain a comfortable temperature

for the occupants;

- Relative humidity sensors, used to measure the amount of

moisture in the air in relation to the maximum amount of

moisture the air can hold;

- Carbon Dioxide (CO2) sensors, used to measure the

concentration of carbon dioxide in the air. High levels of

CO2 can indicate inadequate ventilation and may lead to

health issues and decreased productivity. Monitoring CO2

levels can help ensure proper ventilation.

New sensors for measurements in indoor spaces include

some additional measures like: 

- Volatile Organic Compounds (VOC) sensors: measure the

level of volatile organic compounds in the air;

- Light sensors: measure the level of light in the room;

- Noise sensors: measure the level of noise in the room;

- Occupancy sensors: detect the presence or absence of

people in a room;

- Motion sensors: detect movement in the room;

- Particulate matter sensors: measure the concentration of

small particles in the air.

For the measurement carried out, two sensors, in particular

the 4-in-1 and 9-in-1 SmartDHome sensors has been tested 

(Figure 3). 

Those are environmental sensors that can monitor multiple 

parameters related to IAQ and provide real-time data for smart 

automation systems thanks to a specific software used. The 

last appears to be particularly interesting: the 9 parameters that 

it can monitor include Temperature, Humidity, Light intensity, 

Noise level, Air pressure, CO2 level, TVOC (Total Volatile 

Organic Compounds), PM2.5 (Fine Particulate Matter), PM10 

(Coarse Particulate Matter). 

Figure 3. Smart monitoring sensors used for measurements 

3.3 Real time monitoring data and ML algorithm 

Collecting data from monitoring analysis involves using 

sensors and other devices to continuously monitor different 

parameters such as temperature, humidity, occupancy, lighting, 
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and energy consumption in buildings. The collected data can 

be used to identify patterns, trends, and anomalies in the 

building's performance, which can be analyzed to determine 

where improvements can be made to increase energy 

efficiency and reduce waste. However, the interconnected 

nature of these data poses challenges in their direct utilization. 

However, real time monitoring combined with machine 

learning algorithms can help overcome these challenges by 

analyzing large amounts of data and identifying complex 

patterns and relationships between different variables in the 

different context. By training machine learning models on data 

from sensors that measure indoor air quality and other 

environmental factors. For example, machine learning models 

can be trained to identify the relationship between CO2 levels 

and occupancy, activity level, and ventilation rate (induced in 

mechanical or natural mode) in a particular building. By using 

this information, the model can predict how CO2 levels are 

likely to change under different conditions, such as changes in 

occupancy or ventilation rates. 

Moreover, machine learning has the potential to greatly 

enhance our understanding of indoor air quality and improve 

our ability to optimize building systems for both energy 

efficiency and human health. Machine learning methods can 

be helpful for controlling indoor air quality in several ways: 

Predictive modeling: Machine learning algorithms can 

analyze historical indoor air quality data and predict future air 

quality levels. This can help building managers proactively 

identify potential issues and take preventive measures. 

Real-time monitoring: Machine learning can process real-

time data from sensors to continuously monitor indoor air 

quality. Algorithms can identify patterns and anomalies in the 

data and provide alerts to building managers if air quality falls 

outside of acceptable levels. 

Adaptive control: Machine learning algorithms can learn 

the relationship between air quality, building occupancy, and 

HVAC system performance. Based on this learning, the 

algorithms can adjust the HVAC system to optimize indoor air 

quality while minimizing energy use. Fault detection and 

diagnosis: Machine learning algorithms can detect faults in the 

HVAC system that may contribute to poor indoor air quality. 

The algorithms can then diagnose the root cause of the 

problem and provide recommendations for corrective action. 

4. RESULTS OF ANALYSIS OF A TEST CASE

The relationship between carbon dioxide and occupancy is 

straightforward in closed rooms with a fixed number of 

occupants, but it becomes challenging in real scenarios if the 

number of occupants is variable like the external conditions. 

To elucidate the effects of multiple parameters in determining 

a demand-controlled ventilation strategy, a specific test case 

has been selected for examination. The initial step entails 

constructing a dataset that will serve as the foundation for 

elaboration and analysis. 

Data were gathered during regular academic activities in a 

university building. The building is a didactic structure of the 

University of Pisa and located in Pisa (1694 Heating Degree 

Days). The building has a floor area of about 2100 m2 and a 

total volume of 11500 m3. Figure 4 provides a photo in which 

the buildings object of the analysis is represented.  

Figures 5 and 6 provide some details about the classroom 

where the tests have been performed, while Table 1 

summarizes the main geometrical data of the same classroom. 

Figure 4. The building object of the analysis 

Figure 5. A photo of the classroom from the bottom side 

The data presented in the graphics corresponds to the 

measurements obtained from the sensor 9 in 1, represented in 

the right part of Figure 3, which was positioned on the desk 

near the blackboard in the teacher's location, as indicated by 

the red circle. However, it's important to note that there were 

also other sensors placed in three different positions within the 

classroom. The positions are represented by the yellow, green 

and blue circles in Figure 6. 

Table 1. Characteristics of the classrooms for the analysis 

Maximum 

Occupancy 

(Pers) 

Area 

(m2) 

Height 

(m) 

Min-max 

V 

(m3) 

V for Student at 

Maximum 

Occupancy (m3) 

140 131 3.05-3.55 438 3.13 

Our measurements of a single classroom across six different 

days in the period between 18/04 and 9/05 shows that even 

when the sequence of lessons and climatic conditions and 

occupancy profile remained consistent, the CO2 concentration 

levels varied significantly (see Table 2 and Table 3 for the 

details on the various experiments). This highlights the 

complexity of relying solely on physical models for predicting 

and optimizing indoor air quality and energy use and 

emphasizes the importance of real-time monitoring data. 

Figures 7-12 provide the results of a test case carried out in the 

period from 18/04 to 9/05 in six different cases of the same 

lessons, for what concerns CO2 concentration trend. Though if 

the room used for the tests was the same and the number of 

occupants similar (from 100 to 120 in the first lesson of two 

hours from 8:30 to 10:30 and a number variable between 70-

80 in the second lesson from 10:30 to 12:30) the operating 

conditions were different. 
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Section C-C 

Section D-D 

Figure 6. A plan of the classroom including lateral sections 

(the circular point represents the position of the sensors) 

Considering the results exposed in Figures 7-12, observing 

the results provided in Figure 9, i.e., the one in which 

mechanical ventilation was active at 100%, the maximum 

level of CO2 concentration is below the limit level of 1500 

ppm, in particular below 1300 ppm. All the other cases 

mechanical ventilation was not in action, but windows and 

doors were closed or partially open. As it can be observed, the 

results are all different. The maximum CO2 concentration level 

range from 1400 ppm (Figure 11) up to 3300 ppm (Figure 10). 

Table 2. Occupancy and ventilation in the tested cases 

Case 

Number of 

Occupants 

8:30-10:30 

Number of 

Occupants 

10:30-12:30 

Mechanical 

Ventilation 

18/04 120 80 NO 

21/04 100 75 NO 

28/04 106 77 YES 

2/05 105 75 NO 

5/05 105 77 YES 

9/05 105 70 
YES 

(after 10:30) 

The maximum level is observed if all the windows and 

doors are closed, but when natural ventilation is active, 

because just one door or one windows is open, in connection 

with an occupancy level of 50-60% of the maximum this could 

be sufficient to maintain the level of CO2 concentration below 

1200 ppm. 

Table 3. More detailed description of the tested cases 

Case 8:30-10:30 10:30-12:30 

18/04 

Pause 9:35-9:45 

Windows open after 9.45 

T = 20.4 - 25.2℃ 

Pause 11:20-11:40 

Windows always open 

T = 24.8 - 26.0℃ 

21/04 

Pause 9:30-9:40; 

Windows open after 9:40. 

T = 20.2 - 24.7℃ 

Pause 11:15:11:30 

Windows are open 

T = 24.7 - 25.6℃ 

28/04 

Pause 9:25 - 9:35 

Windows open 9:25- 9:30 

Windows open 10:15-10:30 

T = 19.4 - 25.3℃ 

Pause 11:35 - 11:45 

Windows closed 

T = 25.2 - 25.7℃ 

2/05 

Pause 9:30 - 9:40 

A window open at 9:40 

T = 20.4 - 25.7℃ 

Pause 11:30 - 11:40 

Windows open 

T = 25.0 - 26.1℃ 

5/05 

Pause 9:30-9:40 

Windows open after 9:40 

T = 21.0 - 26.3℃ 

Pause 11:15 – 11:35 

Windows always open. 

T = 26.0 - 26.9℃ 

9/05 

Pause 9:35- 9:45 

Windows open 9:35-9:45 

T = 22.2 - 27.7℃ 

Pause 11:15-11:30 

Windows always open 

T = 27.5 - 27.7℃ 

The analysis of the results in the graphs reveals interesting 

patterns related to the behaviour of occupants and the presence 

of openings in the classroom. During the first interval, which 

had a higher occupancy of more than 100 people, we observe 

a gradual increase in CO2 concentration over time.  

In the second time interval, with a lower occupancy of about 

80 people, we observe a different trend in the CO2 

concentration. The initial CO2 concentration is lower 

compared to the previous interval, suggesting that the lower 

occupancy has resulted in lower CO2 generation. Additionally, 

there are fluctuations in the CO2 concentration, which could 

be attributed to the opening and closing of doors or windows 

during this time interval. These openings allow for natural 

ventilation and the exchange of air with the outdoor 

environment, leading to temporary reductions in CO2 

concentration. 

These results highlight the importance of considering 

occupant behavior and the presence of openings in the analysis 

of CO2 concentration and ventilation effectiveness. It 

emphasizes the need for dynamic control strategies that adapt 

to varying occupancy levels and take into account the impact 

of openings on indoor air quality. 

Based on the analysis of monitoring data collected under 

similar conditions, it appears that relying solely on physical 

models for analysis can be challenging.  

The analysis conducted on the monitored data provides 

valuable insights into the limitations of physical-based models 

in evaluating indoor air quality (IAQ) and comfort parameters. 

One of the key findings is the complexity involved in 

accurately predicting IAQ and comfort solely based on 

physical models. Physical models typically rely on simplified 

assumptions and equations that consider factors such as room 

dimensions, occupancy and ventilation rates. Moreover, these 

models often struggle to capture the dynamic nature of IAQ 

and comfort conditions in real scenarios, because they may not 

adequately account for variations in occupant behavior, 

changes in outdoor air conditions, and the impact of openings 

or airflow patterns within the building.  

By comparing the monitored data with the predictions of 

physical models, it becomes evident that there are 

discrepancies between the two. The measured IAQ and 

comfort parameters exhibit variations and trends that cannot 

be fully explained by the physical models alone. This 
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highlights the limitations of relying solely on these models to 

evaluate IAQ and comfort. The complexities and interactions 

among different variables, such as occupancy, ventilation rates, 

pollutant sources, and thermal conditions, make it challenging 

to accurately capture the actual IAQ and comfort levels using 

physical models. This underscores the need for alternative 

approaches, such as data-driven modeling and machine 

learning, which can leverage the abundance of monitoring data 

to provide more accurate and nuanced evaluations of IAQ and 

comfort parameters. 

Figure 7. Test of 18/04/2023 (no mechanical ventilation) 

Figure 8. Test of 21/04/2023 (no mechanical ventilation) 

Figure 9. Test of 28/04/2023 (ACR fixed at 3 Vol/h) 
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Figure 10. Test of 2/05/2023 (no mechanical ventilation) 

Figure 11. Test of 5/05/2023 (ACR fixed at 3 Vol/h on) 

Figure 12. Test of 9/05/2023 (no mechanical ventilation) 

5. DISCUSSION

CO2 measurement is indeed an interesting approach as it
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each space. By monitoring CO2 levels, it is possible to estimate 
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management. Advanced data analytics techniques, such as 

machine learning algorithms, can be used to identify patterns 

and relationships between different variables and provide 

insights for optimizing building performance. 

Optimizing energy use in public shared buildings through 

data monitoring is indeed a quite complex task. It requires the 

collection of a large amount of data from various sensors and 

sources, such as occupancy sensors, temperature sensors, 

humidity sensors, lighting sensors, CO2 sensors, and HVAC 

system sensors. To make sense of this data, advanced analytics 

techniques can be applied, such as machine learning and 

artificial intelligence algorithms. These techniques can 

identify patterns and correlations among the different variables 

and create models that can predict the energy consumption 

based on different scenarios.  

Indeed, the prediction of energy consumption through 

machine learning algorithms has a number of significant 

advantages. First, energy consumption may be optimized not 

merely instantaneously on the basis of current real-time data, 

but also in a future horizon of time, based on predicted 

occupancy levels, weather conditions, and other factors. 

Solutions obtained in a future horizon of time can conveniently 

exploit periodic patterns (e.g., daily or weekly patterns), and 

provide more convenient solutions in terms of energy 

consumption. Also, such predictions may be used to select 

between two possible control actions, predicting their future 

impact (e.g., choosing between natural or mechanic 

ventilation). Second, machine learning algorithms can be used 

to identify the occurrence of non-correct or non-nominal 

environmental conditions and recommend corrective actions 

to mitigate energy consumption. Examples may be represented 

by windows that are left open in winter time, which could be 

conveniently closed; or rooms that are unexpectedly empty, so 

that mechanic ventilation may be switched off.  

The realization of such techniques requires the availability 

of a robust data management system in place to collect, store, 

and process the data from various sensors and sources. In order 

to optimize HVAC performance using monitoring data, it is 

crucial to have skilled experts who can analyze the data and 

develop strategies to minimize energy consumption without 

compromising indoor air quality and occupant comfort. 

However, this task can be expensive and time-consuming, 

especially for organizations like universities with diverse 

structures and campuses. In this scenario, Artificial 

Intelligence (AI) can play an important role in collecting and 

processing data from various sensors that measure different 

variables in indoor spaces, such as the number of occupants, 

the opening and closing of doors and windows, and the 

operation of the ventilation system. By analysing this data, AI 

algorithms can identify patterns and correlations that are 

difficult to detect, providing insights that can help to optimize 

energy use. In this way, AI can help building managers make 

informed decisions about when to adjust HVAC settings, when 

to open or close windows, and how to optimize the use of 

lighting and other energy-consuming systems. In particular we 

refer to Machine Learning (ML) as a subset of AI that refers 

to the ability of a computer or a machine to learn from data 

and improve its performance on a specific task without being 

explicitly programmed for the purpose. In particular the 

acquired data can be utilized to instruct the Machine Learning 

algorithm, enabling us to evaluate its performance under 

various conditions. This includes analyzing its response to 

factors such as the number of occupants, individual volume 

available, ventilation rate, and external conditions like 

temperature and CO2 levels. 

6. CONCLUSIONS

The paper highlights the potential benefits of utilizing 

environmental monitoring data for optimizing building energy 

efficiency, because such data are often underutilized due to 

various technical, financial, and institutional challenges.  

The importance of leveraging data-driven approaches to 

optimize building management systems and achieve energy 

efficiency goals while prioritizing occupant well-being has 

been emphasized. A building located at the University of Pisa 

served as the test case for evaluating the potential for 

connecting monitoring data and operation.  

Through the analysis of monitoring data, it has become 

evident that relying solely on physical models for predictions 

and decision-making is challenging. The interplay and 

complexity of multiple variables necessitate more advanced 

techniques, such as machine learning, to capture intricate 

relationships and patterns. 

Overall, the combination of smart monitoring today 

available through simple and economic devices, data 

connectivity, and machine learning presents a promising 

avenue for achieving sustainable and energy-efficient 

buildings that prioritize occupant well-being and contribute to 

healthy environment. The authors of this study are focusing 

attention on developing a specific machine learning algorithm 

tailored to interact with the HVAC plant. The goal is to create 

an intelligent system that can optimize the operation of the 

HVAC system based on real-time data and predictive 

modeling. 
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NOMENCLATURE 

A Floor area of the classroom [m2] 

ACR Air Change Rate [l/s] 

ACRH Hourly Air Change Rate [Vol/h] 

C Concentration in the environment [ppm] 

nocc number of occupants of indoor space [-] 

Q Volumetric air change rate [m3/s] 

r ̇ CO2 generation rate for person [l/min] 

t time interval [s] 

T Temperature [℃] 

V Volume of the room or of the structure [m3] 

Subscripts 

0 Initial value 

ext External value 
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