
Towards Amazigh Word Embedding: Corpus Creation and Word2Vec Models Evaluations

Hassan Faouzi1* , Maria El-Badaoui2 , Mohammed Boutalline3 , Adil Tannouche 4 , Hamid Ouanan5

1 Systems Engineering Laboratory (LGS), Higher School of Technology (EST-FBS), Sultan Moulay Slimane University

(USMS), Fkih Ben Salah 23203, Morocco
2 LASTI Laboratory, National School of Applied Sciences, Sultan Moulay Slimane University (USMS), Khouribga 25000,

Morocco
3 Systems Engineering Laboratory (LGS), National School of Applied Sciences (ENSA-BM), Sultan Moulay Slimane

University (USMS), Beni Mellal 23000, Morocco
4 Laboratory of Engineering and Applied Technology (LITA), Higher School of Technology (EST-BM), Sultan Moulay

Slimane University (USMS), Beni Mellal 23000, Morocco
5 Information Processing and Decision Support Laboratory (TIAD), National School of Applied Sciences (ENSA-BM), Sultan

Moulay Slimane University (USMS), Beni Mellal 23000, Morocco

Corresponding Author Email: faouzi.hassan.mi@gmail.com

https://doi.org/10.18280/ria.370324 ABSTRACT

Received: 13 January 2023

Accepted: 5 April 2023

Distributed representations of words in a vector space help learning algorithms to model

semantic notions of word similarity and distances in sentences. Most of the existing

researches have been done on the Latin, Arabic, and other language, while the Amazigh

language is ignored. In this paper, we try to build a first model word embeddings for

Amazigh language and describe the steps needed to build it. Therefore, we implement a

Word2Vec that a combination of two techniques – CBOW (Continuous bag of words) and

Skip-gram to transform words written in Tifinagh to vector form. To obtain the highest

performance, we evaluate two parameters of Word2Vec include Word2Vec model

architecture and vector dimension. This evaluation process was implemented towards our

proposed corpus collected on Amazigh websites for different domains. The result shows

that the highest accuracy values are obtained under the combination of CBOW model and

300 dimensional vector.

Keywords:

NLP, word embedding, Word2Vec, CBOW,

Skip gram, corpus, Python, Tifinagh

1. INTRODUCTION

Undoubtedly, the abundance of electronic documents

available in the internet such as research articles, reports,

conference papers and other formats makes text analysis one

of the most important and critical issue.

Automatic Natural Language Processing (NLP) is a field at

the intersection of machine learning and linguistics and it is a

very important topic in information retrieval. Find new

techniques of text analysis are one of the main tasks of almost

most researchers in academia and industry. This domain is

very wide and incorporates tools for analyzing, processing and

generating text. This is why we find the NLP behind many

applications such as:

— Language translation applications.

— Check and correct grammatical mistakes in the text.

— Interactive Voice Response applications used to

respond to certain users’ requests. and increases

customer satisfaction by automating conversations.

Traditionally, standard word representations treat words as

one-hot vectors with the same vocabulary size and most

positions are all 0, and only one dimension is 1. This structure

leads to high dimensionality of words and it is very difficult to

catch complex linguistic properties of words in large corpus.

To address this issue, a lot of semantic-based approaches are

proposed in literature, but unfortunately these researches are

focused on traditional languages, such as English, we also

noticed the total absence of research dealing with the Amazigh

language, because the cultural heritage of this language is

essentially oral and the vast majority of the corpus already

transcribed in Latin. However, Amazigh and English have

different writing rules and syntax, so it is necessary to know

the implementation of these algorithms in the specific domain

language, i.e., Amazigh language. In addition, it is a very

complicated task to adopt an embedding model (of any

language) directly for the limited resource languages such as

Amazigh due to the scarcity of resources.

In this article, we use Word2vec [1], proposed and

supported by Google to process the text data written in

Tifinagh. This encoding technique is not a single algorithm,

but it includes two learning models; Continuous Bag of Words

(CBOW) and Skip-gram [2, 3]. Skip-gram predicts the context

given a word and CBOW predicts the word given its context.

The Word2Vec has different settings, the most important

are:

— The dimensionality (N) of the vector space to be

constructed, i.e., the number of numerical descriptors

used to describe the words. So, each word represents a

point in D dimensionality space and synonyms words

are points closer to each other.

— The size of the context of a word, i.e., the number of

terms surrounding the word in question.

— The initial learning rate.

— The number of iterations (epochs) over the corpus.

Revue d'Intelligence Artificielle
Vol. 37, No. 3, June, 2023, pp. 753-759

Journal homepage: http://iieta.org/journals/ria

753

https://orcid.org/0000-0002-5582-6980
https://orcid.org/0009-0004-9542-3803
https://orcid.org/0000-0002-1302-0989
https://orcid.org/0009-0000-1429-1783
https://orcid.org/0000-0002-7299-509X
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370323&domain=pdf
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370324&domain=pdf

— Number of worker threads to train the model (=faster

training with multicore machines).

— Training algorithm: skip-gram or CBOW.

— Is hierarchical softmax will be used for model training

or negative sampling will be used.

This Word2Vec uses a neural network, and generates the

distributed representation that corresponds to the weights

between the input layer and the hidden layer on the network.

Though it also generates the weights between the hidden layer

and the output layer together with this distributed

representation, the output embedding is not generally used.

So, we developed the proposed Word2Vec model for the

Amazigh language to address the challenges presented by the

lack of large data, the complexity of the Tifinagh characters,

and the unique linguistic features of the language. By

representing words in a numerical vector space, the model

enables more efficient and effective natural language

processing tasks such as text classification, sentiment analysis,

and language translation. Word embeddings capture the

semantic and syntactic relationships between words,

facilitating machine understanding and manipulation of

natural language. As a result, the proposed model has

significant real-world applications, such as improving the

accuracy of machine translation and speech recognition

systems for Amazigh. However, there are also challenges and

opportunities in implementing the model, such as the lack of

high-quality training data and the need to adapt the model to

the unique linguistic features of the language.

This paper is organized as follows: Section 2 provides a

brief overview of related work in the field of using Word2Vec

models; Section 3 presents the proposed system for using

Word2Vec for Amazigh language written in Tifinagh. The key

contribution of this section is the development of a new model

that is specifically designed for the unique characteristics of

the Amazigh language, including the use of pre-processing

techniques and adjustments to the Word2Vec algorithm's

hyperparameters; in section 4, experimental results and

discussion are reported; Section 5 concludes the paper and

presents the main findings of the study, including the

development and evaluation of two word embedding models

for the Amazigh language. It introduces future work that aims

to improve model accuracy through the use of a larger corpus,

as well as exploring character level embedding and applying

models to Amazigh sentiment analysis and named entity

recognition.

2. RELATED WORK

Word embedding refers to a set of learning methods in order

to represent words by vectors of real numbers. It is an

important topic in natural language processing (NLP) [2-11].

Distributed word representation can better reveal the semantic

information of natural language words. This is because it

doesn't use one-hot representations, unlike other NLP tasks.

For example, it's been used to model language [12] as well as

recognize named entities [13] in texts. It's also been used to

classify text [14], answer questions [15].

One of the major advances distributed word in the field of

NLP is word2vec proposed by Mikolov et al. in 2013 [1, 16].

This technique is based on deep learning, which used very

successfully in many areas [17-21], with two layers and seeks

to learn the vector representations of the words composing a

text, so that the words which share similar contexts are

represented by close digital vectors. Word2vec predicts words

based on context with two different neural models: Continuous

Bag of Words (CBOW) and Skip-Gram.

2.1 CBOW

This architecture makes it possible to predict a word

according to its context, which matches previous words and

subsequent words. In this architecture, the projection layer is

shared by all the words: all the words are projected in the same

position. So, learning word embedding consists of predicting

a word based on its context. This is done by calculating the

sum of the word embedding of the context, then by applying

to the resulting vector a log-linear classifier to predict the

target word. Finally, the model compares its prediction with

reality and corrects the vector representation of the word by

the back propagation of the error gradient. In fact, CBOW tries

to maximize the following Eq. (1) [22]:

2 1 1 21

1
log

, , , , , , , ,
t

t c t t t t t ct

W
p

W W W W W W



 − − − + + +=

  
    



(1)

With
 , , t c t cW W− + sequence of training words.

The implementation of CBOW architecture will focus on

five parts:

— Build the corpus vocabulary

— Build a CBOW (context, target) generator

— Build the CBOW model architecture

— Train the Model

— Get word embedding

2.2 Skip-gram

The Skip-gram model has the comparable architecture as

CBOW. It reverses the input and the output of the neural

network used by the CBOW model [16]. So, if the previous

model made the word prediction using surrounding words

(context), the skip-gram model plays the role of predicting the

context of a given target word by maximizing the logarithmic

probability.

Given a set of training words
 , , t c t cW W− + , the model

maximizes the following average log probability to predict the

context of the current target word Eq. (2):

()
1 ,

1
log

t c

j t

t j t c j t

P w w




+

= = − 

 
  

(2)

where


is the number of words in the corpus and c is the size

of the dynamic context of tW
.

The implementation of this architecture is based also on

five steps:

— Build the corpus vocabulary.

— Build a skip-gram [(target, context), relevancy]

generator.

— Build the skip-gram model architecture.

— Train the Model.

— Get word embeddings.

754

2.3 CBOW vs skip gram

In the CBOW model, the distributed representations of

context (or surrounding words) are combined to predict the

word in the middle. While in the Skip-gram model, the

distributed representation of the input word is used to predict

the context. In fact, CBOW tends to find the probability of a

word occurring in a context. So, it generalizes over all the

different contexts in which a word can be used. While Skip

gram tends to study different contexts separately.

In our model we use Negative sampling technique to

improve the efficiency of the Word2Vec model training by

reducing the number of times that the model has to update the

weights of all the neurons in the output layer. This is achieved

by randomly selecting a small subset of "negative" words that

are unlikely to be found near the target word, and updating

their weights as well, instead of updating the weights of all the

other words in the vocabulary. Because in the case of the

Amazigh language written in Tifinagh, the use of negative

sampling was particularly important due to the limited

resources of the available training corpus. Training the model

using the standard approach of updating the weights of all

words in the vocabulary at each iteration would have been

computationally expensive and time-consuming. By using

negative sampling, our model be able to reduce the number of

times that the model had to update the weights of all the

neurons in the output layer, while still achieving accurate word

embeddings for the language. This not only improved the

efficiency of the model training but also we allowed to

experiment with different hyperparameters and settings to

optimize the model's performance.

3. METHODOLOGY

Proposed working model is based on the NLP approach

that extracts and captures the semantic and syntactic

information of words written with Tifinagh characters. This

model helps to:

— Suggest similar words to the word being subjected to

our prediction model.

— Group words of similar characteristic together and

dissimilar far away.

— Convert the higher dimensional representation of the

text into lower dimensional of vectors.

To evaluate our module we had to collect the necessary

dataset written with Tifinagh given the lack of public

resources to use it in the field of NLP. So below is the

step-by-step method to implement our model using

Word2vec.

3.1 Construction of dataset

The first step in implementing a machine learning model or

implementing natural language processing is data collection

(corpus).

A corpus is a collection of real text written or dictated by

native speakers of the language or dialect. It can contain

anything from newspapers, novels, books, movies and tweets.

In natural language processing, corpus contain text and

language data that can be used to train machine learning

systems.

Corpus Amazigh is a limited resource language, and it is not

rich on the social media websites. So, in collecting data for our

Word2Vec model for the Amazigh language written in

Tifinagh, we relied on various sources, including online

resources and manual documents. One of the primary sources

we used was the websites like the link of Royal Institute of

Amazigh Culture (IRCAM) in Morocco [23], which provides

a wealth of information on the Amazigh language and culture.

We also consulted manual documents, such as the "Manual of

Amazigh Language for Students" (Tizlatin Inu) and the

"Manual of Royal Institute of Amazigh Culture" (Ilagan),

which provided syntax and vocabulary of the language.

Additionally, we worked with native speakers and language

experts to ensure the accuracy and quality of the data collected.

By using a combination of online and manual resources, we

were able to gather a diverse range of data to train our

Word2Vec model and generate accurate word embeddings for

the Amazigh language written in Tifinagh. During this

collection, we have included sentences from multiple domains

such as general news, literature, sports, politics, and culture.

3.2 Text preprocessing and cleaning

Text preprocessing and cleaning is crucial step in NLP text

mining. This phase includes removing stop words and

punctuation. However, even that stop words are many in the

dataset, they should not appear as vocabulary words during the

modeling phase. So, stop words are removed during the

preprocessing phase.

Unfortunately we cannot use the library nltk.corpus from

NL Toolkit to get the Amazigh language stop word list,

because it not yet integrated in this Toolkit. So, we had to build

the list of stop words manually based on grammar rules of this

language. We include all stop words such as:

‘ⵏ’,’ⵉ’,ⵙ’,’ⴳ’,’ⴷⵉ’,’ⵣⴳ’,‘ⵖⵔ’,’ⴷⴰⵔ’,’ⵅⴼ’,’ⴰⴳⴷ’,’ⴷ’,’ⴳ

ⵔ’

Thus, we must remove these from our dataset because they

have low predictive power.

For example, consider this sentence:

After removing stops words:

 ⵏ

 ⵙⴳ

 ⴳ

the sentence becomes:

The example below shows how we had prepared the corpus

for building our model using Python language:

755

3.3 Tokenization

Tokenization is the task of splitting a sequence of text into

units called token throwing away certain characters, such as

punctuation. The objective of this process is to interpret the

meaning of the text by analyzing the sequence of words. We

can tokenize text at a variety of units including: characters,

words, sentences, lines, paragraphs, etc. In our model we used

words units, so the input sentence is broken apart every time a

white-space is encountered. Here is an example of

tokenization implemented in our model (Figure 1):

Figure 1. Splitting text into token throwing away

The word_tokenize() function is a popular tokenization

technique due to its simplicity and efficiency in breaking down

a text into individual words. It uses a set of pre-defined rules

to split text into individual words based on whitespace and

punctuation, making it highly effective at handling common

scenarios such as contractions, hyphenated words, and

abbreviations without requiring any additional configuration.

Additionally, it is computationally efficient, making it suitable

for processing large volumes of text and highly customizable.

for all of these advantages, we split sentences using the

word_tokenize() function in our implementation. The output

of this function provided as input for further text processing.

The code below explains how to use the word_tokenize()

function:

from nltk.tokenize import word_tokenize

for sentence in sentences:

words = word_tokenize(sentence)

print(words)

print()

After this step the large quantity of our corpus is divided

into smaller parts called tokens. These tokens help in

understanding the context of Amazigh words and interpret the

meaning of the text by analyzing the sequence of the words.

3.4 Applying Word2vec

3.4.1 Skip – gram

The skip gram algorithm tries to use the current word to

predict its neighbors (its context) as shown in Figure 2. For

this reason, we will randomly initialize the vector for each

word in our corpus. After that, we will go through each

position p and we will define the center word at that position

and a window of size m in order to select the context words.

Figure 2. Skip gram

The variables we’ll be using in Skip gram are:

✓ The dictionary of unique words present in our corpus.

This dictionary is known as vocabulary and is known

words to the system. Vocabulary is represented by

vector ‘V’.

✓ N is the number of neurons present in the hidden layer

of neural network.

✓ The window size is the maximum context location at

which the words need to be predicted. The window size

is denoted by c. For example, in our given architecture

(Figure 2) the window size is 2, therefore, we will be

predicting the words at location (Wp -2), (Wp-1), (Wp

+1) and (Wp +2).

✓ The context window is the number of words to be

predicted that can occur within a given word range. The

value of the context window is twice the window size,

ie 2*c, denoted by k. For our given architecture (Figure

2) the value of the context window is 4.

✓ The dimension of an input vector is equal to |V|. Each

word is encoded using one hot encoding.

✓ The weight matrix for the hidden layer (W) has

dimension [|V|, N].

✓ The output vector of the hidden layer is H[N].

756

✓ The weight matrix between the hidden and the output

layer (W’) is of dimension [N, |V|].

✓ The dot product between W’ and H gives us an output

vector U[|v|].

3.4.2 CBOW

The CBOW model architecture tries to predict the current

target word based on the source context words. Considering a

simple sentence, “ⵜⴳⴰ ⵜⵖⵔⵎⵜ ⴼⴰⵙ ⵜⵖⵔⵎⵉⵏ ⵣⵉⴽⴽ

ⵍⵎⵖⵔⵉⴱ”, this can be pairs of (context_window,

target_word). Therefore, if we consider a context window of

size 2, we have examples like:

([ⵜⴳⴰ, ⴼⴰⵙ], ⵜⵖⵔⵎⵜ),([ⵜⵖⵔⵎⵜ, ⵜⵖⵔⵎⵉⵏ], ⴼⴰⵙ), ([ⴼⴰⵙ,

ⵣⵉⴽⴽ], ⵜⵖⵔⵎⵉⵏ).

Thus, the model attempts to predict the target word based

on the context window words as shown in Figure 3 using

context window of size 4.

Figure 3. CBOW

4. EXPERIMENTAL RESULT

In order to evaluate the performance of word embedding for

Amazigh language, we defined the following workflow for

analyzing and evaluating the results produced by the CBOW

and Skip gram tools:

a) We trained the corpora using these two

techniques of word2vec.

b) Tested different values of dimensionality of

vector space (200, 300,400 and 500) and corpus size.

c) Varying the context window size and the

number of training epochs.

d) Other parameters were not varied to keep the

complexity of results manageable.

The first experiment shows the relationship between

word vectors length, corpus size and how they influence the

results obtained by the two techniques of word embedding.

The outcome of this experiment is summarized in Table 1.

Table 1. Accuracy using different word vectors dimensions

and corpus sizes

Number of

dimensions

Relative corpus size

10% 20% 50% 100%

200 (Skip gram) 13.11% 18.78% 32.77% 76.84%

200 (CBOW) 11.23% 12.66% 28.34% 77.76%

300 (Skip gram) 14.12% 22.26% 37.65% 81.43%

300 (CBOW) 11.36% 14.44% 34.55% 86.45%

400 (Skip gram) 10.33% 21.66% 32.96% 78.43%

400 (CBOW) 10.11% 13.33% 29.15% 79.44%

500 (Skip gram) 9.33% 18.22% 30.34% 74.66%

500 (CBOW) 8.55% 12.98% 26.36% 76.35%

From results we concluded that using the smaller vectors

dimensions and law data corpus was not sufficient to encode

all word relationships; this is why we did not register a

significant difference in the performance of the two techniques,

which stays below expectations. Increasing the portion of

corpus size and the number of dimensions lead to

improvements the performance of the two techniques

especially the CBOW model. When the dimensionality was

around 300 the results stopped improving, or they even

degraded.

In the next experiment two parameters were relevant for

CBOW and Skip Gram: The number of training epochs and

context window size (we fixed the number of dimension at

300). The detailed results obtained for these two parameters

values can be found in Tables 2-4.

Table 2. Accuracy using different context window size

and training epochs=30

Model
Context window size (training epochs=30)

2 5 7 10

Skip gram 78.07% 79.13% 78.10% 77.41%

CBOW 80.40% 86.13% 81.09% 78.10%

Table 3. Accuracy using different context window size

and training epochs=50

Model
Context window size (training epochs=50)

2 5 7 10

Skip gram 78.12% 79.15% 78.11% 77.45%

CBOW 80.44% 86.15% 81.12% 78.12%

Table 4. Accuracy using different context window size

and training epochs=100

Model
Context window size (training epochs = 100)

2 5 7 10

Skip gram 78.33 79.51 78.46 77.63

CBOW 80.67 86.89 81.34 78.15

The Tables 2-4 contain the values of accuracy for different

context window sizes for a 30, 50 and 100 numbers of training

epochs respectively. From results of our experiments, we

notice that the context window size had significant influence

on the results when using the CBOW technique and a smaller

impact when using the skip gram technique. We also conclude

that the number of training epochs does not appear to have a

significant effect on the results; fifty training epochs yielded

the best results in most experiments.

According to our experiments results we notice the

following points:

— CBOW is relatively faster to train data than skip-gram because

it uses only one activation function in the output layer of neural

networks (softmax).

— CBOW is better for frequently and most common Amazigh

words because if a word occurs more often it will have more

training words to train.

— Skip-gram is slower but gives better results for the smaller

corpus than CBOW.

— We need to optimize the parameters of training data because

in the case of 100 (dimension), 2 (window size) and 10000

(words) we have nearly 3 million parameters to train.

757

5. CONCLUSIONS

In Natural Language Processing, we want computers to

understand text like humans. However, to do this, they must

translate the text into a vector that computers can use and that

they can understand.

Through this paper, we have presented how we have built 2

different word embedding models (CBOW and Skip gram) for

the Amazigh language using different resources including

online Amazigh newspapers and electronic Journals. We have

evaluated these models using the value of the accuracy to

demonstrate their ability to detect similarities between words.

The steps of the creation of the word embedding in our

model can be summarized in the following points:

— Collect corpus.

— Read the corpus.

— Preprocess corpus.

— Create (x, y) data points.

— Create one hot encoded (X, Y) matrices.

— Train a neural network.

— Extract the weights from the input layer.

In our experiments, the best ranking results were obtained

with the CBOW architecture and a vector dimensionality of

300, while worst ranking results were observed with the Skip

gram architecture and a vector dimensionality of 500. The

results suggest that the CBOW architecture consistently

yielded better result ranking than the Skip gram architecture.

A higher dimension of the vectors implies a bigger size of the

resulting vector model. Therefore, having a vector model with

a dimension of 300 requires less memory space and provides

better results than a vector model with 400 or 500 vector

dimensions.

Comparing the results of this study with similar studies in

other languages is challenging, as the linguistic characteristics

of each language differ significantly. However, in general, the

proposed Word2Vec model for Amazigh language achieves

high accuracy in capturing the semantic relationships between

words.

While this study has limitations that need to be

acknowledged, the proposed Word2Vec model for Amazigh

language can still be used in various fields, such as information

retrieval, text classification, and sentiment analysis. By

capturing the semantic and syntactic information of the

language, the model can assist in developing effective natural

language processing (NLP) systems for Amazigh speakers, as

well as contribute to the development of language learning

applications. However, it is important to note that the

representativeness of the Amazigh corpus used for training the

Word2Vec model may be limited, and the generalizability of

the results to other domains or languages may be limited due

to the unique linguistic characteristics of each language and

the influence of the training corpus on the effectiveness of the

model.

Our future work will focus on overcoming the limitations of

the proposed Word2Vec model for the Amazigh language.

Specifically, we aim to use larger and more diverse corpora to

train the model, which will enhance its accuracy and

generalizability. Additionally, we plan to investigate the use

of character level embeddings to further improve the model's

performance. Furthermore, we intend to apply these models to

address the challenges of Amazigh sentiment analysis and

named entity recognition, which are important tasks in natural

language processing.

REFERENCES

[1] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean,

J. (2013). Distributed representations of words and

phrases and their compositionality. Advances in Neural

Information Processing Systems.

https://doi.org/10.48550/arXiv.1310.4546

[2] Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J. (2007).

Large language models in machine translation.

Association for Computational Linguistics, pp. 858-867.

https://aclanthology.org/D07-1090.

[3] Collobert, R., Weston, J. (2008, July). A unified

architecture for natural language processing: Deep neural

networks with multitask learning. In Proceedings of the

25th International Conference on Machine Learning, pp.

160-167. https://doi.org/10.1145/1390156.1390177

[4] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive

subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research,

12(7): 2121-2159.

[5] Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.

(2012). Improving word representations via global

context and multiple word prototypes. In Proceedings of

the 50th Annual Meeting of the Association for

Computational Linguistics, 1: 873-882.

https://aclanthology.org/P12-1092.

[6] Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y.,

Potts, C. (2011). Learning word vectors for sentiment

analysis. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human

Language Technologies, pp. 142-150.

https://aclanthology.org/P11-1015.

[7] Mikolov, T., Kopecky, J., Burget, L., Glembek, O.

(2009). Neural network based language models for

highly inflective languages. In 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing,

Taipei, Taiwan, pp. 4725-4728.

https://doi.org/10.1109/ICASSP.2009.4960686

[8] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J.,

Khudanpur, S. (2010). Recurrent neural network based

language model. In Interspeech, 2(3): 1045-1048.

[9] TMikolov, T., Kombrink, S., Burget, L., Černocký, J.,

Khudanpur, S. (2011). Extensions of recurrent neural

network language model. In 2011 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), Prague, Czech Republic, pp. 5528-5531.

https://doi.org/10.1109/ICASSP.2011.5947611

[10] Mnih, A., Hinton, G. (2007). Three new graphical

models for statistical language modelling. In Proceedings

of the 24th International Conference on Machine

Learning, Toronto, Canada, pp. 641-648.

[11] Mnih, A., Hinton, G.E. (2008). A scalable hierarchical

distributed language model. Advances in Neural

Information Processing Systems, 21.

[12] Bengio, Y., Ducharme, R., Vincent, P. (2000). A neural

probabilistic language model. Advances in Neural

Information Processing Systems, 13.

https://jmlr.csail.mit.edu/papers/volume3/bengio03a/be

ngio03a.pdf, accessed on Jan, 2, 2023.

[13] Collobert, R., Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., Kuksa, P. (2011). Natural language

processing (almost) from scratch. Journal of machine

learning research, 12(ARTICLE): 2493-2537.

758

[14] Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. (2016).

Bag of tricks for efficient text classification. arXiv

preprint arXiv:1607.01759.

[15] Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.

(2017). Gated self-matching networks for reading

comprehension and question answering. In Proceedings

of the 55th Annual Meeting of the Association for

Computational Linguistics, 1: 189-198.

http://dx.doi.org/10.18653/v1/P17-1018

[16] Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013).

Efficient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781.

[17] Turkson, R.F., Yan, F., Ali, M.K.A., Hu, J. (2016).

Artificial neural network applications in the calibration

of spark-ignition engines: An overview. Engineering

Science and Technology, an International Journal, 19(3):

1346-1359. https://doi.org/10.1016/j.jestch.2016.03.003

[18] Eichie, J.O., Oyedum, O.D., Ajewole, M.O., Aibinu,

A.M. (2017). Artificial Neural Network model for the

determination of GSM Rxlevel from atmospheric

parameters. Engineering Science and Technology, an

International Journal, 20(2):795-804.

https://doi.org/10.1016/j.jestch.2016.11.002

[19] Ozer, I., Ozer, Z., Findik, O. (2018). Noise robust sound

event classification with convolutional neural network.

Neurocomputing, 272, 505-512.

https://doi.org/10.1016/j.neucom.2017.07.021

[20] Aghzal, M., Mourhir, A. (2021). Distributional word

representations for code-mixed text in Moroccan Darija.

Procedia Computer Science, 189: 266-273.

https://doi.org/10.1016/j.procs.2021.05.090

[21] Liao, Z., Ni, J. (2021). Construction of Chinese

synonymous nouns discrimination and query system

based on the semantic relation of embedded system and

LSTM. Microprocessors and Microsystems, 82, 103848.

https://doi.org/10.1016/j.micpro.2021.103848

[22] Mahdaouy, A.E., Gaussier, E., Alaoui, S.O.E. (2016,

October). Arabic text classification based on word and

document embeddings. In International Conference on

Advanced Intelligent Systems and Informatics, pp. 32-41.

[23] IRCAM. (n.d.). Institut Royal de la Culture Amazighe.

https://www.ircam.ma/.

759

