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Distributed representations of words in a vector space help learning algorithms to model 

semantic notions of word similarity and distances in sentences. Most of the existing 

researches have been done on the Latin, Arabic, and other language, while the Amazigh 

language is ignored. In this paper, we try to build a first model word embeddings for 

Amazigh language and describe the steps needed to build it. Therefore, we implement a 

Word2Vec that a combination of two techniques – CBOW (Continuous bag of words) and 

Skip-gram to transform words written in Tifinagh to vector form. To obtain the highest 

performance, we evaluate two parameters of Word2Vec include Word2Vec model 

architecture and vector dimension. This evaluation process was implemented towards our 

proposed corpus collected on Amazigh websites for different domains. The result shows 

that the highest accuracy values are obtained under the combination of CBOW model and 

300 dimensional vector. 

Keywords: 

NLP, word embedding, Word2Vec, CBOW, 

Skip gram, corpus, Python, Tifinagh 

1. INTRODUCTION

Undoubtedly, the abundance of electronic documents 

available in the internet such as research articles, reports, 

conference papers and other formats makes text analysis one 

of the most important and critical issue. 

Automatic Natural Language Processing (NLP) is a field at 

the intersection of machine learning and linguistics and it is a 

very important topic in information retrieval. Find new 

techniques of text analysis are one of the main tasks of almost 

most researchers in academia and industry. This domain is 

very wide and incorporates tools for analyzing, processing and 

generating text. This is why we find the NLP behind many 

applications such as: 

— Language translation applications. 

— Check and correct grammatical mistakes in the text. 

— Interactive Voice Response applications used to 

respond to certain users’ requests. and increases 

customer satisfaction by automating conversations. 

Traditionally, standard word representations treat words as 

one-hot vectors with the same vocabulary size and most 

positions are all 0, and only one dimension is 1. This structure 

leads to high dimensionality of words and it is very difficult to 

catch complex linguistic properties of words in large corpus. 

To address this issue, a lot of semantic-based approaches are 

proposed in literature, but unfortunately these researches are 

focused on traditional languages, such as English, we also 

noticed the total absence of research dealing with the Amazigh 

language, because the cultural heritage of this language is 

essentially oral and the vast majority of the corpus already 

transcribed in Latin. However, Amazigh and English have 

different writing rules and syntax, so it is necessary to know 

the implementation of these algorithms in the specific domain 

language, i.e., Amazigh language. In addition, it is a very 

complicated task to adopt an embedding model (of any 

language) directly for the limited resource languages such as 

Amazigh due to the scarcity of resources. 

In this article, we use Word2vec [1], proposed and 

supported by Google to process the text data written in 

Tifinagh. This encoding technique is not a single algorithm, 

but it includes two learning models; Continuous Bag of Words 

(CBOW) and Skip-gram [2, 3]. Skip-gram predicts the context 

given a word and CBOW predicts the word given its context. 

The Word2Vec has different settings, the most important 

are:  

— The dimensionality (N) of the vector space to be 

constructed, i.e., the number of numerical descriptors 

used to describe the words. So, each word represents a 

point in D dimensionality space and synonyms words 

are points closer to each other.  

— The size of the context of a word, i.e., the number of 

terms surrounding the word in question. 

— The initial learning rate. 

— The number of iterations (epochs) over the corpus. 
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— Number of worker threads to train the model (=faster 

training with multicore machines). 

— Training algorithm: skip-gram or CBOW. 

— Is hierarchical softmax will be used for model training 

or negative sampling will be used. 

This Word2Vec uses a neural network, and generates the 

distributed representation that corresponds to the weights 

between the input layer and the hidden layer on the network. 

Though it also generates the weights between the hidden layer 

and the output layer together with this distributed 

representation, the output embedding is not generally used. 

So, we developed the proposed Word2Vec model for the 

Amazigh language to address the challenges presented by the 

lack of large data, the complexity of the Tifinagh characters, 

and the unique linguistic features of the language. By 

representing words in a numerical vector space, the model 

enables more efficient and effective natural language 

processing tasks such as text classification, sentiment analysis, 

and language translation. Word embeddings capture the 

semantic and syntactic relationships between words, 

facilitating machine understanding and manipulation of 

natural language. As a result, the proposed model has 

significant real-world applications, such as improving the 

accuracy of machine translation and speech recognition 

systems for Amazigh. However, there are also challenges and 

opportunities in implementing the model, such as the lack of 

high-quality training data and the need to adapt the model to 

the unique linguistic features of the language. 

This paper is organized as follows: Section 2 provides a 

brief overview of related work in the field of using Word2Vec 

models; Section 3 presents the proposed system for using 

Word2Vec for Amazigh language written in Tifinagh. The key 

contribution of this section is the development of a new model 

that is specifically designed for the unique characteristics of 

the Amazigh language, including the use of pre-processing 

techniques and adjustments to the Word2Vec algorithm's 

hyperparameters; in section 4, experimental results and 

discussion are reported; Section 5 concludes the paper and 

presents the main findings of the study, including the 

development and evaluation of two word embedding models 

for the Amazigh language. It introduces future work that aims 

to improve model accuracy through the use of a larger corpus, 

as well as exploring character level embedding and applying 

models to Amazigh sentiment analysis and named entity 

recognition. 

 

 

2. RELATED WORK 

 

Word embedding refers to a set of learning methods in order 

to represent words by vectors of real numbers. It is an 

important topic in natural language processing (NLP) [2-11]. 

Distributed word representation can better reveal the semantic 

information of natural language words. This is because it 

doesn't use one-hot representations, unlike other NLP tasks. 

For example, it's been used to model language [12] as well as 

recognize named entities [13] in texts. It's also been used to 

classify text [14], answer questions [15]. 

One of the major advances distributed word in the field of 

NLP is word2vec proposed by Mikolov et al. in 2013 [1, 16]. 

This technique is based on deep learning, which used very 

successfully in many areas [17-21], with two layers and seeks 

to learn the vector representations of the words composing a 

text, so that the words which share similar contexts are 

represented by close digital vectors. Word2vec predicts words 

based on context with two different neural models: Continuous 

Bag of Words (CBOW) and Skip-Gram. 

 

2.1 CBOW 

 

This architecture makes it possible to predict a word 

according to its context, which matches previous words and 

subsequent words. In this architecture, the projection layer is 

shared by all the words: all the words are projected in the same 

position. So, learning word embedding consists of predicting 

a word based on its context. This is done by calculating the 

sum of the word embedding of the context, then by applying 

to the resulting vector a log-linear classifier to predict the 

target word. Finally, the model compares its prediction with 

reality and corrects the vector representation of the word by 

the back propagation of the error gradient. In fact, CBOW tries 

to maximize the following Eq. (1) [22]: 
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With 
 , ,  t c t cW W− +  sequence of training words. 

The implementation of CBOW architecture will focus on 

five parts: 

— Build the corpus vocabulary 

— Build a CBOW (context, target) generator 

— Build the CBOW model architecture 

— Train the Model 

— Get word embedding 

 

2.2 Skip-gram 

 

The Skip-gram model has the comparable architecture as 

CBOW. It reverses the input and the output of the neural 

network used by the CBOW model [16]. So, if the previous 

model made the word prediction using surrounding words 

(context), the skip-gram model plays the role of predicting the 

context of a given target word by maximizing the logarithmic 

probability.  

Given a set of training words 
 , ,  t c t cW W− + , the model 

maximizes the following average log probability to predict the 

context of the current target word Eq. (2): 
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where 


is the number of words in the corpus and c is the size 

of the dynamic context of tW
. 

The implementation of this architecture is based also on 

five steps: 

— Build the corpus vocabulary. 

— Build a skip-gram [(target, context), relevancy] 

generator. 

— Build the skip-gram model architecture. 

— Train the Model. 

— Get word embeddings. 
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2.3 CBOW vs skip gram 

 

In the CBOW model, the distributed representations of 

context (or surrounding words) are combined to predict the 

word in the middle. While in the Skip-gram model, the 

distributed representation of the input word is used to predict 

the context. In fact, CBOW tends to find the probability of a 

word occurring in a context. So, it generalizes over all the 

different contexts in which a word can be used. While Skip 

gram tends to study different contexts separately. 

In our model we use Negative sampling technique to 

improve the efficiency of the Word2Vec model training by 

reducing the number of times that the model has to update the 

weights of all the neurons in the output layer. This is achieved 

by randomly selecting a small subset of "negative" words that 

are unlikely to be found near the target word, and updating 

their weights as well, instead of updating the weights of all the 

other words in the vocabulary. Because in the case of the 

Amazigh language written in Tifinagh, the use of negative 

sampling was particularly important due to the limited 

resources of the available training corpus. Training the model 

using the standard approach of updating the weights of all 

words in the vocabulary at each iteration would have been 

computationally expensive and time-consuming. By using 

negative sampling, our model be able to reduce the number of 

times that the model had to update the weights of all the 

neurons in the output layer, while still achieving accurate word 

embeddings for the language. This not only improved the 

efficiency of the model training but also we allowed to 

experiment with different hyperparameters and settings to 

optimize the model's performance. 

 

 

3. METHODOLOGY 
 

Proposed working model is based on the NLP approach 

that extracts and captures the semantic and syntactic 

information of words written with Tifinagh characters. This 

model helps to: 

— Suggest similar words to the word being subjected to 

our prediction model. 

— Group words of similar characteristic together and 

dissimilar far away. 

— Convert the higher dimensional representation of the 

text into lower dimensional of vectors. 

To evaluate our module we had to collect the necessary 

dataset written with Tifinagh given the lack of public 

resources to use it in the field of NLP. So below is the 

step-by-step method to implement our model using 

Word2vec. 

 

3.1 Construction of dataset 

 

The first step in implementing a machine learning model or 

implementing natural language processing is data collection 

(corpus). 

A corpus is a collection of real text written or dictated by 

native speakers of the language or dialect. It can contain 

anything from newspapers, novels, books, movies and tweets. 

In natural language processing, corpus contain text and 

language data that can be used to train machine learning 

systems. 

Corpus Amazigh is a limited resource language, and it is not 

rich on the social media websites. So, in collecting data for our 

Word2Vec model for the Amazigh language written in 

Tifinagh, we relied on various sources, including online 

resources and manual documents. One of the primary sources 

we used was the websites like the link of Royal Institute of 

Amazigh Culture (IRCAM) in Morocco [23], which provides 

a wealth of information on the Amazigh language and culture. 

We also consulted manual documents, such as the "Manual of 

Amazigh Language for Students" (Tizlatin Inu) and the 

"Manual of Royal Institute of Amazigh Culture" (Ilagan), 

which provided syntax and vocabulary of the language. 

Additionally, we worked with native speakers and language 

experts to ensure the accuracy and quality of the data collected. 

By using a combination of online and manual resources, we 

were able to gather a diverse range of data to train our 

Word2Vec model and generate accurate word embeddings for 

the Amazigh language written in Tifinagh. During this 

collection, we have included sentences from multiple domains 

such as general news, literature, sports, politics, and culture. 

 

3.2 Text preprocessing and cleaning 

 

Text preprocessing and cleaning is crucial step in NLP text 

mining. This phase includes removing stop words and 

punctuation. However, even that stop words are many in the 

dataset, they should not appear as vocabulary words during the 

modeling phase. So, stop words are removed during the 

preprocessing phase.  

Unfortunately we cannot use the library nltk.corpus from 

NL Toolkit to get the Amazigh language stop word list, 

because it not yet integrated in this Toolkit. So, we had to build 

the list of stop words manually based on grammar rules of this 

language. We include all stop words such as: 

 

‘ⵏ’,’ⵉ’,ⵙ’,’ⴳ’,’ⴷⵉ’,’ⵣⴳ’,‘ⵖⵔ’,’ⴷⴰⵔ’,’ⵅⴼ’,’ⴰⴳⴷ’,’ⴷ’,’ⴳ

ⵔ’ 

 

Thus, we must remove these from our dataset because they 

have low predictive power. 

For example, consider this sentence:  

 

 
 

After removing stops words:  

 ⵏ 

 ⵙⴳ  

 ⴳ 

the sentence becomes: 

 

 
 

The example below shows how we had prepared the corpus 

for building our model using Python language:
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3.3 Tokenization 

 

Tokenization is the task of splitting a sequence of text into 

units called token throwing away certain characters, such as 

punctuation. The objective of this process is to interpret the 

meaning of the text by analyzing the sequence of words. We 

can tokenize text at a variety of units including: characters, 

words, sentences, lines, paragraphs, etc. In our model we used 

words units, so the input sentence is broken apart every time a 

white-space is encountered. Here is an example of 

tokenization implemented in our model (Figure 1): 

 

 
 

Figure 1. Splitting text into token throwing away 

 

The word_tokenize() function is a popular tokenization 

technique due to its simplicity and efficiency in breaking down 

a text into individual words. It uses a set of pre-defined rules 

to split text into individual words based on whitespace and 

punctuation, making it highly effective at handling common 

scenarios such as contractions, hyphenated words, and 

abbreviations without requiring any additional configuration. 

Additionally, it is computationally efficient, making it suitable 

for processing large volumes of text and highly customizable. 

for all of these advantages, we split sentences using the 

word_tokenize() function in our implementation. The output 

of this function provided as input for further text processing. 

The code below explains how to use the word_tokenize() 

function: 

 

from nltk.tokenize import word_tokenize 

for sentence in sentences: 

words = word_tokenize(sentence) 

print(words) 

print() 

 

After this step the large quantity of our corpus is divided 

into smaller parts called tokens. These tokens help in 

understanding the context of Amazigh words and interpret the 

meaning of the text by analyzing the sequence of the words. 

 

3.4 Applying Word2vec 

 

3.4.1 Skip – gram 

The skip gram algorithm tries to use the current word to 

predict its neighbors (its context) as shown in Figure 2. For 

this reason, we will randomly initialize the vector for each 

word in our corpus. After that, we will go through each 

position p and we will define the center word at that position 

and a window of size m in order to select the context words. 

 

 
 

Figure 2. Skip gram 

 

The variables we’ll be using in Skip gram are: 

✓ The dictionary of unique words present in our corpus. 

This dictionary is known as vocabulary and is known 

words to the system. Vocabulary is represented by 

vector ‘V’. 

✓ N is the number of neurons present in the hidden layer 

of neural network. 

✓ The window size is the maximum context location at 

which the words need to be predicted. The window size 

is denoted by c. For example, in our given architecture 

(Figure 2) the window size is 2, therefore, we will be 

predicting the words at location (Wp -2), (Wp-1), (Wp 

+1) and (Wp +2). 

✓ The context window is the number of words to be 

predicted that can occur within a given word range. The 

value of the context window is twice the window size, 

ie 2*c, denoted by k. For our given architecture (Figure 

2) the value of the context window is 4. 

✓ The dimension of an input vector is equal to |V|. Each 

word is encoded using one hot encoding. 

✓ The weight matrix for the hidden layer (W) has 

dimension [|V|, N]. 

✓ The output vector of the hidden layer is H[N]. 
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✓ The weight matrix between the hidden and the output 

layer (W’) is of dimension [N, |V|]. 

✓ The dot product between W’ and H gives us an output 

vector U[|v|]. 

 

3.4.2 CBOW 

The CBOW model architecture tries to predict the current 

target word based on the source context words. Considering a 

simple sentence, “ⵜⴳⴰ ⵜⵖⵔⵎⵜ ⴼⴰⵙ ⵜⵖⵔⵎⵉⵏ ⵣⵉⴽⴽ 

ⵍⵎⵖⵔⵉⴱ”, this can be pairs of (context_window, 

target_word). Therefore, if we consider a context window of 

size 2, we have examples like: 

 

( [ⵜⴳⴰ, ⴼⴰⵙ], ⵜⵖⵔⵎⵜ),( [ⵜⵖⵔⵎⵜ, ⵜⵖⵔⵎⵉⵏ], ⴼⴰⵙ), ( [ⴼⴰⵙ, 

ⵣⵉⴽⴽ], ⵜⵖⵔⵎⵉⵏ).  

 

Thus, the model attempts to predict the target word based 

on the context window words as shown in Figure 3 using 

context window of size 4. 

 

 
 

Figure 3. CBOW 

 

 

4. EXPERIMENTAL RESULT 

 

In order to evaluate the performance of word embedding for 

Amazigh language, we defined the following workflow for 

analyzing and evaluating the results produced by the CBOW 

and Skip gram tools:  

a) We trained the corpora using these two 

techniques of word2vec. 

b) Tested different values of dimensionality of 

vector space (200, 300,400 and 500) and corpus size. 

c) Varying the context window size and the 

number of training epochs.  

d) Other parameters were not varied to keep the 

complexity of results manageable. 

The first experiment shows the relationship between 

word vectors length, corpus size and how they influence the 

results obtained by the two techniques of word embedding. 

The outcome of this experiment is summarized in Table 1. 

 

Table 1. Accuracy using different word vectors dimensions 

and corpus sizes 

 
Number of 

dimensions 

Relative corpus size 

10% 20% 50% 100% 

200 (Skip gram) 13.11% 18.78% 32.77% 76.84% 

200 (CBOW) 11.23% 12.66% 28.34% 77.76% 

300 (Skip gram) 14.12% 22.26% 37.65% 81.43% 

300 (CBOW) 11.36% 14.44% 34.55% 86.45% 

400 (Skip gram) 10.33% 21.66% 32.96% 78.43% 

400 (CBOW) 10.11% 13.33% 29.15% 79.44% 

500 (Skip gram) 9.33% 18.22% 30.34% 74.66% 

500 (CBOW) 8.55% 12.98% 26.36% 76.35% 

From results we concluded that using the smaller vectors 

dimensions and law data corpus was not sufficient to encode 

all word relationships; this is why we did not register a 

significant difference in the performance of the two techniques, 

which stays below expectations. Increasing the portion of 

corpus size and the number of dimensions lead to 

improvements the performance of the two techniques 

especially the CBOW model. When the dimensionality was 

around 300 the results stopped improving, or they even 

degraded.  

In the next experiment two parameters were relevant for 

CBOW and Skip Gram: The number of training epochs and 

context window size (we fixed the number of dimension at 

300). The detailed results obtained for these two parameters 

values can be found in Tables 2-4. 

 

Table 2. Accuracy using different context window size 

and training epochs=30 

 

Model 
Context window size (training epochs=30) 

2 5 7 10 

Skip gram 78.07% 79.13% 78.10% 77.41% 

CBOW 80.40% 86.13% 81.09% 78.10% 

 

Table 3. Accuracy using different context window size 

and training epochs=50 

 

Model 
Context window size (training epochs=50) 

2 5 7 10 

Skip gram 78.12% 79.15% 78.11% 77.45% 

CBOW 80.44% 86.15% 81.12% 78.12% 

 

Table 4. Accuracy using different context window size 

and training epochs=100 

 

Model 
Context window size (training epochs = 100) 

2 5 7 10 

Skip gram 78.33 79.51 78.46 77.63 

CBOW 80.67 86.89 81.34 78.15 

 

The Tables 2-4 contain the values of accuracy for different 

context window sizes for a 30, 50 and 100 numbers of training 

epochs respectively. From results of our experiments, we 

notice that the context window size had significant influence 

on the results when using the CBOW technique and a smaller 

impact when using the skip gram technique. We also conclude 

that the number of training epochs does not appear to have a 

significant effect on the results; fifty training epochs yielded 

the best results in most experiments. 

According to our experiments results we notice the 

following points: 

— CBOW is relatively faster to train data than skip-gram because 

it uses only one activation function in the output layer of neural 

networks (softmax). 

— CBOW is better for frequently and most common Amazigh 

words because if a word occurs more often it will have more 

training words to train. 

— Skip-gram is slower but gives better results for the smaller 

corpus than CBOW. 

— We need to optimize the parameters of training data because 

in the case of 100 (dimension), 2 (window size) and 10000 

(words) we have nearly 3 million parameters to train. 
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5. CONCLUSIONS 

 

In Natural Language Processing, we want computers to 

understand text like humans. However, to do this, they must 

translate the text into a vector that computers can use and that 

they can understand. 

Through this paper, we have presented how we have built 2 

different word embedding models (CBOW and Skip gram) for 

the Amazigh language using different resources including 

online Amazigh newspapers and electronic Journals. We have 

evaluated these models using the value of the accuracy to 

demonstrate their ability to detect similarities between words. 

The steps of the creation of the word embedding in our 

model can be summarized in the following points: 

— Collect corpus. 

— Read the corpus. 

— Preprocess corpus. 

— Create (x, y) data points. 

— Create one hot encoded (X, Y) matrices.  

— Train a neural network. 

— Extract the weights from the input layer. 

In our experiments, the best ranking results were obtained 

with the CBOW architecture and a vector dimensionality of 

300, while worst ranking results were observed with the Skip 

gram architecture and a vector dimensionality of 500. The 

results suggest that the CBOW architecture consistently 

yielded better result ranking than the Skip gram architecture. 

A higher dimension of the vectors implies a bigger size of the 

resulting vector model. Therefore, having a vector model with 

a dimension of 300 requires less memory space and provides 

better results than a vector model with 400 or 500 vector 

dimensions. 

Comparing the results of this study with similar studies in 

other languages is challenging, as the linguistic characteristics 

of each language differ significantly. However, in general, the 

proposed Word2Vec model for Amazigh language achieves 

high accuracy in capturing the semantic relationships between 

words. 

While this study has limitations that need to be 

acknowledged, the proposed Word2Vec model for Amazigh 

language can still be used in various fields, such as information 

retrieval, text classification, and sentiment analysis. By 

capturing the semantic and syntactic information of the 

language, the model can assist in developing effective natural 

language processing (NLP) systems for Amazigh speakers, as 

well as contribute to the development of language learning 

applications. However, it is important to note that the 

representativeness of the Amazigh corpus used for training the 

Word2Vec model may be limited, and the generalizability of 

the results to other domains or languages may be limited due 

to the unique linguistic characteristics of each language and 

the influence of the training corpus on the effectiveness of the 

model. 

Our future work will focus on overcoming the limitations of 

the proposed Word2Vec model for the Amazigh language. 

Specifically, we aim to use larger and more diverse corpora to 

train the model, which will enhance its accuracy and 

generalizability. Additionally, we plan to investigate the use 

of character level embeddings to further improve the model's 

performance. Furthermore, we intend to apply these models to 

address the challenges of Amazigh sentiment analysis and 

named entity recognition, which are important tasks in natural 

language processing. 
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