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Smart agriculture, also known as Agriculture 4.0, integrates cutting-edge technology with 

conventional farming practices through the agricultural Internet of Things (IoT). Despite 

its numerous advantages, Agriculture 4.0 introduces additional cybersecurity risks due to 

the widespread deployment of IoT-based devices. One significant threat is Distributed 

Denial of Service (DDoS) attacks, which can compromise the availability and integrity of 

agricultural systems. This paper proposes an Enhanced Multiclass Support Vector 

Machine (EMSVM) model for detecting DDoS attacks in Agriculture 4.0. To improve 

classification accuracy, the EMSVM model incorporates a novel optimization method 

called Orthogonal Learning Chaotic Grey Wolf Optimization (OLCGWO) for parameter 

selection. The performance of the proposed methodology is evaluated using two real-

world traffic datasets, CIC-DDoS2019 and TON_IoT, which contain various DDoS attack 

scenarios. The results demonstrate the effectiveness of the EMSVM model in both binary 

and multiclass classification contexts. 
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1. INTRODUCTION

"Smart agriculture" [1, 2] is a new way of farming that 

emphasizes individualized customer care by making use of 

cutting-edge information technologies including the web, big 

data, the internet of things, and many others. In a word, the 

new method is an information technology–enabled, farm–

specific answer. While modern information technology offers 

promising avenues for the enhancement of agricultural 

production, it also makes considerable stresses on safety in the 

context of smart farming [3]. Agriculture 4.0 is more than just 

a trend; it's the next technological step in the industry's 

evolution toward smarter, more efficient, and greener practices. 

The massive amounts of data generated by the supply chain 

every day [4]. This data was before wasted, but with the advent 

of big data and advanced farming techniques, it can be used to 

significantly advance the harvest and quality of any crop. 

1.1 Advantages of Agriculture 4.0 

The following sections discuss the results of practicing 

"smart agriculture". 

Production volume: When used to farming, smart 

technology has the potential to greatly increase output. This 

helps meet the challenge of feeding an expanding population. 

The quality of production has far-reaching consequences for 

the health and nourishment of Americans of all income levels. 

If a country's residents have access to higher-quality food, they 

will be healthier and live longer, increasing their economic 

output. 

Efficiency in agricultural methods and material 

consumption: Smart technology can improve the efficiency of 

traditional farming practices. This, in turn, indorses better 

utilization of agricultural capitals [5]. 

The ideal production cost: It occurs when the methods 

employed strike a good balance between quantity, quality, and 

efficiency. The price of agricultural products goes up as a 

result. 

Efforts to Lessen Waste The agricultural sector, a major 

contributor to the economy, is mostly to fault for the enormous 

amounts of food and other secondary resources that go to 

waste every year. This waste might be monitored and reduced 

with the help of modern technologies. 

Ecological sustainability is achieved by direct reductions in 

environmental and ecological footprints as a result of 

decreased left-over and increased agricultural procedure 

efficiency. 

Saving Time: Smart agriculture's timely distribution of 

required pesticides, fertilizers, and other consequence in 

timely and agricultural production with fewer wounded [6]. 

While implementing agricultural 4.0 technology, the 

farming may be at risk from the following: 

More computational capabilities will be built into systems 

as gadgets and technology evolve [7]. The goal of this sort of 

International Journal of Safety and Security Engineering 
Vol. 13, No. 3, June, 2023, pp. 509-517 

Journal homepage: http://iieta.org/journals/ijsse 

509

https://orcid.org/0000-0002-2339-4036
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.130313&domain=pdf


 

integration is to provide for the requirements of sustainable 

agriculture, mechanization, and farming methods [8]. 

Safeguarding sensitive information is another concern. Data 

privacy, data trustworthiness, and data accuracy from data 

production through decision making are all very vital. 

❖ Theft of sensitive company and consumer 

information. 

❖ By stealing resources managed by sensors and 

devices and destroying their targets. 

❖ Reputational harm if sensitive information is leaked. 

Damage to agricultural infrastructure, sensor failures in 

livestock breeding, scheme hacks in greenhouse farming are 

all potential threats to Agriculture 4.0 [9]. All of them have the 

potential to disrupt farming operations by damaging the 

hardware and software that makes up the IoT infrastructure. 

Malicious attacks, illegal access, privacy breaches, and other 

problems [10] also plague data-gathering technology. 

The field has shifted, with researchers focusing on 

agricultural contexts including water management, livestock, 

and farmlands, as well as artificial intelligence and machine 

learning. Numerous water-saving and productivity-boosting 

monitoring, management, and decision-making options have 

been explored in the irrigation sector [11]. 

  

1.2 Research motivation 

 

This piece was inspired by three main ideas: 

1) As a response to the low output of conventional 

farming and the widespread adoption of information 

knowledge, "smart agriculture" is a novel paradigm 

that merges the two. It might be the breakthrough in 

farming that finally takes off. Therefore, outlining the 

existing production model and specific investigations 

is essential [12]. 

2) There has been less analysis of security issues in 

smart agriculture despite a lot of study in this area 

compared to industrial security solutions. 

3) Thirdly, analyzing the worries in smart agricultural 

contexts is essential [13].  

4) Given the aforementioned factors, it is impossible to 

provide an inclusive overview of the security issues 

posed by smart agriculture without leaving many 

gaps in our understanding. 

These new technologies have seen extensive use in Industry 

4.0, and it would be easy to adapt them for use in farming. 

Since the placement of IoT-based devices is in a public arena, 

the greatest difficulty in establishing technologies, but rather 

in the guarantee of privacy. The cyber security research 

community recommends (IDS), which are a skill for network 

safety that constantly monitors occurrences inside a system 

and assesses them in light of intrusion indication [14].  

Anomaly-based intrusion detection systems (deep-learning 

techniques) are the subject of this study. However, in the area 

of Agriculture 4.0, there are eight significant obstacles to 

overcome: Challenges include [[IIoT data collection]], [[less 

training data]], [[non-representative training data]] [15]. These 

glitches are solved by our suggested model. Our article makes 

use of widely-used, up-to-date datasets that have been put to 

good use by the research community in the creation of 

intrusion schemes for IIoT systems. 

Our aids in this work are: 

We provide an evolutionary algorithm-based machine 

learning system for improving IDS models. 

We analyze and compare several machine learning 

strategies for cyber safety in agriculture 4.0 and offer an 

evaluation of their efficacy. 

Using the TON_IoT dataset, two brand-new real-world 

traffic datasets, we investigate the performance of each model 

across two categorization types (binary and multiclass). 

We pay special attention to the ROC Curve, the False 

Acceptance Rate (FAR), the True Negative Rate (TNR), the 

Detection Rate (DR), and the Precision. 

 

1.3 Organization of the paper 

 

Here is how the rest of this piece is laid out. In Part 2, we'll 

examine the relevant literature. The use of IDSs is described 

in Section 3. A comparison of several IDS for Agriculture 4.0 

is providing in Section 4. Section 5 accomplishes the paper. 

 

 

2. RELATED WORKS 

 

In order to detect cybersecurity threats in IoT cloud 

networks, Alrayes et al. [16] introduce an Enhanced Artificial 

Gorilla Troops Optimizer (EAGTO) that uses deep learning. 

IoT cloud environment threat detection is a fundamental part 

of the EAGTODL-CTD methodology given here. In order to 

identify malware via an image classification challenge, the 

suggested EAGTODL-CTD model prioritizes the 

transformation of input binary files into color pictures. To 

ensure compatibility, the EAGTODL-CTD model performs 

preliminary processing on the incoming data. Class labels are 

determined using a cascaded gated recurrent unit (CGRU) 

model for use in threat detection and classification. Our work's 

originality is demonstrated by the fact that we use the EAGTO 

method as a hyperparameter optimizer to fine-tune the 

CGRU's underlying parameters. The EAGTODL-CTD 

model's efficacy is measured using a dataset annotated with 

two classes, cancerous and benign. Enhanced accuracy of the 

EAGTODL-CTD model (99.47%) was indicated by the 

experimental results as the best. 

Cyber-attack model built on (RFE) and multilayer 

perceptron (MLP) by Kilincer et al. [17]. The RFE method 

picked the best features by utilizing the kernel functions of 

(XGBRegressor). A hyperparameter optimization was used to 

fine-tune the MLP's parameters, and a 10-fold cross-validation 

procedure was used to assess the model's efficacy. Using Edith 

(The proposed methodology can be used to defend against 

cyberattacks on medical software. 

There must be more research into cyber refuge and the 

prevention of cyber attacks, such as the deployment of 

intrusion detection as a preventative measure, as indicated by 

Jain et al. [18]. Most people today utilize at least one internet 

service. The term "cyber" is used to describe the realm of the 

internet, computers, and other technological services. New 

protocols and technology have allowed for significant 

development in the cyber realm. Every internet business must 

address the serious problem of cyber security. The foundations 

of any cyber defense system are intrusion detection systems 

(IDSs) like those used to monitor networks and computers for 

malicious activity. The NSL-KDD dataset is frequently used 

for the study and expansion of intrusion detection systems, as 

well as for algorithm research and verification. The purpose of 

this research was to create a neural network-based method for 

predicting potential threats in intrusion detection systems. In 

order to conduct the simulations in this article, the Python 

Spyder program is employed. 
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The FIEBB model, proposed by Wang et al. [19], integrates 

features and detects entities' boundaries. Our technique 

employs a recently developed pretrained language model 

called PERT to derive digital text word embeddings. And to 

combine the best of both graph neural networks and recurrent 

neural networks, a brand new neural network cell called 

GARU is created. To improve the quality of the hidden 

representation, this method syndicates the graph encoder with 

the gate apparatus. In addition, we contribute an entity 

boundary detection module for performing entity head and tail 

forecast as job, as there are many complicated entities in the 

field of cybersecurity. On cybersecurity datasets, we do 

comprehensive tests. The outcomes show that the suggested 

model outperforms the currently used approaches. 

To this end, the elastic stack (ELK) architecture established 

by Folino et al. [20] is proposed to process and store log data 

in real time from various users and applications. Using the 

benefits of system produces an ensemble of models to 

categorize user behavior and identify abnormalities in real 

time. In addition, the users are sorted into groups based on the 

digital traces they've left behind, which are gleaned from a 

wide variety of data sources and analyzed with a distributed 

evolutionary algorithm. The approach's efficacy in detecting 

abnormalities in user behavior, dealing with missing data, and 

reducing false alarms has been experimentally validated on 

two real-world data sets. 

Unsupervised Hunting of Anomalous Commands (UHAC) 

is a machine learning-based approach proposed by Kayhan et 

al. [21] for detecting text-based anomalous commands in 

security information and event management (SIEM) logs that 

are promising leads for threat hunting. Different from other 

approaches, the suggested one builds a feature set by 

augmenting document-term and document-character matrices, 

which is a novel step. Next, a custom loss function is used to 

this feature set as training data for an autoencoder-based 

detector. UHAC routinely achieves better results than 

competing feature sets and techniques, including one-class 

word-embedding based models like word2vec. If an anomaly 

exists in the top 10 percent of the data, the UHAC detector will 

find it. The results have ramifications for process auditing on 

endpoint devices, where cybersecurity analysts conduct threat 

hunting in SIEM logs. 

Improved cyber-attack finding utilizing unlabeled data for 

ICS traffic nursing and identifying abnormal data transfers is 

presented by Dairi et al. [22]. Importantly, we developed two 

anomaly detection strategies based on semi-supervised hybrid 

deep learning for use in the intrusion detection of ICS traffic 

in a smart grid environment. Our first method is a Gated 

recurrent unit (GRU)-based stacked autoencoder (AE-GRU), 

and our second, which we term a GAN-RNN, is built on the 

GAN model but uses a (RNN) for both the generator and the 

discriminator. It is anticipated that including GRU and RNN 

into AE and GAN models would enhance their capability to 

learn temporal connections in multivariate data. Models like 

Support Vector Machine, and Elliptical Envelope are anomaly 

finding in cyber-attacks on power grids. In contrast to other 

methods for cyber-attack detection, these use simply regular 

events data for training, without designated attack kinds. On 

the IEC 60870-5-104 (also known as IEC 104) communication, 

which is frequently used for smart grids, the detection 

performance of different methods is proven. Among the 

approaches tested, those based on GAN-GRU and AE-GRU 

exhibited the greatest improvement in finding, with an average 

F1-score of 0.98. 

3. PROPOSED SYSTEM 

 

In this section, interest to security researchers who work to 

ensure the safety of the scheme. we suggest machine learning-

based cyber-attacks that is explained in the following sub-

sections. 

 

3.1 Network model 

 

Three levels, or "layers," make up the Agriculture 4.0 

network model given here: (1) Agricultural sensors; (2) Fog 

computing; and (3) Cloud computing. Data collected by 

drones and other Internet of Things sensors is used in the 

agriculture sector. In the agricultural sensors layer, actuators 

are triggered by data that meets predetermined criteria. The 

agricultural sensors layer incorporates new energy 

technologies and smart grid design to power Internet of Things 

gadgets. Each fog node has an intrusion detection system 

powered by deep learning. Cloud computing nodes offer 

storage services, while the fog computing layer analyzes the 

IoT data with machine learning algorithms after receiving it 

from the agricultural sensors layer. Intrusion detection systems 

that rely on deep learning to process data do their calculations 

in the fog nodes. We assume that there is a malicious party 

intent on disrupting the network's operations in order to 

compromise food security, the efficacy of the agri-food supply 

chain, and agricultural production. 

 

3.2 Dataset description 

 

In particular, we used the CIC-DDoS2019 dataset [23] and 

the TON dataset [24]—two recently released real-world traffic 

datasets. There are three criteria for picking them: Agriculture 

4.0 is like these networks because (1) they were designed for 

a TCP/IP communication stack, (2) they feature DDoS assaults, 

and (3) they are representative of the nature of the industry. 

The TON_IoT dataset was developed to mimic the 

functioning of actual operational IoT/IIoT networks through 

the use of interacting network parts and IoT/IIoT systems 

across the Edge, Fog, and Cloud. To help with the 

administration of the interplay between these three levels, the 

NSX-VMware platform was used (NFV) technologies. The 

experiment is coded in Python 3 on a GPU using TensorFlow, 

and it is run on Google Colaboratory 

(https://colab.research.com). To be more specific, there are 

four stages to the method: There are four stages: (1) gathering 

datasets, (2) pre-processing, (3) training, and (4) testing. 

 

3.3 Pre-processing of the CIC-DDos2019 dataset 

 

There are a CIC-DDoS2019 dataset [23], including 

50,006,249 rows related to DDoS assaults and 56,863 rows 

related to normal traffic. Each column has 86 characteristics. 

Table 1 summarizes the attack statistics for dataset. The 

training dataset includes 12 DDoS attacks, including NTP, 

DNS, LDAP, Microsoft SQL Server, NetBIOS, SNMP, SSDP, 

User Datagram TFTP. 

❖ An NTP-based attack is a (DDoS) attack in makes 

advantage of a compromised Network Time Protocol 

(NTP) server to overwhelm a targeted client-server or 

other network with an excessive amount of UDP data 

traffic. This type of attack has the possible to render 

the target and its associated network unreachable to 

legitimate traffic. 
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❖ An attack that leverages the Domain Name System 

(DNS) to flood a target IP address with resolution 

requests is called a reflection-based DDoS assault. 

❖ By sending queries to a publicly accessible 

susceptible LDAP server, an attacker can create huge 

replies (amplified), which are then reflected to a 

target server, causing a distributed denial of service 

(DDoS) attack. 

❖ An MSSQL- DDoS attack in which the attacker 

forges an IP address to make scheduled requests seem 

to originate from the target server, thereby 

overwhelming its resources. 

❖ An attacker conducting a reflection-based DDoS 

assault against NetBIOS can trick a target computer 

into rejecting all incoming NetBIOS communication 

by sending a faked "Name Release" or "Name 

Conflict" message. 

❖ To jam the target's network pipes, an SNMP-based 

assault will produce attack volumes in the hundreds 

of gigabits per second using the Simple Network 

Management Protocol (SNMP). 

❖ An SSDP-based assault is a reflection-based 

distributed denial of service attack in which the 

attacker uses UPnP protocols to send a victim an 

amplified quantity of data. 

❖ Attacks based on User Datagram Protocol (UDP) lag 

try to disrupt the targeted host by flooding it with IP 

packets containing UDP datagrams. 

❖ To compromise a Web server or application, a 

WebDDoS-based attack will use seemingly 

innocuous HTTP GET or POST requests. 

❖ By mimicking the normal sending SYN-ACK 

(synchronize-acknowledge), and responding with an 

ACK (acknowledge), a SYN-based attack might 

starve the victim server of its resources and render it 

inoperable. 

❖ The Trivial File Transfer Protocol (TFTP) may be 

exploited in this assault, which makes use of online 

TFTP servers. The attacker file, and the victim TFTP 

server returns the data to the attacker's target host. 

❖ A port scan can be performed on a single computer 

or on a whole network as part of a port scan-based 

assault. Scanning is performed by inquiring as to 

what services are active on a remote server. 

 

Table 1. Attack categories in CICDDoS2019 dataset 

 
Attack Category Flow Count 

DDoS-NTP 1,202,653 

DDoS_SNMP 5,159,821 

Benign 56,863 

DNS 5,071,421 

LDAP 2,179,930 

SSDP 2,610,611 

SYN 1,582,289 

TFTP 20,082,70 

UDP 3,134,665 

DDoS_UDP-Lag 366,461 

DDoS_WebDDoS 459 

DDoS_MSSQL 4,522,482 

DDoS-NetBIOS 4,092,379 

 

Classification problems including two classes and 

classification errands involving more than two classes (multi-

class classification) are studied in order to assess the efficacy 

of machine learning algorithms. We generate data sets with 

class labels of Dataset_2_class, Dataset_7_class, and 

Dataset_13_class. Table 2 shows, for instance, the data used 

in training and testing the Dataset_2_class.  

 

Table 2. Attack categories in Dataset_2_class 

 
Category  Test Training 

Benign 17,146 56,101 

Attack 314,716 997,054 

 

3.4 Pre-processing of dataset 

 

Data from networks, operating systems, and telemetry 

devices make up the TON_IoT dataset, a novel testbed for an 

IIoT network. IoT and IIoT sensor telemetry data is provided 

in 7 separate formats. 

These files include the following information: 

❖ Data types found in File 1: 

"Train_Test_IoT_Weather" include: Normal (35,000 

rows), DDoS (5,000 rows), Injection (5,000 rows), 

Password (5,000 rows), Backdoor (5,000 displays the 

Internet of Things data from a networked weather 

sensor, including temperature, pressure, and 

humidity values. 

❖ File 2: "Train_Test_IoT_Fridge" has the following 

categories of rows: Normal (35,000), DDoS (5,000), 

Injection (5,000), Password (5,000), Backdoor 

(5,000), Ransomware (2902), and XSS (2942). Data 

from a networked refrigerator sensor, including 

temperature readings and ambient variables, are 

presented in this file. 

❖ File 3: "Train_Test_IoT_Garage_Door" includes the 

following categories of data: Normal (70,000 rows), 

DDoS (10,000 rows), (10,000 rows), Password. Data 

from a networked door sensor is shown in the file, 

showing whether the door is open or closed. 

❖ File 4: "Train_Test_IoT_GPS_Tracker" includes the 

following categories of data: Normal (35,000 rows), 

DDoS (5,000 rows), Injection (5,000 rows), 

Password (5,000 rows), Backdoor (5,000 rows), 

Ransomware (2,833 rows), XSS (577 rows), and 

Scanning (550 rows). Data from a networked GPS 

tracker sensor, including its latitude and longitude 

coordinates, is presented in the file. 

❖ You'll find the following data types in File 5: 

"Train_Test_IoT_Modbus": Normal. IoT data file 

containing Modbus function code for reading an 

input register. 

❖ You'll find the following categories in File 6: 

"Train_Test_IoT_Motion_Light" and Scanning 

(3550 rows). The data in the file is the Internet of 

Things readings from a switched-on or -off light 

sensor. 

❖ Included in File 7 "Train_Test_IoT_Thermostat" are 

the following types of data: Normal (35,000 rows), 

Injection (5,000 rows), Password (5,000 rows). The 

file contains Internet of Things data showing the 

current temperature as measured by a thermostat 

sensor on the network. 

 

3.5 Classification using Enhanced multiclass SVM 

(EMSVM) model 

 

To model intricate connections between variables, SVM is 
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well recognized as a statistical ML technique. The power to 

generalize and the capacity to deal with the curse of 

dimensionality are excellently combined in SVM. Typically, 

DM and ML algorithms suffer from the curse of 

dimensionality, which reduces their effectiveness. However, 

SVM has proven itself to be a gifted method that can achieve 

remarkable results despite the limited data available for 

training the algorithm. When used to non-linearly separable 

problems, kernel functions allow SVMs to effectively translate 

them into higher dimensions, where they may be separated 

with more ease. The vast majority of widely-applied models 

can have a common foundation thanks to kernel mapping. The 

training dataset's original dimension-space is transformed to 

higher dimensionality in order to map non-linear separable 

samples into separable ones That can be readily differentiated. 

Although SVM was originally designed for use in 

classification, it has now been shown to be effective in 

regression as well. The scenario studied here is categorized as 

a research challenge. It is well knowledge, however, that a 

model's generalizability increases as its ability to increase the 

margins between classes does. To achieve generalization in 

SVM, it is common practice to generate a collection of vectors 

that is sparse but yet capable of definitively distinguishing 

between classes. Boundary examples capture the information 

required to partition the classes, and hence may be used to 

categorize new data. 

The primary objective of any classification problem is to 

establish a correlation between a given set of input features 

(also called predictors) and a given set of class variables (also 

called training instances) in a given input features (also called 

predictors) and m training instances. Note that whereas XR in 

regression issues, YR in classification difficulties. As an 

example, consider a classification problem with a training 

dataset. 

T=x_ij, x_(i+1, j+1),...,x_nm,𝑐_1, 𝑐_2, . . . 𝑐_𝑡, where t >=1. 

An ''Optimal Separating Hyperplane (OSH)'' is generated by 

minimizing are then applied to the training dataset to produce 

accurate results. 

 

𝑠𝑔𝑛(∑ 𝑦𝑖 ∝𝑖 . 𝐾(𝑥𝑖 . 𝑥𝑗)𝑛
𝑖=1 + 𝑏)  (1) 

 

where, 𝑥𝑗 = 1,2, .3 . . , 𝑍  are the so-called the '' (SV)''. The 

''lagrange dual equation,'' denoted by Eq. (2) and sometimes is 

used to get the coefficient _i and the bias b. 

 

𝑀𝐴𝑋 (∑ ∝𝑖−
1

2
∑ ∑ ∝𝑖∝𝑗

𝑛
𝑗=1 . 𝑦𝑖𝑦𝑗 . 𝐾(𝑥𝑖 , 𝑥𝑗)𝑛

𝑖=1
𝑛
𝑖=1 )  (2) 

 

where: 
 

∑ ∝𝑖 𝑦𝑖 = 0𝑛
𝑖=1   (3) 

 

Only if 0_iC, can we say that x_j is a support vector. In 

where C is issue that determines the misclassification error vs 

margin tradeoff. In other words, C controls the price at which 

you must choose between simplifying your model and 

reducing your training errors. It's worth noting that the SVM 

has a significant penalty for points, therefore if C is SVM 

could create an over-fitted model. However, a model may be 

under-fitted if C is too low. However, the dataset is 

transformed into hyperplanes via the kernel function K. 

SVM may make use of a wide variety of kernel function 

types. Polynomial and Radial Basis Function (RBF) are the 

two most used methods. Degree d polynomial function is 

found using Eq. (4): 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 . 𝑥𝑗 + 1)

𝑑
 (4) 

 

Note that the additive constant in the equation disappears 

when d = 1, transforming the polynomial function back into a 

linear one. This allows us to derive Eq. (5), which yields the 

linear kernel function: 
 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (5) 

 

However, the RBF (or Gaussian kernel) is determined by 

the following Eq. (6): 
 

𝐾(𝑥𝑖 . 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾𝑥𝑖 − 𝑥𝑗
𝑑) (6) 

 

In which the Gaussian width is determined by. To put it 

another way, it functions similarly to d in Polynomial kernel 

in that it determines the degree of adaptability of the final 

classifier. Here, 𝛾 =
1

2𝜎2 and 𝜎 is a free parameter. 

Sigmoid kernel is another type of Neural Network-related 

kernel function. This kernel function, which has been in use 

since 1995, may be computed with the help of the following 

Eq. (7): 
 

𝐾(𝑥𝑖 . 𝑥𝑗) = tan ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) (7) 

 

where, 𝛾 and 𝑟 are kernel influences. 

 

3.5.1 Parameter settings in EMSVM 

Research and finding the optimal standards of the most 

critical limits is necessary when constructing any classification 

model to ensure successful training and then reasonable testing 

of the created classification perfect(s). The present study 

employs a technical parameter exploration strategy to ensure 

that the best parameter values picked, as the parameters of an 

SVM model, '' in QP'' (k), and ''the kernel'' (K). An additional 

factor to think about is e (''Epsilon,'' for short), which 

determines the mistake margin before punishment kicks in. 

Choosing these criteria is typically a time-consuming and 

exhausting trial-and-error procedure. In this research, a 

"improved GWO" is used to the provided dataset in order to 

fine-tune all the aforementioned parameters necessary for 

developing a reliable SVM model. 

 

3.5.2 Parameter tuning with chaotic grey wolf optimization 

(CGWO) 

To avoid becoming stuck in a rut of local optimization, we 

provide the Optimization for feature learning. The traditional 

GWO takes its cues for its optimal selection of SVM models 

from the ranking and hunting methods used in this study. 

Grey wolves may be divided into four distinct subspecies. 

Alpha (the leader), beta (one who contributes to decision 

making), delta (one who defers to alphas and omegas), and 

omega (the wolf pack's subservient member) are the four 

positions. The hunting group exhibits numerous social 

qualities in addition to the distinct ones associated with 

socioeconomic status. There are three distinct features of the 

hunting phase: First, there is the pursuit and approach; second, 

there is the pursuit and encirclement; and third, there is the 

attack to the target. The CGWO perfect is a mathematical 

framework inspired on the social structure of wolves. 

 

3.5.3 Orthogonal learning-based CGWO (OLCGWO) 

Orthogonal CGWO is an ‘intelligent drive mechanism’ for 
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making a provisional position like 𝑟 =  (𝑟1, 𝑟2, . . . , 𝑟𝑛)𝑇  and 

ℎ = (ℎ1, ℎ2, . . . , ℎ𝑛)𝑇 for altogether particles. It is uttered as in 

Eqns. (8) & (9): 

 

ℎ𝑗 = 𝑥𝑖,𝑗 + 𝑤𝑣𝑖,𝑗 + 𝑐1𝑟1,𝑗(𝑥𝑖,𝑗
𝑝𝑏𝑒𝑠𝑡

− 𝑥𝑖,𝑗) (8) 

 

𝑟𝑗 = 𝑥𝑖,𝑗 + 𝑤𝑣𝑖,𝑗 + 𝑐2𝑟2,𝑗(𝑥𝑗
𝑔𝑏𝑒𝑠𝑡

− 𝑥𝑖,𝑗) (9) 

 

Social learning and individual cognition are represented by 

'r' and 'h' in this context. Next position 'x' is obtained by 

applying the OLCGWO over 'r' and 'h', and the particle's 

velocity is calculated by taking the absolute value of the 

difference among the particle's present location and its future 

position, 'x'. 

The OLCGWO mechanism for motion combines 'r' and 'h' 

data effectively to determine the next particle's location. 

Particles generate their current velocity and position via a 

moving mechanism throughout the searching process. The 

mobile mechanism for determining both the particle and 

population optimal solution. Particle searching is performed 

using x_iol, which is a replacement for x_ipbest and x_gbest 

in the orthogonal learning strategy's implementation of the 

moving mechanism. Eq. (10) represents a revised expression 

for the particles' velocities. 

 

𝑣𝑖,𝑗 = 𝑤𝑣𝑖,𝑗 + 𝑐1𝑟1,𝑗(𝑥𝑖,𝑗
𝑜𝑙 − 𝑥𝑖,𝑗) (10) 

 

In this case, the x_iol stores encouraging data, such as 

x_ipbest and x_gbest, to counteract the oscillation observed 

when learning from an exemplar with a lot of abrupt changes 

in direction. In terms of the generations required to get the 

optimal particle configuration, x_iol serves as a benchmark. 

A new learning example is produced once the exemplar 

approaches the maximum mobility strategy. Stagnation is 

assumed to occur at generation k_i. When the particles' best-

case scenario isn't changed, we add 1 to k_i. A new learning 

example is created whenever k_i > K. Best searching 

efficiency is improved by avoiding oscillation using this 

approach. 

In order to keep the most important data from the particles 

intact, this study explores dimensional learning, which is 

motivated by OLCGWO. Here, the learning exemplar x_i_ol 

is built by transferring knowledge from x_i_pbest, which in 

turn was learned from x_gbest. This opens the door for xgbest 

to become the standard. An example is given to show how it 

works. Let's pretend we're trying to find the global minimum 

of a five-dimensional sphere using the function f(x) = 

x_12+x_22+x_32+x_42+x_52T. x_ipbest= (1,0,3,2,4)T is the 

best possible position. Similarly, xgbest = (2,4,2,0,T) is the 

best possible location right now. According to the illustration, 

x_ipbest = 30, and f(xgbest) = 28. Next, x_i_pbest uses the 

global features of x_gbest as a model for improvement. The 

xtemp vector is a temporary one, i.e., 𝑥temp  = 𝑥𝑖
𝑝𝑏𝑒𝑠𝑡

 

=  (1, 0, 3, 2, 4)T. 

 

 

4. RESULTS AND DISCUSSION 

 

Agriculture 4.0 entails incorporating cutting-edge 

technologies into conventional farming practices to boost 

output and quality. Some examples of these cutting-edge 

innovations are the computing, AI, NFV, and SDN (Software-

Defined Networking). We used and chose cutting-edge data 

sets featuring DDoS attack scenarios against Agriculture 4.0 

technologies based on these technologies. 

 

4.1 Performance metrics 

 

It is crucial to carefully choose performance criteria with 

which to compare various machine learning and deep learning 

tactics. Our analysis centres on the following key performance 

metrics: DR, FAR, precision, F-score, recall, and accuracy. In 

Table 3, we see examples of four potential classifications, two 

of which are incorrect. 

 

𝑇𝑁𝑅𝐵𝐸𝑁𝐼𝐺𝑁 =
𝑇𝑁_𝐵𝐸𝑁𝐼𝐺𝑁

𝑇𝑁_𝐵𝐸𝑁𝐼𝐺𝑁 + 𝐹𝑃_𝐵𝐸𝑁𝐼𝐺𝑁
  (11) 

 

𝐹𝐴𝑅 =
𝐹𝑃_𝐵𝐸𝑁𝐼𝐺𝑁

𝑇𝑁_𝐵𝐸𝑁𝐼𝐺𝑁 + 𝐹𝑃_𝐵𝐸𝑁𝐼𝐺𝑁
  (12) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘

𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘 ∗ 𝐹𝑃_𝐵𝐸𝑁𝐼𝐺𝑁
  (13) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘

𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘 ∗ 𝐹𝑁_𝐴𝑡𝑡𝑎𝑐𝑘
  (14) 

 

𝐷𝑅_𝐴𝑡𝑡𝑎𝑐𝑘 =
𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘

𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘 + 𝐹𝑁_𝐴𝑡𝑡𝑎𝑐𝑘
  (15) 

 

𝐹 −  𝑠𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  (16) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘 + 𝑇𝑁_𝐵𝐸𝑁𝐼𝐺𝑁

𝑇𝑃_𝐴𝑡𝑡𝑎𝑐𝑘 + 𝐹𝑁_𝐴𝑡𝑡𝑎𝑐𝑘 + 𝑇𝑁_𝐵𝐸𝑁𝐼𝐺𝑁 + 𝐹𝑃_𝐵𝐸𝑁𝐼𝐺𝑁
  

(17) 

 

𝐷𝑅_𝑂𝑣𝑒𝑟𝑎𝑙𝑙 =
∑ 𝑇𝑃_𝐸𝑎𝑐ℎ − 𝐴𝑡𝑡𝑎𝑐𝑘 − 𝑇𝑦𝑝𝑒

∑ 𝑇𝑃_𝐸𝑎𝑐ℎ − 𝐴𝑡𝑡𝑎𝑐𝑘 − 𝑇𝑦𝑝𝑒 + ∑ 𝐹𝑁_𝐸𝑎𝑐ℎ − 𝐴𝑡𝑡𝑎𝑐𝑘 − 𝑇𝑦𝑝𝑒
  

(18) 

 

where, TP signifies a positive result, TN a negative result, FP 

a positive result, and FN a negative result. In this context, a 

True Negative (TN) refers to data that was correctly 

recognized as benign, whereas a False Positive (FP) shows 

data that was wrongly recognized as malicious. Data that has 

been accurately identified as an attack is denoted by the True 

Positive (TP). The FN represents malicious information that 

was wrongly categorized as non-threatening. 

 

Table 3. Confusion matrix 

 
 Forecast Class 

Negative Class Positive Class 

Class Negative session  (TN) (FP) 

Positive session  (FN) (TP) 

 

Table 4 represents that the Overall classification results of 

EMSVM-CGWO model on dataset-1. In this comparison we 

used different class labels as class. In this analysis, initially we 

used 70% of training data has been used. In this ratio analysis, 

the Binary Class attained the accuracy as 94.87 and the 

precision value as 88.06 and the recall value as 67.72 and 

finally the F1 score value as 76.56 respectively. Another, 

Dataset_2_class attained the accuracy as 94.16 and the 

precision value as 85.37 and the recall value as 84.52 and 

finally the F1 score value as 84.94. Also, Dataset_7_class 

attained the accuracy as 92.12 and the precision value as 92.32 

and the recall value as 96.46 and finally the F1 score value as 

94.34. After that the Dataset_13_class attained the accuracy as 

93.71 and the precision value as 88.58 and the recall value as 
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82.9 and finally the F1 score value as 85.28 respectively. In 

this analysis, initially we used 30% of testing data has been 

used. In this ratio analysis, the Binary Class attained the 

accuracy as 95.34 and the precision value as 87.98 and the 

recall value as 69.29 and finally the F1 score value as 77.52 

respectively. Another, Dataset_2_class attained the accuracy 

as 94.49 and the precision value as 87.08 and the recall value 

as 83.69 and finally the F1 score value as 85.35. Also, 

Dataset_7_class attained the accuracy as 92.12 and the 

precision value as 92.56 and the recall value as 92.65 and 

finally the F1 score value as 94.75. After that the 

Dataset_13_class attained the accuracy as 94.13 and the 

precision value as 89.24 and the recall value as 83.31 and 

finally the F1 score value as 85.87 respectively.  

In another set of training of 30%, the Binary Class attained 

the accuracy as 95.34 and the precision value as 87.98 and the 

recall of 69.29 and f1-score as 77.52. Another the 

Dataset_2_class attained the accuracy as 94.49 and the 

precision value as 87.08, and the recall value as 83.69 and 

finally the F1 score value as 85.35. After the Dataset_7_class 

attained the accuracy as 92.56 and the precision value as 92.65 

and the recall value as 96.95 and finally the F1 score value as 

94.75. After the Dataset_13_class attained the accuracy as 

94.13 and the precision value as 89.24 and the recall value as 

83.31 and finally the F1 score value as 85.87 respectively. 

 

Table 4. Overall classification consequences of EMSVM-

CGWO perfect on dataset-1 

 
Class Labels Accuracy Precision Recall F-Score 

Training Set (70%) 

Binary Class 94.87 88.07 67.72 76.56 

Dataset_2_class  94.16 85.37 84.52 84.95 

Dataset_7_class 92.12 92.32 96.46 94.34 

Dataset_13_class 93.71 88.58 82.9 85.28 

Testing Set (30%) 

Binary Class 95.35 87.98 69.29 77.52 

Dataset_2_class  94.49 87.09 83.69 85.35 

Dataset_7_class 92.56 92.65 96.96 94.75 

Dataset_13_class 94.13 89.24 83.31 85.87 

 

Table 5 represents that the Overall classification 

consequences of EMSVM-CGWO perfect on dataset-2. In this 

analysis, we used different class label as files. Also, we used 

the training and testing as 70-30% ratios. In 70% of training 

set we used the different files as File 1 reached the accuracy 

value as 98.96 and the precision value as 92.24 and a recall 

value as 89.38 and finally the f1-score value as 90.79 

respectively. Another File 3 reached the accuracy value as 

98.54 and the precision value as 99.25 and a recall value as 

98.86 and finally the f1-score value as 99.05. After File 5 

reached the accuracy value as 99.12 and the precision value as 

96.07 and a recall value as 98.80 and finally the f1-score value 

as 97.42. Finally, the File 7 reached the accuracy value as 

98.87 and the precision value as 95.85 and a recall value as 

95.68 and finally the f1-score value as 95.75. 

Table 6 represents that the comparison of various Machine 

Learning Models. In this analysis, we take two datasets to 

analysis the performance at the attacks and normal. In the 

initial dataset attack performance of the model as ELM model 

reaches the precision of 85.14 and also the recall value as 

85.31 and another F1-score value as 85.20. After that the LR 

model reaches the precision of 85.29 and also the recall value 

as 87.92 and another F1-score value as 85.50. After that the 

MLP model reaches the precision of 84.92 and also the recall 

value as 83.98 and another F1-score value as 84.54. Then 

SVM model reaches the precision of 88.67 and also the recall 

value as 88.06 and another F1-score value as 85.63. Also, 

another, EMSVM 88.78 and also the recall value as 90.15 and 

another F1-score value as 87.54. Another proposed EMSVM-

CGWO model reaches the precision of 92.65 and also the 

recall value as 96.95 and another F1-score value as 94.75 

respectively. 

 

Table 5. Overall classification consequences of EMSVM-

CGWO perfect on dataset-2 

 
Class Labels Accuracy Precision Recall F-Score 

Training Set (70%) 

File 1 98.96 92.24 89.38 90.79 

File 3 98.54 99.25 98.86 99.05 

File 5 99.12 96.07 98.80 97.42 

File 7 98.87 95.85 95.68 95.75 

Testing Set (30%) 

File 1 98.99 93.22 89.12 91.12 

File 3 98.86 99.37 99.15 99.26 

File 5 99.14 96.24 98.71 97.46 

File 7 99.00 96.28 95.66 95.95 

Table 6. Comparison of various Machine Learning Models 

 

Dataset Method 
Attacks Normal  

Precision Recall F1-Score Precision Recall F1-Score 

Dataset-1 

ELM 85.14 85.31 85.21 65.46 70.04 68.75 

LR 85.29 87.92 85.50 70.11 63.40 65.91 

MLP 84.92 83.98 84.54 70.33 66.49 67.53 

SVM 88.67 88.06 85.63 72.00 74.63 76.28 

EMSVM 88.78 90.15 87.54 73.90 74.86 77.35 

EMSVM-CGWO 92.65 96.95 94.75 87.53 76.49 81.44 

 

Dataset-2 

ELM 74.66 91.22 85.29 93.92 92.93 94.40 

LR 84.83 81.53 81.02 92.18 92.37 95.07 

MLP 85.11 74.01 79.39 91.61 93.15 92.60 

SVM 82.54 88.99 85.96 94.02 92.92 93.17 

EMSVM 83.94 91.18 88.86 95.68 93.75 94.33 

EMSVM-CGWO 96.24 98.71 97.46 96.30 94.14 95.19 

After that the normal section, the ELM reached the 

precision proportion of 65.45 and also the recall rate of 70.04 

and the F1-score value as 68.75 respectively. Another LR 

model reached the precision value of 70.11 and the recall value 

of 63.40 and the F1-score value as 65.91. And the another, 

MLP model reached the precision value of 70.32 and also the 

recall value as 66.49 and the F1-score value as 67.53 

respectively. And the another, SVM model reached the 
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precision value of 72.00 and also the recall value as 74.63 and 

the F1-score value as 76.28. And the another, EMSVM model 

reached the precision value of 73.90 and also the recall value 

as 74.86 and the F1-score value as 77.35. The proposed 

EMSVM-CGWO model reached the precision value of 87.53 

and also the recall value as 76.49 and the F1-score value as 

81.44 respectively. 

In the second dataset in the normal category’s performance 

of the model as ELM model reaches the precision of 74.66 and 

also the recall value as 91.22 and another F1-score value as 

85.29. After that the LR model reaches the precision of 84.83 

and also the recall value as 81.53 and another F1-score value 

as 81.02. After that the MLP model reaches the precision of 

85.11 and also the recall value as 74.01 and another F1-score 

value as 79.39. Then SVM model reaches the precision of 

82.54 and also the recall value as 88.99 and another F1-score 

value as 85.96. Also, another, EMSVM 83.94 and also the 

recall value as 91.18 and another F1-score value as 88.86. 

Another proposed EMSVM-CGWO model reaches the 

precision of 96.24 and also the recall value as 98.71 and 

another F1-score value as 97.46 respectively. 

After that the normal section in dataset-2, the ELM reached 

the precision degree of 93.92 and also the recall proportion of 

92.93 and the F1-score value as 94.40 respectively. Another 

LR model reached the precision value of 92.18 and the recall 

value of 92.37 and the F1-score value as 95.07. And the 

another, MLP model reached the precision value of 91.61 and 

also the recall value as 93.15 and the F1-score value as 92.60 

respectively. And the another, SVM model reached the 

precision value of 94.02 and also the recall value as 92.92 and 

the F1-score value as 93.17. And the another, EMSVM model 

reached the precision value of 95.68 and also the recall value 

as 93.75 and the F1-score value as 94.33. The proposed 

EMSVM-CGWO model reached the precision value of 96.30 

and also the recall value as 94.14 and the F1-score value as 

95.19 respectively. 

 

 

5. CONCLUSION 

 

In this study, we introduce an improved machine learning 

approach to intrusion detection. This study refined the class 

assignment method by developing a superior multiclass SVM 

model to better support multiclass classification domains and 

help in choosing the optimal set of limits when constructing an 

SVM model. Many different types of machine learning were 

compared and analyzed with cyber security for Agriculture 4.0 

in mind. We analyze the effectiveness of each model for 

classification using two recent, real-world traffic datasets: 

CICDDoS2019 and TON_IoT. The proposed model beats 

prior machine learning techniques across a wide range of 

performance metrics. These ROC Curve, and accuracy. Most 

machine learning IDS techniques were also surpassed by the 

EMSVM-CGWO model. These methods were put to the test 

on dataset. The standard dataset utilized in this study is one of 

the study's shortcomings; future studies might benefit from 

using data collected in a more realistic agricultural setting. 

Many farmers and agricultural workers may not be adequately 

aware of cybersecurity threats and best practices. They may 

not possess the necessary expertise to identify and respond to 

potential cyber intrusions effectively. 

Limited Resources: Agricultural environments, especially 

in developing regions, often have limited resources for 

implementing robust cybersecurity measures. This can include 

a lack of investment in advanced intrusion detection systems, 

cybersecurity personnel, and up-to-date security infrastructure. 

Advanced algorithms can learn from large datasets to detect 

anomalies, identify patterns, and adapt to evolving threats in 

real-time. 
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