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Thyroid cancer, the most common endocrine malignancy, has exhibited a steadily 

increasing incidence worldwide. Recently, ultrasound (US) imaging has been recognized 

as a potential diagnostic tool for early assessment of thyroid nodules. However, visual 

interpretation of nodules is subject to the radiologists' subjective evaluations. To address 

this, a computer-aided Diagnostic (CAD) system has been developed to differentiate 

between benign and malignant thyroid nodules. The efficiency of this nodule classifier is 

heavily dependent on the features employed in the classification process. In this study, the 

efficacy of the RREMI-RF approach, employing the Multi-Channel Convolutional Neural 

Network (MCNN) and Hybrid Feature Cropping Network (HFCN) techniques, was 

evaluated. An innovative Follow the Regularised Leader-based Deep Neural Network 

(FTRL-DNN) technique is proposed for the precise classification of thyroid nodules. In this 

method, the AlexNet learning-based feature extraction system was utilized to extract 

features during the classification process. Images from the Digital Database Thyroid Image 

(DDTI) dataset were classified using the Long Short Term Memory (LSTM) classifier. 

Performance metrics, including accuracy, sensitivity, specificity, precision, and error rate, 

were used to assess the effectiveness of the FTRL-DNN algorithm. Compared to the HFCN 

and MCNN, the FTRL-DNN-based thyroid nodule classification demonstrated superior 

accuracy, achieving a rate of 98.94%. This research presents a significant advancement in 

the automated classification of thyroid nodules, potentially improving early detection and 

treatment of thyroid cancer. 
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1. INTRODUCTION

One of the most common endocrine tumours in the human 

body today is thyroid cancer. Up to 68% of symptomatic 

individuals in the general population have thyroid nodules. 7-

15% of thyroid nodules are affected by thyroid cancer, which 

is the disease with the highest rate of growth across all 

populations [1]. The thyroid gland, an endocrine gland, 

secretes thyroid hormones. These hormones largely control 

protein synthesis and metabolic rate. They also have a number 

of other effects, particularly those that are connected to the 

growth of the human body [2]. Their prevalence is very 

important to reduce the risks its depends on identification 

method used. A CAD technology that is based on image 

properties is the ultrasound approach to image categorization. 

utilising Deep Learning (DL) and cloud technologies to create 

an intelligent diagnosis model based on image classification 

[3]. The classification challenge for thyroid nodule CAD can 

be stated as a machine learning problem where the model 

automatically identifies between benign and malignant 

nodules on ultrasound images [4]. By decreasing effort and 

diagnostic variances across doctors, ultrasound can offer a 

trustworthy, consistent, highly effective, and repeatable 

ultrasound diagnosis pathway for thyroid nodules [5]. 

Recently, a number of researchers have conducted extensive 

research in the field of CAD to reduce the impact of subjective 

factors on physician diagnosis and improve diagnostic 

precision. The attributes are used to create a validation model, 

which is then examined to determine the applicability of each 

attribute selected for categorization [6, 7]. 

Techniques for thyroid nodule testing have significantly 

improved during the past 20 years. Ultrasound (US) imaging 

is frequently used as the primary point of diagnosis and for the 

evaluation of thyroid nodules because it successfully pictures 

and visualises soft tissue features [8]. It is also the most widely 

used and economical imaging technique, free of ionising 

radiation. The structure and characteristics of nodules can be 

learned through a thyroid ultrasound scan [9, 10]. As a result, 

thyroid issues such echogenicity, texture, a lack of 

microcalcification, a halo, and intra-nodular blood flow can be 

more easily found. Numerous machine learning-based 

techniques have been proposed [11] for autonomously 

identifying and assessing thyroid nodules in ultrasound 

images. These methods are separated into two groups: 

radionics and DL-based techniques. A radionics-based 

technique was introduced to extract quantitatively high 

throughput image features from medical images, such as the 

Gray-Level Co-occurrence Matrix (GLCM), Histograms of 

Oriented Gradients, and Grey level run-length matrix [12, 13]. 

Recently, computer-aided diagnosis systems have performed 

as well as or better than radiologists at making diagnoses from 

medical images as a result of the advancement of DL, notably 
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Convolutional Neural Network (CNN) [14]. The complex 

nodule detection model utilising DL requires a hyper 

parameter adjusting technique to improve system 

performance. It is occasionally required to tune the 

hyperparameters to make the smart search algorithm faster 

than random search. The suggested model used an 

optimisation strategy for hyper parameter adjustment to 

address this issue [15]. The current techniques are unable to 

classify thyroid nodules accurately. Additionally, the 

approaches used to choose useful criteria for thyroid nodule 

classification are ineffective. The suggested Regularised 

Learning based Deep Neural Network (FTRL-DNN) approach 

aims to address the shortcomings of existing systems. The 

contribution of the research are as follows: 

 

• The Regularised Learning based Deep Neural 

Network (FTRL-DNN) algorithm is suggested for a successful 

categorization of thyroid nodules. 

• Because ResNet-18 has so many hidden layers, 

AlexNet and ResNet-18 are used to successfully extract the 

features from the photos. 

• The best features are chosen from the feature set 

using the RREMI algorithm-based feature selection. 

 

The remaining of the paper is mentioned as follows: Section 

2 provides the existing work information about thyroid nodule 

classification. The clear details about the FTRL-DNN based 

thyroid nodule classification is given in section 3. Section 4 

provides the outcome of the FTRL-DNN whereas the 

conclusion is presented in section 5. 

 

 

2. LITERATURE SURVEY 

 

To obtain a feature model of the nodule in pictures, Zhao et 

al. [1] created an automated thyroid ultrasound nodule 

diagnostic method based on CNN. The first step is to collect 

both positive and negative samples, normalise the images, then 

segment the nodule region to build an ultrasound thyroid 

nodule dataset. Second, texture features are extracted, features 

are chosen, and data dimensionality is decreased to construct 

a texture features model. A plethora of prior medical 

knowledge is included in the suggested strategies for nodule 

texture information, which might aid the computer in 

producing better results. The suggested approach won't, 

however, result in longer computation times for the fusion 

weights. 

Using deep learning, Li et al. [2] developed a patch-based 

approach to swiftly identify thyroid nodules from 

intraoperative frozen sections. The approaches suggested for 

thyroid patch classification models, which need the right 

annotating information. We use the Region of Interests (ROI) 

approach to decrease the annotation work by annotating three 

different types of locations. The proposed method was used to 

improve the model's generalisation abilities and, as a result, to 

change the classification model. However, in data 

augmentation, the images are enhanced utilising slower 

techniques like flipping, rotating, and blurring. 

To effectively detect and identify thyroid nodules, Ma et al. 

[16] developed a YOLOv3-Dense Multi-Receptive Fields 

(DMRF). In order to keep conveying edge and texture 

properties to deeper layers, the DMRF-CNN was developed 

by combining dilated convolution with different dilation rates. 

Two different scale detection layers are utilised to distinguish 

between thyroid nodules of different sizes. As a result, the 

suggested solutions performed better in terms of Mean 

Average Precision (MAP) and detection time than earlier 

object detection frameworks. The model is over fitted on the 

training data since the performance on the testing data is 

insufficient. 

Hybrid feature cropping network with a multi-branch 

structure was proposed by Song et al. [17] to extract features 

and identify ultrasound pictures of thyroid nodules. To obtain 

global characteristics, use the global branch. The addition of 

the feature cropping method in the other branch is intended to 

lessen the detrimental impacts of the close local resemblances 

between benign and malignant nodules of the same time, 

feature vectors of various scales are produced as a result of the 

two branch cropping frames' various sizes. The outcome 

demonstrates its superiority to the current mainstream 

networks. 

Multi-channel convolutional neural network architectures 

were constructed by Zhang et al. [18] for the diagnosis of 

thyroid cancer. The Xception neural network is used as the 

basis of the current study's practical framework [19], which 

consists of three flexible multi-channel architectures that have 

been successfully tested on real-world data sets. The suggested 

structure also includes interpretable results as proof, which can 

increase practitioners' confidence. The radionics features, 

however, did not apply the Fourier transformation or the gray-

level size zone matrix, which to some part represent statistical 

data. 

 

 

3. PROPOSED METHOD 

 

The block diagram of the proposed research was shown in 

Figure 1. Database, Feature Extraction, Feature Selection, 

Hyper Parameter Optimization and Classification using LSTM 

classifier are described below. 

 

 
 

Figure 1. Block diagram of the proposed work 

 

3.1 Dataset collection 

 

The Digital Database of Thyroid Images (DDTI) dataset, 

provided by Columbia National University, is used in this 
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study to classify thyroid nodules [20]. This collection includes 

480 US pictures from 400 thyroid illness patients. After 

ignoring the 480 faulty images, 427 US images are all that are 

left. Based on the placement of thyroid nodules in each class 

of the different (TI-RADS) standard, the thyroid pictures in 

this dataset are divided into six classes: 2, 3, 4A, 4B, 4C, and 

5. According to the TI-RADS recognition concept, the classes 

"2, 3" are designated as benign nodules and "4A, 4B, 4C, 5" 

are designated as malignant nodules. Then, the sample images 

of benign and malignant nodules are shown in the Figure 2 (a) 

and Figure 2 (b) respectively. 

 

 
 

Figure 2. Sample images: (a) Benign nodules; (b) Malignant 

nodules 

 

3.2 Feature extraction 

 

After gathering the data, AlexNet and ResNet-18 were used 

to effectively extract the features. Eight successive layers 

make up the AlexNet model, the first five of which are 

convolutional layers and the final three of which are fully 

connected layers. The greater number of hidden layers 

included in the network allows the AlexNet to extract features 

effectively. The bias layer of the ResNet-18 CNN is a 

convolutional layer, and it passes the input picture through a 

convolutional filter to produce a characteristic map. The kernel 

designates the 55 shaped matrix that had to be transformed into 

the input pattern matrix. The convolutional layer's output is 

shown in Eq. (1). 

 

𝑥𝑗
𝑙 = 𝑓 (∑ 𝑊𝑗

𝑙−1 ∗ 𝑌𝑎
𝑙−1

𝑁

𝑎=1

+ 𝑏𝑗
𝑙) (1) 

 

where, the feature map 𝑗 at 𝑙th layer is represented as 𝑥𝑗
𝑙; the 

activation function is represented as 𝑓() ; total amount of 

features on the layer 𝑙 − 1 is denoted as 𝑁; the kernel on the 

layer 𝑙 − 1 is 𝑊𝑗
𝑙−1; the feature map at 𝑙 − 1 layer is denoted 

as 𝑌𝑎
𝑙−1; the convolution mode is denoted as (∗) and the bias 

value of the convolutional layer is denoted as 𝑏𝑗
𝑙. The second 

layer after the convolution layer is pooling layer which used to 

perform the down-sample to input feature data. Moreover, the 

data’s space size and parameter quantity for model’s each 

layer are decreased by accomplishing the pooling operation. 

The maximum value of the neural unit is taken by max-pooling 

layer at certain field, therefore the new feature from the 

pooling kernel is expressed in Eq. (2). 

 

𝑥𝑛𝑗
𝑙 = 𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑥𝑗
𝑙−1) + 𝑏𝑗

𝑙 (2) 

 

where, the 𝑗th multiplication of 𝑙th layer is denoted as 𝛽𝑗
𝑙 and 

the pooling function is represented as 𝑑𝑜𝑤𝑛(. ). 

The crucial CNN layer is a fully interconnected layer that 

functions as a multilayered perception. Since it was designed 

to address the gradient vanishing problem, this connected layer 

uses the Rectified Linear Unit (ReLU) described in Eq. (3) as 

an activation function. 

 

𝑅𝑒𝐿𝑈(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

 (3) 

 

3.3 Feature selection 

 

In order to choose the best features from the feature set (xn), 

the input feature extraction is sent to the feature selection 

process using the RREMI algorithm. When utilising the 

traditional Relief approach, the feature is solely selected based 

on its weight, which is calculated using the closest target. 

Here, just the 0s and 1s (i.e., weight values) are taken into 

account when choosing the features, which causes even the 

features with the greatest solutions to be overlooked. In order 

to lessen the redundancy of the features, the Renyi entropy-

based mutual information is combined with the weight values 

of traditional Relief. Consider the following: the subset has 

N_s features, the feature subspace is indicated by the letter s, 

and the dataset contains M samples with labels. Hence, the 

sample data 𝑚 (1 ≤ 𝑚 ≤ 𝑀)  with labels in the dataset is 

expressed as vectors 𝑥𝑛(𝑚) = (𝑥𝑛1
(𝑚)

, … , 𝑥𝑛𝑁
(𝑚)

) in the space 

which is generated by 𝑁 amount of features from complete 

feature set. Moreover, the 𝑥𝑛𝑠
(𝑚)

 denotes the certain sample 

data 𝑚  with the labels in the dataset at the 𝑁𝑠  dimensional 

feature subspace. 

Eq. (4) shows the computed distance between the two points 

in the subspace 𝑆  chosen by the feature subsets. Here, the 

normalization method is used to normalize the results. 

 

𝑑 (𝑥𝑛𝑠
(𝑚1)

, 𝑥𝑛𝑠
(𝑚2)

)

= 𝑑𝑀 (𝑥𝑛𝑠
(𝑚1)

, 𝑥𝑛𝑠
(𝑚2)

) exp (−
𝑑𝑀 (𝑥𝑛𝑠

(𝑚1)
, 𝑥𝑛𝑠

(𝑚2)
)

𝑑𝑖𝑠𝑡𝑚𝑎𝑥

) 
(4) 

 

where, 1 ≤ 𝑚1; 𝑚2 ≤ 𝑀 ; the Manhattan distance between 

two different vectors is denoted as 𝑑𝑀  and the 𝑑𝑖𝑠𝑡𝑚𝑎𝑥  is 

expressed in the following Eq. (5). 

 

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = max
𝑚≠𝑘,𝑚,𝑘∈{1,…,𝑀}

𝑑(𝑥𝑛𝑠
(𝑚)

, 𝑥𝑛𝑠
(𝑘)

) (5) 

 

3.4 Hyper parameter optimization using FTRL-DNN 

 

After feature selection, we used FTRL-DNN to classify data 

utilising hyper parameter optimisation to fine-tune the hyper 

parameters. The assigned records and variable data were 

utilised to forecast the solar array output power using the 

FTLR-DNN algorithm. The learning rate value is one of the 

additional factors that must be given for the optimisation 

process. By testing a set of parameters first and then adding 

new ones to check if the optimisation approach performs 

better, the FTRL-DNN method of obtaining the hyper-

parameters is manual. Traditional manual tuning takes a long 

time, and it needs a domain expert to speed things up. To apply 

the FTRL-DNN algorithm in the predication process, first 

some notations was established. (𝑔𝑡 , 𝑦𝑡) is the instances in the 

recorded sample data. It represents input vector of the 

prediction model and there are 𝑑 entries including irradiance 
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profile and the switch state with 𝑖𝑡ℎ entry denoted by 

𝑔𝑡 .Besides, 𝑦𝑡  describes the photovoltaic array of output

power in the instance which is expected by the prediction 

model. The prediction of 𝑦𝑡  is described by ℎ𝑡(𝑤) =  ∑ 𝑤𝑡𝑥𝑡 .

Moreover, the function is defined in Eq. (6), 

𝐽𝑡(𝑤) =
1

2
(𝑏𝑡(𝑤) − 𝑦𝑡)2 (6) 

To decide the weights w, the FTRL-DNN was used. Besides, 

to fasten the calculation, L1 and L2 regularization are added. 

The FTRL-DNN based regression prediction model is then 

operated with two parts, that is prediction process and model 

updating was showed in Eq. (7). 

𝑤𝑡,𝑖

= {

0 |𝑧| ≤ 𝜆𝑡,

− (
𝛽 + √𝑛𝑖

𝛼
+ 𝜆2) (𝑧𝑖 − 𝑠𝑔𝑛(𝑧𝑖)𝜆1)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(7) 

where, 

𝛼 → L𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝛽 → 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑓𝑜𝑟 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝜆1,𝜆2, → 𝐿1,𝐿2, 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑍1,𝑛𝑖, → 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑡𝑜 𝑏𝑒 0

3.5 Long Short Term Memory (LSTM) 

The LSTM classifier is provided the feature selection to 

show performance when huge datasets are managed. Large 

datasets demand more memory to use, which raises the 

computational difficulty. To address the aforementioned 

downgrades, the developed model uses the Firefly Algorithm 

with LSTM-produced hyper parameters. Key factors like the 

number of epochs and hidden layers must be optimised in 

order to surpass the LSTM model. The LSTM unit computing 

process is described in the following points. 

Here, the patient memory cell 𝑐𝑡  is computed, 𝑏𝑐  is 
represented as bias, and 𝑊𝑐  is denoted as weight matrix, as 
indicated in Eq. (8). 

𝑐�̃� = tanh (𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (8) 

As illustrated in Eq. (9), the input gate 𝑖𝑡  is computed,

present input data update of memory cell state value is 

controlled by the input gate, 𝑏𝑖 is stated as bias, 𝑊𝑖 is stated as

weight matrix, and 𝜎 is defined as sigmoid function. 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (9) 

The value of forget gate 𝑓𝑡 is computed, forget gate handles

a memory cell state value depends historical data update, 𝑏𝑓 is

stated as bias, 𝑊𝑓 is stated as weight matrix, as shown in Eq.

(10). 

𝑓𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (10) 

The LSTM model is easy to update, reset, read, and store 

long-term data since it relies on memory cells and control 

gates. The internal parameter sharing mechanism of the LSTM 

operates the output dimensions in accordance with the setups 

for the weight matrix dimensions. The class probabilities are 

determined from the data, and the deep co-learning approach 

identifies labels based on phrases that were not previously 

detected. 

4. RESULT AND DISCUSSION

This section explains the results of the FTRL-DNN 

optimizer technique. The FTRL-DNN optimizer method is 

created and implemented in Python 3.7. The i7 processor and 

16GB RAM configurations are used to execute this thyroid 

nodule categorization. The DDTI dataset, which is used to 

randomised the percentage of training and testing data, is the 

dataset used to analyse the thyroid nodule classification. Eqs. 

(11) to (15) reflect the accuracy, sensitivity, specificity,

precision, and error rate performances that are used to analyse

the FTRL-DNN optimizer method.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
× 100 (11) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (12) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
× 100 (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (14) 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 100 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (15) 

where, 𝑇𝑃  is true positive; 𝑇𝑁  is true negative; 𝐹𝑃  is false 

positive and 𝐹𝑁 is false negative. 

4.1 Performance analysis of FTRL-DNN method 

Figure 3. Graphical representation of FTRL-DNN without 

feature selection 

In this part, the effectiveness of the FTRL-DNN is 

examined using two alternative methods, namely 

classification with and without RREMI. K-Nearest Neighbour 

(KNN) and Decision Tree (DE) are two more classifiers that 

were utilised for the investigation. Table 1 displays the 

performance analysis of RF, KNN, and DE both with and 

without RREMI. The graphical representations of RREMI 

without and with feature selection are shown in Figure 3 and 

Figure 4, respectively. When compared to the KNN, DE, and 

RF, the FTRL-DNN's capacity for larger variance or bias 

elimination aids in the achievement of an improved 
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classification between benign and malignant thyroid nodules. 

In comparison to other classifiers, it has the best 99% accuracy, 

99.99% sensitivity, 99% precision, and 0.99 error rate. 

 

 
 

Figure 4. Graphical representation of FTRL-DNN with 

feature selection 

 

 
 

Figure 5. Graphical representation of FTRL-DNN for 

different feature selection approach 

The suggested FTRL-DNN is examined using the 

traditional Relief method, Particle Swarm Optimisation (PSO), 

and Artificial Bee Colony (ABC) feature selection approaches. 

Table 2 and Figure 5 display the results of the performance 

analysis of the FTRL-DNN with PSO, ABC, Relief, and 

RREMI. This investigation demonstrates that FTRL-DNN 

outperforms PSO, ABC, and Relief in terms of performance. 

Due to the use of mutual information based on Renyi entropy 

and nearest target weight computation, the FTRL-DNN is able 

to reach classification accuracy of 98.94%. In comparison to 

other feature selection algorithms, it provides the best 

accuracy of 99%, best sensitivity of 99%, precision of 99%, 

and error rate of 1.01. 

 

 
 

Figure 6. Graphical representation with various classifiers 

 

The Stochastic Gradient Descent-DNN (SGD-DNN) and 

Adaptive Moment estimation-DNN (Adam-DNN) algorithms 

are used to analyse the proposed FTRL-DNN. Table 3. and 

Figure 6. display the performance study of the FTRL-DNN 

with various feature selections. This investigation 

demonstrates that the FTRL-DNN outperforms the SGD-DNN 

and Adam-DNN in terms of performance. To obtain superior 

classification accuracy of 98.94%, the FTRL-DNN is used. 

Compared to other optimisation techniques, it provides the 

best accuracy of 99%, best sensitivity of 99%, precision of 

99%, and error rate of 1.01.

 

Table 1. Performance analysis of FTRL-DNN for different classifiers 

 
Feature Selection Classifiers Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Error Rate (%) 

RREMI 

KNN 86.15 87.37 85.70 85.19 13.85 

DE 63.94 62.73 63.49 63.79 36.06 

RF 98.94 98.88 99.69 97.14 1.06 

FTRL-DNN 99.00 99.99 99.00 99.00 99.00 

 

Table 2. Performance analysis of FTRL-DNN for different feature selection approaches 

 
Feature Selection Approaches Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Error Rate (%) 

PSO 92.38 90.88 93.08 92.16 7.62 

ABC 93.71 92.62 94.99 91.08 6.29 

Relief 94.28 95.75 94.72 93.28 5.72 

RREMI 98.94 98.88 99.69 97.14 1.06 

FTRL-DNN 99.00 99.00 99.00 99.00 1.01 

 

Table 3. Performance analysis of FTRL-DNN for different optimizer methods 

 
Optimizer Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) Error Rate (%) 

SGD-DNN 96.80 96.00 96.00 96.00 3.20 
Adam-DNN 98.61 97.00 97.00 97.00 1.06 
FTRL-DNN 99.00 99.00 99.00 99.00 1.01 
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5. CONCLUSION 

 

Since thyroid nodules have irregularly shaped external 

surfaces and a variety of interior components, it is challenging 

to classify them. As a result, the RREMI algorithm-based 

feature selection and AlexNet and ResNet-18 based feature 

extraction are created for accurate detection of benign and 

malignant thyroid nodules. The redundant features are 

removed from the entire feature set in accordance with the 

closest target using the suggested method FTRL-DNN. The 

LSTM classifier then categorises thyroid nodules as benign or 

malignant based on the chosen features from the FTRL-DNN 

method. According to the findings, the FTRL-DNN 

outperforms the Adam-DNN and SGD-DNN in terms of 

performance. When compared to the RF, DE, and KNN, the 

accuracy of FTRL-DNN-based thyroid nodule categorization 

is high at 98.94%. Compared to other methodologies, it 

provides the best accuracy, sensitivity, precision, and error rate. 

Therefore, it is a better method for classifying thyroid nodules. 
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