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Cropping pattern planning is important to avoid crop failure. Meanwhile, cropping 

patterns are affected by climate change, which is constantly shifting and erratic. Mistakes 

in determining the planting schedule will affect the risk of crop failure. Hence, climate 

forecast using long-term hydro-climatological data must be conducted as cropping 

patterns are mapped for a multi-year period. Data was collected from the Meteorology, 

Climatology, and Geophysics Agency in Lombok Island. This paper discusses the 

combination of backpropagation and relevance vector machine with RBF kernel. We 

utilized BP-RVM architecture with three hidden layers to improve the performance of the 

network. This combination is utilized because of the BP algorithm's ability to simplify 

data pattern recognition and RVM to speed up and reduce the number of iterations for 

each data training-testing process. The evapotranspiration of each crop was then 

calculated using the FAO24 Blaney-Criddle method. Based on the forecasting, the 

average MAPE was below 20%, which indicates “good forecasting”. The 

evapotranspiration values of CGPRT and horticultural crops were almost the same with 

an average of 2.79 mm/day and 2.78 mm/day. These values are lower than the 

evapotranspiration values of tobacco and rice. Finally, based on the calculation of each 

crop’s water requirement throughout the year, it was recommended to start the first 

planting season at the end of October. The results of this study can be recommended to 

the government to apply the BP-RVM algorithm in forecasting hydro-climatological data 

and optimizing cropping patterns to avoid crop failure and maintain the stability of 

national food security. 
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1. INTRODUCTION

Land is important for people whose lives depend on the 

agricultural sector. A developing country always makes 

strategies to improve food security for its people. Therefore, 

some areas are designated as national food estates [1]. 

Muthayya et al. [2] mentioned that Indonesia is one of several 

countries with the largest rice production in the world. 

Together with China, India Bangladesh, Vietnam, Myanmar, 

Thailand, the Philippines, Japan, Pakistan, Cambodia, the 

Republic of Korea, Nepal, and Sri Lanka, Asian countries 

account for 90% of the world's total rice production [3]. 

Policies on climate change are crucial to maintain the 

stability of food security because climate change affects an 

area’s water availability as well as environmental, social, and 

agricultural systems. Therefore, Riptanti et al. [4] stated that 

information on climate change and water availability is 

required to increase crop productivity, especially in drylands. 

The climate change in question is closely related to the annual 

trend of hydro-climatological data. Therefore, hydro-

climatological data is very important in planning planting 

schedules, which are part of a good cropping pattern. A proper 

planting schedule must follow the interval of water availability 

based on climate change throughout the year. The positive 

impact is to improve national food security. 

One of the purposes of hydro-climatological forecasting is 

to predict climate change and determine farmers’ cropping 

pattern [5]. Hydro-climatological data include rainfall (mm), 

temperature (℃), humidity (%), sunshine duration (hours), 

and wind speed (knots). From time to time, these data change 

and shift, especially rainfall. It affects the timing and pattern 

of planting, which farmers should change accordingly. The 

process of determining planting patterns cannot be separated 

from the optimization of irrigation systems, land area, 

agricultural production, and other indicators in agriculture. 

There are various studies on irrigation system optimization for 

determining irrigation water requirement [6-14]. The 

implementation of irrigation system is limited to wetlands, 

which have reservoirs used to meet water requirements. 

Therefore, cropping pattern planning should be applicable in 

both wetlands and drylands, which can only be planted with 

rainfall overflow. 

In addition, on average, farmers realize that using local 

technology causes low crop productivity as well as low income. 

These problems generally occur due to the lack of institutional 

support from the government for farmers' activities [15]. 

Meanwhile, food production index has a significant and 

positive impact on poverty reduction [16, 17]. 

Modeling or forecasting of hydro-climatological data has 

been widely applied in the fields of economics, planning, 
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construction, transportation, and agriculture. Bathia and Rana 

[18] used linear programming to determine the allocation and 

combination of crops in each growing season. Villagrán [19] 

made a greenhouse simulation for fruit and vegetable 

production by taking into account wind speed and temperature 

data. Ramli et al. [20] used linear regression with a log 

transformation to predict rainfall data, rainfall, total of rainy 

days, temperature, humidity, duration of irradiation, and wind 

speed for 29 years to forecast climate change. The model 

found was only able to predict with an R-square value of 

24.61% and RMSE value of 57.676. Therefore, they 

recommended that the forecasting of hydro-climatological 

data should use non-linear methods for better data pattern 

recognition. The utilization of linear methods is sometimes 

only able to be trained on a relatively small amount of data. 

Therefore, a method that is capable of training a large amount 

of data and is more complex is needed. 

A forecasting method with non-linear functions is artificial 

neural network backpropagation (ANN-BP). ANN have been 

widely used for hydro-climatological data forecasting and the 

most popular data predicted is rainfall [21-24]. This is done 

because rainfall has an important role to determine weather 

and climate changes. ANN-BP algorithm with two hidden 

layers was used by Irawan et al. [25] to predict hydro-

climatological data for determining crop water requirement 

and planning planting patterns. Architecture with two hidden 

layers was also used by Syaharuddin et al. [26] to forecast 

inflation data with the training function is trainrp and the 

activation function of each layer is logsig. The process of 

increasing the number of hidden layers in the ANN-BP 

architecture will certainly make it easier for the network to 

recognize data patterns. Furthermore, the experimental results 

of Vera et al. [27], using the activation function and the 

training function, found that the results of training data using 

a backpropagation architecture with three hidden layers are 

better than two hidden layers. The MSE and MAPE values are 

0.0382 and 0.1954, respectively, when using two hidden layers, 

while when using three hidden layers, the MSE and MAPE 

values are 0.0375 and 0.1936, respectively. 

The forecasted hydro-climatological data can be used to 

calculate evaporation, evapotranspiration (potential and 

actual), effective rainfall, and crop water requirement. 

Generally, researchers use the Penman method (1948) to 

determine the potential evapotranspiration value if the station 

recording hydro-climatological data provides complete data. 

However, at some locations or actual data recording stations, 

the data is sometimes unavailable or limited. This means that 

one or more of the five hydro-climatological data is 

incomplete or the data recording unit is not daily. Thus, 

scientists developed other methods such as Thomthwaite 

(1948), Makkink (1957), Blaney-Criddle (1959), Turc (1961), 

Hamon (1961), Rohwer (1962), Jensen-Haise (1963), 

Penman-Monteith (1965), Priestley-Taylor (1972), 

Hargreaves (1975), Doorenbos-Pruitt (1977), Kharrufa (1985), 

Linacre (1977), and Abtew (1996) [28-32]. These methods 

have been redeveloped according to Food and Agriculture 

Organization (FAO) standards; among them are Penman-

Monteith, Blaney-Criddle, Turc, Jensen-Haise, Jensen, 

Priestley-Taylor, and Hargreaves [33-38]. 

Researches continuously experiment with the methods that 

have been modified in order to determine a reliable method to 

obtain evapotranspiration values. Chiew et al. [39] analyzed 

climate characteristics in 16 Australian locations and found 

that the FAO24 radiation, FAO24 Blaney-Criddle, and 

Penman-Monteith gave similar monthly ET, estimates. This 

result is reinforced by the results of research [40-43], which 

showed that the Blaney-Criddle method gave good calculation 

results of evapotranspiration values, which was close to the 

results found using the FAO Penman-Monteith method as a 

basic method. This finding is an important basis for 

researchers in determining evapotranspiration and crop water 

requirement when hydro-climatological data are incomplete at 

a location. 

The results of of hydro-climatological data forecasting and 

calculation of evapotranspiration and crop water requirement 

need to be integrated due to the multi-year nature of the 

cropping pattern planning procedure. It has still been done by 

many other researchers, where forecasting is only done for one 

current year. Meanwhile, cropping pattern planning is multi-

year. Hence, long-term forecasting must be carried out to 

obtain hydro-climatological data of the coming year. In 

addition, many researchers only focus on rice as the staple 

food although in one heterogeneous land, other crops such as 

CGPRT crops (coarse grains, pulses, roots and tubers), 

horticultural crops, and even tobacco must also be planted. 

Therefore, the purpose of this research is to explain the 

implementation of artificial neural network backpropagation 

and relevance vector machine (BP-RVM) for long-term 

forecasting of hydro-climatological data. Furthermore, we 

calculate evapotranspiration values, effective rainfall, and 

irrigation water requirements, and crop water requirements 

during the cropping process based on the forecasting results. 

The results of this research are expected to be useful in 

planning optimal cropping patterns and serve as a basis for the 

government in devising policies on agriculture. 

 

 
2. ARTIFICIAL NEURAL NETWORK 

 
Climatological data such as wind speed, temperature, 

humidity, and sunshine duration are needed to determine 

evapotranspiration value, crop management water requirement, 

and cropping pattern. Cropping pattern is planned for three 

growing seasons (a multi-year period), thus the data must be 

predicted based on long-term forecasting with Eq. (1): 

 

𝑦𝑘+1 = 𝑁𝑁(𝑦𝑘 , 𝑦𝑘−1, 𝑦𝑘−2, 𝑦𝑘−3, . . . ) (1) 

 

with NN as backpropagation neural network and yk as 

forecasting result in year k obtained using Eq. (2) as follows: 

 

𝑦(𝑥) = 𝑓(𝑤0𝑘 + ∑ 𝑤𝑗𝑘 ⋅ 𝑓(𝑣0𝑗 + ∑ 𝑣𝑖𝑗 ⋅ 𝑥𝑖
𝑛
𝑖=1 )

𝑝
𝑗=1 )  (2) 

 

with 𝑥1, 𝑥2, . . . , 𝑥𝑖 , . . . , 𝑥𝑛 are an input layer determined by 

the amount of input data, 𝑦1, 𝑦2, . . . , 𝑦𝑘 , . . . , 𝑦𝑚 are an output 

layer, 𝑧1, 𝑧2, . . . , 𝑧𝑗 , . . . , 𝑧𝑝  are hidden layers of multi-layer 

nature, 𝑣𝑜𝑗  is the initial weight matrix on the hidden layer that 

initializes randomly between 0 and 1, 𝑤0𝑘 is the initial weight 

matrix on the output layer, while 𝑓(. ) is an activation function 

that converts input data into external data between layers in 

intervals of -1 and 1, depending on the activation function 

given at each layer [44]. This architecture requires a long 

training duration. Therefore, the relevance vector machine 

(RVM) algorithm is needed to build a faster algorithm when 

compared to the ANN-BP algorithm only. Furthermore, the 

radial basis function kernel will help in the data recognition 

process in the first hidden layer. While the 2nd and 3rd hidden 
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layers use binary sigmoid function (Sub-heading 4.3). 

 

 

3. CALCULATION OF CROP WATER 

REQUIREMENT 

 

Generally, the growing requirements of each crop depends 

on climatic indicators such as rainfall (mm/month), 

temperature (℃), and humidity (%). The growing 

requirements of each crop are different (Table 1), thus 

affecting the crop planting schedule for each season. Therefore, 

these needs must be taken into account in planning a good 

cropping pattern, especially water requirement. 

Rainfall is the main indicator for all crops. In planning 

cropping patterns, hydro-climatological data must be 

considered, especially in the data forecasting process. Initially, 

forecasting data is used to determine the evapotranspiration 

value and water requirement of each crop during the pre-

planting, planting, and harvesting (including post-planting) 

processes. Evapotranspiration is the evaporation of the surface 

of a field overgrown with plants, which is a combination of 

evaporation and transpiration stages [45]. Meanwhile, crop 

water requirements are generally determined by 

evapotranspiration and effective rainfall [46, 47]. The actual 

crop evapotranspiration value (mm/day) can be determined 

using Eq. (3): 

 

𝐸𝑡𝑐 = 𝐾𝑐 ⋅ 𝐸𝑡𝑜 (3) 

 

with Kc indicating crop coefficient (Table 2) [48] and 

indicating potential evapotranspiration (mm/day) [49]. Crop 

coefficients are characteristics of crops used to predict 

evapotranspiration values and have different values according 

to the length of planting of food crops. Meanwhile, potential 

evapotranspiration is a value that describes the need for the 

environment, a set of vegetation, or an agricultural area to 

evapotranspire which is determined by several factors, such as 

sunlight intensity, wind speed, leaf area, air temperature, and 

air pressure. 

 

Table 1. Growing conditions and crop harvest time 

 
Types of Plants Rainfall (mm/month) Temp. (℃) Humidity (%) Harvest Time (days) 

Rice (C1) 200 23-27 50-80 100-115 

Corn (C2) 85-100 23-27 55-80 85-115 

Peanut (C3) 100-150 25-32 50-80 85-110 

Green Bean (C4) 50-200 25-27 50-89 51-80 

Soybean (C5) 100-200 23-30 60-70 70-100 

Cassava (C6) 50-90 25-28 60-65 215-320 

Sweet Potato (C7) 60-125 25-27 50-60 90-150 

Tobacco (C8) 50-125 22-33 50-70 120-150 

Red Onion (C9) 100-200 25-32 50-70 60-90 

Watermelon (C10) 40-50 25-30 50-70 70-100 

 

Table 2. Kc value according to the food and agriculture organization (FAO) 

 

10-days Rice 
CGPRT Crops 

Tobacco 
Horticulture 

Corn Soybean Green Bean Peanuts Sweet Potato Cassava Red Onion Watermelon 

1 1.1 0.5 0.5 0.5 0.51 0.50 0.5 0.50 0.50 0.40 

2 1.1 0.51 0.63 0.59 0.59 0.51 0.51 0.51 0.51 0.58 

3 1.1 0.59 0.75 0.67 0.66 0.51 0.51 0.52 0.51 0.75 

4 1.08 0.78 0.88 0.98 0.76 0.59 0.59 0.61 0.60 0.88 

5 1.05 0.96 1.0 1.003 0.85 0.66 0.66 0.70 0.69 1.00 

6 1.05 1.01 1.0 1.025 0.9 0.76 0.76 0.90 0.80 1.00 

7 1.05 1.05 1.0 0.97 0.95 0.85 0.85 1.10 0.90 1.00 

8 1 1.04 0.91 0.84 0.95 0.90 0.90 1.12 0.93 0.85 

9 0.95 1.02 0.82 0.7 0.95 0.95 0.95 1.13 0.95 0.70 

10 0.95 0.99 0.64  0.75 0.95 0.95 1.13 - - 

11 0.95 0.95 0.45  0.55 0.95 0.95 1.12 - - 

12 0.95 0.95 0.45  0.55 0.55 0.75 1.07 - - 

13-15 - - - - - 0.55 0.95 0.84 - - 

16-18 - - - - - - 0.55 - - - 

Average 1.03 0.86 0.75 0.81 0.75 0.69 0.68 0.86 0.71 0.8 

Table 2 shows that each crop has a different coefficient 

value (Kc), which affects the evaporation and 

evapotranspiration values of each crop [50, 51]. 𝐸𝑡𝑜 value can 

be determined with various methods according to the types of 

available data, such as rainfall, temperature, wind speed, 

humidity, and sunshine duration. In this study, the authors 

used the FAO24 Blaney-Criddle method as shown in Eq. (4) 

[36]: 

 

𝐸𝑡𝑜 = 𝑎 + 𝑏𝑝(0.46𝑇 + 8.13)(1 + 0.0001𝐸) (4) 

 

with T is temperature (℃); p is empirical coefficients based on 

latitude (0) (see Figure 1); E is elevation (m) [52]; a and b are 

calibrated constants obtained using Eq. (5) and Eq. (6): 

 

𝑎 = 0.0043(𝑅𝐻𝑚𝑖𝑛) − (
𝑛

𝑁
) − 1.41  (5) 

 

𝑏 = 0.88165 + 0.857596 (
𝑛

𝑁
) −

0.00454((𝑅𝐻𝑚𝑖𝑛) + 0.093803(𝑈𝑑)) −

0.00405((𝑅𝐻𝑚𝑖𝑛) (
𝑛

𝑁
) − 0.00087(𝑅𝐻𝑚𝑖𝑛)(𝑈𝑑))  

(6) 

 

with RHmin as the lowest daily relative humidity (%); n/N as 

567



 

the average ratio of actual to possible sunshine duration (%); 

and Ud as wind speed. Furthermore, the p-value in Eq. (4), 

shown in Figure 1, was taken from the position of Kediri 

station, which is close to a latitude of 100 (see Figure 2). 

 

 
 

Figure 1. P-value based on blaney-criddle method 

 

𝐸𝑡𝑜  value can be used to calculate water requirement for 

rice production or irrigation water requirement (IR) with Eq. 

(7): 

 

𝐼𝑅 =
𝑀𝑒𝑘

𝑒𝑘−1
  (7) 

 

with e=2.7182; 𝑀 = 1.1 𝐸𝑡𝑜 + 3; 𝑘 =
3𝑀

25
. 

Furthermore, the effective rainfall (Reff) for rice (Eq. (8)) is 

different from that for CGPRT crops (Eq. (9)). 

 

𝑅𝑒𝑓𝑓 = 0.7
𝑅80

10
  (8) 

 

𝑅𝑒𝑓𝑓 = 0.7
𝑅50

10
  (9) 

 

𝑅80 and 𝑅50 are the mainstay rainfall determined from all 

data used as input for making forecasting using the BP-RVM 

architecture. Furthermore, Eq. (3) and Eqs. (8)-(9) were used 

to determine crop water requirement with Eqs. (10)-(11). 

 

𝑁𝐹𝑅 = 𝐸𝑡𝑐 + 𝑃 − 𝑅𝑒𝑓𝑓 + 𝑊𝐿𝑅, (for rice) (10) 

 

𝑁𝐹𝑅 = 𝐸𝑡𝑐 + 𝑃 − 𝑅𝑒𝑓𝑓, (for CGPRT crops, 

horticulture, etc) 
(11) 

 

P is the location that shows soil infiltration; in this study, 

the P-value was 3 mm/day. WLR is the turnover of subsoil 

water carried out twice a month (semi-monthly according to 

the fertilization schedule); each was 50mm (3.3 mm/day for 

15 days). 

 

 

4. METHOD 

 

4.1 Study area and dataset 

 

There are two sources of data used in this research. The first 

source was the Agriculture and Plantation Office that provided 

data on crop coefficients, plant growth requirements, and 

several standard parameters in calculating crop water 

requirements, such as location Eqs. (10)-(11), elevation Eq. (4), 

p-coefficient based on the Blaney-Criddle method (Figure 1), 

30-day land preparation period, water requirements for 

saturation and a water layer of 200mm. The second source was 

the Meteorology, Climatology, and Geophysics Agency in 

Lombok Island, Indonesia that provided hydro-climatological 

data consisting of rainfall, wind speed, humidity, temperature, 

and sunshine duration data taken from 3 stations, namely 

Kediri station, Gunung Sari station, and Lembar station. The 

agricultural data is standardized based on direct observation 

and the results of statistical calculations by agricultural experts. 

Meanwhile, hydro-climatological data is 10 daily data so that 

36 data are obtained in a year. The data is normalized using 

the Z-score method that has been constructed in the BP-RVM 

computing system. The distribution of stations is shown in 

Figure 2.

 

 
 

Figure 2. Study area and data selection 
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4.2 Research procedure 

 

In the initial stage, hydro-climatological data were predicted 

using a backpropagation neural network. Long-term 

forecasting was used because a cropping schedule is generally 

prepared for three growing seasons (a multi-year period). 

Furthermore, the results of this data forecasting were used to 

calculate the values of evaporation, radiation, 

evapotranspiration, effective rainfall, and water requirements 

for crop management. 

In this study, a backpropagation architecture with three 

hidden layers was used. The number of neurons in the input 

layer, hidden layer, and output layer was 36-73-37-19-1. This 

architecture is in accordance with the research results of 

Syaharuddin et al. [53] who carried out training-testing on 

rainfall and temperature data from Lombok International 

Airport station. Furthermore, Syaharuddin et al. [44, 54] also 

tested several parameters of the backpropagation architecture 

with three hidden layers. Moreover, the relevance vector 

machine (RVM) algorithm with radial basis function (RBF) 

kernel was combined with backpropagation to improve 

network performance and minimize the number of epochs. On 

the input layer and hidden-1 layer, radbas function (RBF) was 

utilized, while logsig function was utilized on the hidden-2 

layer and hidden-3 layer. We use accuracy parameters, namely 

mean square error (MSE) and mean absolute percentage error 

(MAPE), which show that the smaller the value, the more 

accurate the forecasting results. We utilize the MSE and 

MAPE values as a standard that supports each other in seeing 

the error rate or accuracy of the BP-RVM algorithm. In this 

research, we use the maximum value standard according to 

Lewis (1982), namely the MAPE value of<10% indicates high 

accurate forecasting, 10%≤ MAPE<20% indicates good 

forecasting, 20% ≤ MAPE<50% indicates reasonable 

forecasting, and 50% ≥ MAPE indicates inaccurate 

forecasting. Furthermore, the number of epochs is used to see 

the number of iterations generated with a maximum target of 

100 epochs in each architecture performance. The flowchart of 

the BP-RVM-RBF architecture is shown in Figure 3. 

Hydro-climatological forecasting data (rainfall, temperature, 

wind speed, humidity, and sunshine duration) were used to 

determine evapotranspiration values (Eqs. (3)-(4)), treatment 

or irrigation water requirements (Eq. (7)), effective rainfall 

(Eqs. (8)-(9)), and crop water requirements (Eqs. (10)-(11)). 

In Figure 2, there are three stations recording rainfall data, so 

the effective rainfall was determined after determining the 

average rainfall in the area around the three stations. In 

addition, the calculation in Figure 3 was done to analyze the 

availability of water required by crops in each month based on 

the forecasting data. Thus, the suitable time to plant each crop 

according to the provisions in Table 1 would be found. 

 

 
 

Figure 3. Algorithm of BP-RVM with radial basis function kernel 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Hydro-climatological data forecasting results 

 

Based on Figure 2, there are three rainfall stations, namely 

Gunung Sari Station, Lembar Station, and Kediri Station. The 

forecasting results from these three stations are averaged 

before calculating the effective rainfall value. We utilized 

average statistics because cropping pattern planning is global 

for the West Lombok district. This has an impact on 

government calculations in determining the amount of food 

crop seed and fertilizer supplies before distribution. The 

569



 

results of the average rainfall calculation will not significantly 

affect the calculation of effective rainfall and other parameters. 

While the temperature, wind speed, humidity, and sunshine 

duration data still use data from Kediri station. This is due to 

the climatology data recording tool only being available at 

Kediri station. The architecture in Figure 3 is used for data in 

long-term forecasting using Eq. (1), meaning that 2012-2021 

data is used for 2022 data forecasting, then 2012-2021 data and 

2022 forecasting results are used for 2023 data forecasting. 

The forecasting results are shown in Table 3. 

 

Table 3. Descriptive results of hydro-climatological data forecast 

 

Data Years Maximum Minimum Average Epoch MSE MAPE 

Rainfall-Kediri Station 
2022 202,82 0 64,07 34 1643,35 - 

2023 165,9 0 64,77 41 950,617 - 

Rainfall-Lembar Station 
2022 218,51 0 49,84 52 1312,75 - 

2023 249,14 0 48,20 40 1249,45 - 

Rainfall-Gunung Sari Station 
2022 182,18 0 63,04 28 2839,21 - 

2023 174,39 0 68,49 27 899,269 - 

Temperature 
2022 27.75 24.72 26.55 33 0.37 1.83 

2023 28.13 24.38 26.46 42 0.25 1.52 

Humidity 
2022 88.48 78.65 84.20 33 7.75 2.68 

2023 89.34 79.4 84.38 37 6.62 2.64 

Wind Speed 
2022 5.03 1.2 3.02 48 1.23 27.51 

2023 5.17 1.13 2.96 40 0.53 23.62 

Sunshine 
2022 89.99 38.69 69.15 35 188.22 17.24 

2023 93.25 39.24 71.46 36 175.14 17.10 

 

Table 3 indicates that the number of epochs generated is 

between 27 and 52. When predicting rainfall data, the smallest 

number of epochs was found from data obtained from Gunung 

Sari station, while the highest was found from data taken from 

Lembar station. Furthermore, the highest average of rainfall 

was found in the Kediri station area. Geographically, this 

station is located in a flat area, whereas Gunung Sari and 

Lembar areas which are in mountainous areas. In addition, the 

MSE value of each data could be found. A higher value 

indicates that the data have high fluctuations and vice versa. 

For example, temperature data that is relatively static has an 

average MSE value of 0.31. The forecasting results also 

showed that the maximum average rainfall in 2022 and 2023 

would be 172.53 mm and 178.33 mm, respectively. Overall, 

taking into account the MAPE value based on Lewis' 

classification [55], the average forecasting results fall into the 

“good forecasting” category. The distribution of forecasting 

data based on long-term forecasting is shown in Figures 4-8. 

 

 
 

Figure 4. Forecasting data of rainfall 

 

 
 

Figure 5. Forecasting data of temperature 

 

 
 

Figure 6. Forecasting data of wind speed 
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Figure 7. Forecasting data of humidity 

 

 
 

Figure 8. Forecasting data of sunshine duration 

 

Generally, Figures 4-8 demonstrate that the trend of each 

data is relatively stable. The forecasting data of the year 2023 

does not appear to have different fluctuations from the 

forecasting data in 2022. Rainfall forecasting data in Figure 4 

show that rainfall in 2023 tends to increase compared to 2022 

with a peak occurring in December 2022 of 417.01 mm and 

starting to decline at the end of February 2023. 

Furthermore, the temperature forecasting data in Figure 5 

show that there would be an increase in temperature in 

September-October every year, reaching more than 28℃ as 

the rainy season would begin in this period. Wind speed 

forecasting data in Figure 6 show that the maximum wind 

speed would occur in July-August, reaching 5 knots. The 

speed would increase again in early January, reaching more 

than 4 knots. The humidity forecasting data in Figure 7 show 

an increase at the beginning, middle, and end of the year with 

an average of 84.28%. Finally, the forecasting data of sunshine 

duration in Figure 8 show that there would be an increase at 

the end of March and decrease at the end of August. Humidity 

would be between 79% and 89%. Humidity is strongly 

influenced by temperature, wind speed, rainfall, sunshine 

duration, and vegetation density [56, 57]. This means that high 

rainfall will increase the density of plant vegetation, which can 

increase humidity in an area with high vegetation. 

The amount of water, temperature, and humidity suitable for 

each crop shown in Table 4 were calculated based on the 

criteria in Table 1 and the results of data forecasting. These 

values can be used as a reference to determine the appropriate 

planting season (PS) for each crop. 

 

Table 4. Rainfall suitability for crops 

 
PS Month R (mm) T (℃) Crops 

PS-1 

October 204.45 27.31 C1, C2, C4, C5, C9 

November 379.47 27.18 C1, C2, C4, C5, C9 

December 362.51 26.89 C1, C2, C4, C5, C9 

January 287.77 26.75 C1, C2, C4, C5, C9 

PS-2 

February 226.48 26.51 C1, C2, C4, C5, C9 

March 99.66 27.32 C2, C4, C6, C7, C8, C10 

April 151.49 26.37 C2, C3, C4 C5, C9 

May 85.01 25.65 C2, C4, C6, C7, C8, C10 

PS-3 

June 54.94 24.62 C4, C6, C8, C10 

July 81.15 24.59 C4, C6, C7, C8 

August 30.20 25.59 - 

September 150.20 27.30 C2, C3, C4, C5, C9 

 

Based on the rainfall forecasting in Figure 4, rainfall in 2022 

would start to increase in October 2022, meaning that the 

planting season (PS-1) could begin that month. Therefore, 

Table 4 shows that almost all crops are suitable to be planted 

between late October and February, except peanut, cassava, 

sweet potato, tobacco, and watermelon. Generally, these crops 

could be planted in the dry season (PS-2 and PS-3). Table 4 

also shows that there would be very little rainfall in August, so 

it would not be suitable to plant any of the crops that month. 

 

5.2 Effective rainfall and irrigation water requirements 

 

The forecasting results of hydro-climatological data were 

used to calculate the potential evapotranspiration value (Eq. 

(4)), water requirement for rice production or irrigation water 

requirement (Eq. (7)), and effective rainfall (Eqs. (8)-(9)). The 

calculation results are shown in Figure 9. 

 

 
 

Figure 9. Rainfall conditions and water requirements for rice 

production 

 

Irrigation water requirement is the amount of water needed 

to meet the needs for crop evaporation, water loss, water 

requirements by taking into account the amount of water 

provided by nature through rainfall and beneath the ground. 

Figure 9 illustrates that the ratio of rainfall to water 

requirement for rice production is normal. The average 

571



 

irrigation water requirement throughout 2022-2023 would be 

12.36mm. It would be met by rainfall except in July 2022, June 

2023, and August 2023 because the dry season (PS-3) with 

very low or zero rainfall intensity would take place in these 

months. 

 

 
 

Figure 10. Eto value and effective rainfall 

 

Based on Figure 10, it can be seen that the potential 

evapotranspiration value throughout 2022-2023 would be 

between 2.82mm/day and 4.38 mm/day with an average of 3.6 

mm/day and a maximum of 4.38mm/day at the end of 

September 2023. Meanwhile, effective rainfall for both rice 

and CGPRT crops would be very high in the December-

January-February (DJF) period with a maximum value of 

8.4mm/day for rice and 11.06mm/day for CGPRT crops. In the 

March-April-May (MAM) period, the value would decrease 

since this period occurs in the dry season and the beginning of 

PS-2. 

 

5.3 Actual evapotranspiration and crop water 

requirements 

 

The actual crop evapotranspiration value (Eq. (3)) and crop 

water requirement (Eqs. (10)-(11)) were determined according 

to the planting schedule in a year. Figure 4 shows that the 

rainfall data at the end of October 2022 would reach more than 

50mm. This means that the planting season (PS-1) for rice and 

crops that meet the growing requirements could begin. Thus, 

the suitable planting season should begin between late October 

2022 and early October 2023. Hence, in the interval of the 

growing season, the value of Etc and NFR can be determined 

according to Figure 11 and Figure 12. 

 

 
 

Figure 11. Average value of Etc 

 
 

Figure 12. Average value of NFR 

 

The evapotranspiration value of rice was higher than that of 

CGPRT crops, tobacco, and horticultural crops. The maximum 

Etc value of rice was 4.5 mm/day, the minimum value was 2.99 

mm/day, with an average of 3.79 mm/day. Figure 11 also 

presents the high evapotranspiration value of tobacco. This 

high value was obtained due to the relatively long harvest time 

of tobacco with an average coefficient (Kc) of 0.86. This value 

was higher than the coefficient of CGPRT crops and 

horticultural crops (see Table 2). Finally, the 

evapotranspiration values of crops and horticulture were 

almost the same with an average of 2.20 mm/day (CGPRT 

crops) and 2.19 mm/day (horticultural crops). This occurred 

because the morphology and coefficient of CGPRT and 

horticultural crops are almost the same, namely 0.76 and 0.75 

respectively. 

Crop water requirements are dominantly influenced by the 

actual evapotranspiration value of and the effective rainfall for 

each crop [58, 59]. Figure 12 shows that rice has the highest 

water requirement compared to CGPRT crops, tobacco, and 

horticultural crops. Meanwhile, the crops suitable to be 

planted in the dry season (PS-2 and PS-3) statistically have the 

same water requirements. 

 

 

6. CONCLUSIONS 

 

The combination of backpropagation algorithm and 

relevance vector machine (BP-RVM) with three hidden layers 

demonstrated a good performance in forecasting hydro-

climatological data. The data forecasting results are 

categorized as “good forecasting” with a MAPE value of 

11.77% (<20%). Based on the results of rainfall forecasting, 

the determination of the beginning of the growing season (PS-

1) would begin in late October 2022 with rainfall reaching 

82.96 mm (>50 mm). The water requirement for rice 

production throughout the year would be met except in July 

2022, June 2023, and August 2023 (PS-3 period). 

Furthermore, the calculation results of the FAO24 Blaney-

Criddle method provide information that the 

evapotranspiration value of CGPRT crops was almost the 

same as that of horticultural crops with an average of 2.79 

mm/day and 2.78 mm/day. These values are lower than the 

evapotranspiration of tobacco and rice. Throughout the season, 

the average water requirements were 7.88 mm/day for rice, 

1.94 mm/day for CGPRT crops, 2.33 mm/day for tobacco, and 

1.93 mm/day for horticultural crops. The results of 
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evapotranspiration, crop water requirements, and crop 

suitability (rice, CGPRT crops, tobacco, and horticultural 

crops) for each growing season can be used as an initial policy 

in preparing the amount of food crop seed and fertilizer 

supplies to be distributed. In addition, we recommend other 

researchers to use FAO24 Blaney-Criddle in calculating 

evapotranspiration values if incomplete data is found at a 

hydro-climatological data recording station. 
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