
Experimental Investigations to Fault Reduction System for Software Applications

Vemulapalli Rashmi1 , Chetla Chandra Mohan1 , Vasantha Bhavani2 , Yarlagadda Anuradha3 ,

Lella Kranthi Kumar4 , Battula Sowjanya5 , Kusuma Sundara Kumar6 , Kodepogu Koteswara Rao7* ,

Anil Kumar Pallikonda7

1 Department of IT, PVP Siddhartha Institute of Technology, Vijayawada 520007, India
2 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
3 Department of CSE, Gayatri Vidya Parishad College of Engineering (A), Visakhapatnam 530048, India
4 School of Computer Science and Engineering, VIT-AP University, Amravati 522237, India
5 Computer Science and Engineering, Chebrolu Engineering College, Guntur 522212, India
6 Civil Engineering, BVC Engineering College, Odalarevu 533210, India
7 Department of CSE, PVP Siddhartha Institute of Technology, Vijayawada 520007, India

Corresponding Author Email: kkrao@pvpsiddhartha.ac.in

https://doi.org/10.18280/isi.280304 ABSTRACT

Received: 21 October 2022

Accepted: 20 January 2023

A fault reduction system for software applications is put forward in direct random testing

which includes two phases i.e., test case generation and false reduction. The system's

primary components are a database, a false reduction mechanism, a test case creation

mechanism, and an application selection mechanism. By using feature values from the input

application, the test case generation method sets up an Object Behaviour Dependence

Model (OBDM) to produce test cases. In addition to the indistinguishable inputs, the false

reduction method configures an Adaptive Genetic Algorithm (AGA) to minimise the

banned inputs. The AGA graciously accepts the exposure measurements of the experiment

circumstances in order to considerably reduce the tendency to make mistakes.

Keywords:

fault, AGA, test case, metrics, dependence

model

1. INTRODUCTION

In recent years, continuous development of modern

software resulted in increased need of software for businesses

and individuals. The software coding involves faults which

require software developers to fix the problems. Several

testing techniques have evolved to repair the software faults.

Black-box testing is an ad hoc testing method where

programmes are examined by generating ad hoc and

autonomous inputs. In the middle of several software testing

procedures, random testing is the crucial strategy that is

generally simple to apply. The software being tested can

frequently be used in unexpected ways thanks to random

testing, which is also effective in spotting errors. Current

random testing is not very efficient in terms of time and

money. Test cases produce failures but do not find errors

immediately. The biggest drawback of random testing is the

time it takes to generate test cases, which results in numerous

inputs that are unlawful [1, 2].

Debugging is a time-consuming task in the development of

software. Even though several mechanical techniques have

been proposed, they are ineffective. Additionally, while

physical debugging, breakpoint selection is difficult for

developers. To address these issues and help developers locate

errors quickly, interactive error localization techniques are

used, which combine the benefits of mechanical approaches

with physical debugging [3].

Before the error is discovered, the structure continuously

suggests inspection locations based on the statements'

uncertainties, which are planned in accordance with the

implementation information of experiment conditions and the

developer's response information at earlier checking points

[4].

In general, the genetic algorithm represents an all-

encompassing search technique that strengthens signal from

the evolutionary data of inheritance. The iterations and the

population in this process are represented by the production

and the chromosomes, respectively. The meeting fee for the

traditional GA is lower as compared to reality. As a result, it

is important to create as many test cases as you can in a way

that will enable you to find as many flaws and coverage targets

as you can. An effective random testing test case is required.

Through the best experiment condition in the direct random

testing, interaction defects must be reduced. The production of

test cases must be carried out using an effective procedural

approach. An Adaptive Genetic Algorithm is needed to

construct the finest product which pointedly moderates the

prohibited inputs [5].

2. OBJECTIVES

The invention's primary objective is to provide software

applications undergoing direct random testing with an

effective fault reduction mechanism. Other goals include

reducing interactive faults by employing the best experiment

condition in direct random testing, generating as many test

cases as possible that will help find as many faults as possible

coverage targets, carrying out test case generation using an

effective procedural model, and creating the best product to

considerably minimise the forbidden inputs using an Adaptive

Genetic Algorithm [6].

Ingénierie des Systèmes d’Information
Vol. 28, No. 3, June, 2023, pp. 567-573

Journal homepage: http://iieta.org/journals/isi

567

https://orcid.org/0000-0001-7687-5872
https://orcid.org/0009-0000-8079-5031
https://orcid.org/0000-0002-7997-4881
https://orcid.org/0000-0002-6271-0986
https://orcid.org/0000-0001-7736-5321
https://orcid.org/0009-0008-5140-5637
https://orcid.org/0009-0000-0476-9413
https://orcid.org/0000-0002-0869-3695
https://orcid.org/0000-0003-3629-4138
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280304&domain=pdf

3. SUMMARY OF THE INVENTION IN THE

PROPOSED RESEARCH

A failure reduction method for software applications is

suggested by the innovation. In order to give a fundamental

grasp of some features of the claimed subject matter, the

following gives a condensed synopsis. This synopsis is not a

thorough analysis. It's not meant to define the boundaries of

the stated topic matter or to point out important or crucial

components. Its main objective is to provide certain ideas just

as a prologue to the eventual presentation of a more in-depth

exposition [7].

According an aspect, the invention proposes a fault

reduction system for software applications which comprises an

application selection means, a test case generation means and

a false reduction means. The application selection means is

configured to select an input application from the database for

software testing. The test case generation means is configured

to generate test cases by means of feature value from the input

application. The test case generation means utilizes Object

Behavior Dependence Model (OBDM) to generate test cases

[8].

The false reduction means is configured to reduce illegal

inputs and equivalent inputs. The fault reduction system

provides efficient software testing in direct random testing.

The false reduction means utilizes Adaptive Genetic

Algorithm (AGA) to reduce interactive faults. The Adaptive

Genetic Algorithm utilizes Cauchy’s mutation for adaptive

behavior [9].

According to other aspect of the invention, test case

generation phase using Object Behavior Dependence Model

comprises assigning a function with a variable name,

determining whether the function is previously called

anywhere and storing the variable if called, checking for any

if condition occurrence and assigning a value if occurred,

assessing ratio for individual task and storing the destination

variable, adding line coverage and loop coverage and finally

terminating the test case generation if number of functions is

less than maximum value otherwise repeating the procedure.

The proportion time one function spends calling another

function to the overall amount of function time is what

determines the ratio value for a single activity [10].

The percentage of lines that are exercised to all lines is

known as line coverage. The task of determining and

illuminating whether each loop body is executed either zero

times, precisely once, or several times is allocated to the loop

coverage [11].

According to another aspect of the invention, the false

reduction phase using Adaptive Genetic Algorithm comprises

creating populations of chromosomes, evaluating fitness value

for each one limitation, selecting finest chromosome that

contains utmost fitness value, implementing mutation and

crossover operators, updating initial solution where innovative

chromosome is generated and estimating the fitness value once

again and finally electing the innovative chromosome as the

finest chromosome if the fitness value of the innovative

chromosome surpasses that of existing chromosome otherwise

repeating the procedure. The chromosomes are the set of test

cases generated [12].

4. DESCRIPTION OF DRAWINGS

The accompanying illustrations, which are integrated into

and form a part of the specification, provide further

explanation of the invention's concepts by illustrating a

particular embodiment of the invention.

According to an illustrative embodiment of the invention,

Figures 1 and 2 show a block diagram of the proposed fault

reduction system for software applications. It indicates how

the input application can be taken and phase 1 test case

generation and phase 2 optimal test case generation.

Figure 1. A method of modus operandi of the proposed fault

reduction system

Figure 2. The flow diagram of the proposed method

The above figure explains how the phase 1 test cases can be

Generated using OBDM.

The above figure explains about how optimal test cases can

be generated using Adaptive Genetic Algorithm.

5. DETAILED DESCRIPTION OF DRAWINGS

With reference to the accompanying figures, one illustrative

embodiment of the present invention will be discussed. In the

illustrations and the description, the same or comparable

reference numerals are used, if feasible, to refer to the same or

similar parts or steps. Conferring to an archetypal

embodiment, Figure 1 represents the block diagram of the fault

reduction system for software applications. The system

comprises a database, an application selection means, a test

case generation means and a false reduction means. As

depicted in the figure the fault reduction system is carried out

in two phases i.e., through test case generation and false

reduction. The phase 1 i.e., test case generation is carried out

through test case generation means which utilizes Object

Behavior Dependence Model (OBDM). The phase 2 i.e., false

reduction is carried out through false reduction means 104

which utilizes Adaptive Genetic Algorithm (AGA) [13, 14].

Here, the number of functions utilised to create test cases is

present for each input application. The proposed method

determines the feature value based on the function value. The

OBDM value is used to indicate this value. The OBDM

technique fundamentally devotes its attention to the task and

reporting metrics of the function that have been helpful for the

experiment condition formulation, which departs in a

significant way from intriguing the creation of the

568

reproduction and unsuitable test circumstances [15].

The fault reduction system's modus operandi is depicted in

Figure 2. The input application is initially chosen from the

database for software testing at phase. At phase, the Object

Behavior Dependence Model (OBDM) is used to construct test

cases after choosing the input application. Here, feature values

from the input application are used to construct the test cases.

The Adaptive Genetic Algorithm (AGA) performs false

reduction at step after choosing the test cases. In order to

decrease the unlawful and equivalent inputs at step, the

optimum inputs are developed [16].

A flowchart for step 1, which involves creating test cases

using an object behaviour dependency model, is shown in

Figure 3 (OBDM).

Figure 3. Flowchart for test case generation using OBDM

according to an exemplary embodiment of the invention

Figure 3 pleasantly portrait the creation system of the

experimentation condition and each one task is represented as

the basis task. At step, the basis task of the test case generation

starts. At step the function (f) is set as value 1. The function is

then assigned with a variable name at step. Now, each function

is experiential to determine whether it is previously fixed to

definite supplementary mission i.e., whether the function

called anywhere, at step If the function is called, the variable

of the called function is stored at step otherwise a null value is

stored at step depicting it as illogical. Further, a check is

executed to determine whether any “if” condition is occurred

at step. If yes, a value of 0.5 is assigned at step or else a value

of one is distributed at step. At step, the ratio for the individual

task is assessed as per Eq. (1) specified beneath and

subsequently the target task is distinguished, trailed by the

calculation of the whole experiment conditions to the coverage

matrix.

how much time call the other function

Ratio
Total function

=

(1)

The ratio value is determined by how frequently a certain

function calls another function relative to all functions

combined. Eq. (1) specifies it. The destination variable is

saved at step. Following that, at step, line coverage and loop

coverage are added. The line coverage and loop coverage from

the coverage metrics are used in the epoch-making procedure

[17].

The line coverage is identified as a statement since it only

includes the precise circumstances. Additionally, it estimates

the code's prominence and ensures that various trails in the

code in question flow smoothly. The ensuing Eq. (2) evaluates

it.

cov
number of lines exercised

Line erage
total number of lines

= (2)

The loop coverage is delegated by the mission of

establishing and enlightening whether each one loop body is

carried out either zero times, accurately on one occasion or

numerous times. It also indicates if the loop body is correctly

implemented only once or several times when 'do-while' loops

are included. Additionally, the while-loops and for-loops

generate a variety of presentations. The number of functions is

then checked to see if it is less than the maximum value from

step. If the answer to the condition is yes, the process starts

over at the stage when the function is given a variable name;

otherwise, the effort of creating the test ends at that point [18].

Examples include variable names supplied as E1, E2, E3,

E4 and E5 for tasks A1, A2, B1, B2 and C1. The test case in

the suggested technique includes the name of the source

function, a probability value, a ratio value, the name of the

destination function, line coverage, and loop coverage. Below

is a technique for creating test cases along with an example.

Test case 1: [E1, -, 0.5, 2/5=0.4, E2] + LC + LPC

Test case 2: [E1, -, 0.5, 2/5=0.4, E4] + LC + LPC

Test case 3: [E2, -, 1, 1/5=0.2, E5] + LC + LPC

E1 stands for the starting function name in this example, and

0.5 denotes whether or not an if condition is present in the test

case. If there is, 0.5 will be given. The value will be 1 if not.

The following number, 2/5, represents the ratio value for the

test case given in Eq. (1), and E2 stands for the name of the

final function. For the purpose of creating test cases, these

values are combined with those for line coverage and loop

coverage. The same goes for all of the test scenarios.

Phase 2 is the next step, and this is where the false reduction

is basically defined as the limitation of extra qualities that are

not essential to the concept of dispensation. The Adaptive

Genetic approach is tastefully used in the epoch-making

process for the concept of false reduction, which is achieved

in keeping by the optimization. The Adaptive Genetic

Algorithm (AGA) explicitly relieves itself from its obligation

to reduce erroneous inputs and inputs that are difficult to

discriminate [19].

A meta-heuristic method for reducing the standard

development system is distinguished by adaptive genetic

algorithms. A flowchart for erroneous reduction using the

suggested Adaptive Genetic Algorithm is shown in Figure 4.

The populations of the chromosomes, (), are initially generated

randomly. The population's dimension is indicated by the

letter "N." The test scenarios generated arbitrarily are covered

by the chromosome. The collection of test cases in this

instance is the chromosome. The fitness value of each

569

limitation is then evaluated, as shown in the following Eq. (3).

cov cov

1

N
i i i i

i if value ratiovalue line erage loop erage

i

fitness x x x x
=

= + + + (3)

Figure 4. Flowchart for false reduction using Adaptive

Genetic Algorithm according, to a representative

embodiment of the invention

The metrics that are used to gauge fitness, such OBDM

value, fault proneness ratio, line coverage, loop coverage, etc.,

have previously been computed for each test case. At step 403,

the best chromosome is chosen as the one with the highest

fitness value. In this case, maximising fitness means

minimising interaction flaws. Crossover and mutation are two

significant genetic operators introduced at step 404 that aid in

solution convergence. In this case, the genetic algorithm uses

Cauchy's mutation to increase adaptability. The entities are

successfully changed using Eq. (4) by using the Cauchy

transformation [20, 21].

()xxF arctan
1

2

1
)(


+=

(4)

The predetermined converting possibility implements the

change. Illogical variable "x" represents a Cauchy allocation

in the regions where the Cauchy change is realised. When the

transformation work is completed, inventive chromosome is

generated, and it then replaces the existing chromosome as the

original solution is updated. The fitness value is once more

estimated at step. If the fitness value of the novel chromosome

exceeds that of the current chromosome, the novel

chromosome is chosen as the best chromosome at step,

indicating that the maximum generation has been attained. If

not, the process starts over from the phase when the best

chromosomes are chosen. As a result, using the best test cases,

the Adaptive Genetic Algorithm may significantly reduce the

interactive defects [22].

The chromosomal fitness values for the Adaptive Genetic

Algorithm are calculated for dissimilar iterations, and the

results are shown. The fitness value for the recommended

approach, which has been shown to be superior to the

technique using Genetic Algorithms, is shown in Table 1

below.

Table 1. Fitness value comparison

Iterations
Fitness values

AGA GA PSO

25 670 579 652

50 652 530 631

75 594 487 549

100 589 496 498

The graphical depiction of fitness value for various

iterations utilising the adaptive and conventional genetic

algorithms is shown in Figure 5. Plots of the fitness values

produced from the Adaptive Genetic Algorithm and those

from the Genetic Algorithm are shown below. It is clear from

the graph that our suggested strategy, which uses an adaptive

genetic algorithm, produces a higher fitness value than the

genetic algorithm [23, 24].

Figure 5. Graphical representation of fitness value using the

adaptive and normal genetic algorithm

The test count value acquired before and after optimization

is shown in Table 2 below. To choose the best test cases, the

test case counts must be decreased. According to the

discovered Test case count, the optimized result demonstrates

that test cases that are irrelevant to the needed procedure are

being disregarded.

Table 2. Test case count comparison

Iterations
Test case count

Without AGA With AGA

25 696 454

50 696 445

75 696 459

100 696 458

The test count value acquired before and after optimization

is represented graphically in Figure 6. Plots of the test cases

produced before and after optimization may be seen here. The

graph shows a clear reduction in the number of test cases when

compared to results obtained prior to optimization.

570

Figure 6. Graphical representation for test count value before

and after optimization

The test case count acquired using various methods already

in use and our suggested Adaptive Genetic Algorithm

approach are both displayed in Table 3 below. Compared to

previous methods, the test case count has increased.

Table 3. Test case count comparison

Iterations
Test case count

AGA GA PSO

25 454 496 505

50 445 491 509

75 459 484 512

100 458 473 501

The test case count for various iterations of the proposed

and current methodologies is represented graphically in Figure

7.

Figure 7. Graphical representation of test case count for

proposed and existing methods

The suggested approach, Adaptive Genetic Algorithm, is

shown in Table 4 below, along with its time and memory

requirements for various iterations. The associated time and

memory use for each iteration are computed, and the outcomes

are tabulated. The number of interactive defects can be

decreased while also decreasing memory use and execution

time. The time and memory use automatically decrease with

increasing iteration.

Table 4. Time and memory usage

Iteration Time usage (sec) Memory usage (Bytes)

25 5346 5432100

50 5288 5001399

75 5533 5876680

100 5503 5178817

The time utilisation derived from several currently used

methodologies and our suggested Adaptive Genetic Algorithm

method is shown in Table 5 below. When compared to other

ways, the better time use was achieved. The difference

between the process starts system time and the process end

system time is the time utilisation that is computed.

Table 5. Time usage comparison

Iteration
Time usage (sec)

AGA GA PSO

25 5346 6985 7988

50 5288 6897 6964

75 5533 6835 6958

100 5503 6782 6795

The time utilisation for several iterations of the proposed

and current approaches is represented graphically in Figure 8.

Figure 8. Graphical representation of time usage for

proposed and existing methods for different iterations

The flaws found by the suggested method of random testing

may be compared to those found by other testing methods,

which are shown in Table 6 below.

Table 6. Comparison of regression and random testing

Testing methods Faults detected (in %)

Random testing 91%

Regression testing 86%

Table 6 shows that interactive flaws are more easily found

by random testing than through other types of testing, such as

regression testing. Large test suites will produce better results

for RT. Combinatorial Interaction Testing's applicability is

examined in a novel way using the suggested method's real-

time implementation (CIT). Thus, the invention proposes an

efficient fault reduction system for software applications in

direct random testing. By using the best experiment conditions

for direct random testing, this approach lowers interactive

software coding errors. This approach enables the creation of

as many test cases as are necessary to identify as many

coverage targets and errors as feasible. The system uses an

effective Object Behaviour Dependence model to generate test

cases. Using the suggested Adaptive Genetic Algorithm, a

superior product is produced to considerably reduce the

forbidden inputs. Numerous adjustments and variations can be

made to the procedures outlined in the aforementioned

examples without diverging from the invention's guiding

principles, and this application is intended to cover all such

modifications and alterations.

571

6. CONCLUSIONS

A fault reduction system for software applications

comprising: An application selection means configured to

select an input application from database for software testing;

a test case generation means configured to generate test cases

by means of feature value from said input application; a false

reduction means configured to reduce illegal inputs and

equivalent inputs; and whereby said fault reduction system

provides an efficient software testing in direct random testing.

1. The fault reduction system for software applications

as claimed as said test case generation means utilizes

(OBDM) to generate test cases.

2. The fault reduction system for software applications

as claimed as, said false reduction means utilizes

Adaptive Genetic Algorithm (AGA) to reduce

interactive faults.

3. (AGA) utilizes Cauchy’s mutation for adaptive

behavior.

4. A false reduction phase using Adaptive Genetic

Algorithm comprises: creating populations of

chromosomes; evaluating fitness value for each one

limitation; Selecting finest chromosome that

contains utmost fitness value; implementing

mutation and crossover operators; updating initial

solution where innovative chromosome is generated

and estimating said fitness value once again; and

electing said innovative chromosome as the finest

chromosome if the fitness value of said innovative

chromosome surpasses that of existing chromosome

otherwise repeating the procedure.

A false reduction phase using Adaptive Genetic Algorithm

as, said chromosomes are the set of test cases generated.

REFERENCES

[1] Zhou, Z.Q., Sinaga, A., Susilo, W. (2012). On the fault-

detection capabilities of adaptive random test case

prioritization: Case studies with large test suites. In 2012

45th Hawaii International Conference on System

Sciences Maui, HI, USA, pp. 5584-5593.

https://doi.org/10.1109/HICSS.2012.454

[2] Niu, X., Wang, Y., Wu, D. (2014). A method to generate

random number for cryptographic application. In 2014

Tenth International Conference on Intelligent

Information Hiding and Multimedia Signal Processing

Kitakyushu, Japan, pp. 235-238.

https://doi.org/10.1109/IIH-MSP.2014.65

[3] Dionísio, J., Mota, T., Pinto, I., Niehus, M. (2014). Real

time random number generator testing. Procedia

Technology, 17: 534-541.

https://doi.org/10.1016/j.protcy.2014.10.207

[4] Malpani, P., Bassi, P. (2014). Analytical & empirical

analysis of external sorting algorithms. In 2014

International Conference on Data Mining and Intelligent

Computing (ICDMIC) Delhi, India, pp. 1-6.

https://doi.org/10.1109/ICDMIC.2014.6954224

[5] Tahbildar, H., Kalita, B. (2011). Automated software test

data generation: Direction of research. International

Journal of Computer Science and Engineering Survey,

2(1): 99-120.

[6] McMinn, P. (2013). An identification of program factors

that impact crossover performance in evolutionary test

input generation for the branch coverage of C programs.

Information and Software Technology, 55(1): 153-172.

https://doi.org/10.1016/j.infsof.2012.03.010

[7] Fraser, G., Arcuri, A., McMinn, P. (2015). A memetic

algorithm for whole test suite generation. Journal of

Systems and Software, 103: 311-327.

https://doi.org/10.1016/j.jss.2014.05.032

[8] Galeotti, J.P., Fraser, G., Arcuri, A. (2013). Improving

search-based test suite generation with dynamic

symbolic execution. In 2013 IEEE 24th International

Symposium on Software Reliability Engineering

(ISSRE) Pasadena, CA, USA, pp. 360-369.

https://doi.org/10.1109/ISSRE.2013.6698889

[9] Darab, M.A.D., Chang, C.K. (2014). Black-box test data

generation for Gui testing. In 2014 14th International

Conference on Quality Software Allen, TX, USA, pp.

133-138. https://doi.org/10.1109/QSIC.2014.42

[10] Putra, I.P.E.S., Mursanto, P. (2013). Centroid based

adaptive random testing for object oriented program. In

2013 International Conference on Advanced Computer

Science and Information Systems (ICACSIS) Sanur Bali,

Indonesia, pp. 39-45.

https://doi.org/10.1109/ICACSIS.2013.6761550

[11] Chow, C., Chen, T.Y., Tse, T.H. (2013). The ART of

divide and conquer: An innovative approach to

improving the efficiency of adaptive random testing. In

2013 13th International Conference on Quality Software

Najing, China, pp. 268-275.

https://doi.org/10.1109/QSIC.2013.19

[12] Khan, S.A., Nadeem, A. (2013). Automated test data

generation for coupling based integration testing of

object oriented programs using evolutionary approaches.

In 2013 10th International Conference on Information

Technology: New Generations Las Vegas, NV, USA, pp.

369-374. https://doi.org/10.1109/ITNG.2013.59

[13] Campos, J., Abreu, R., Fraser, G., d'Amorim, M. (2013).

Entropy-based test generation for improved fault

localization. In 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE)

Silicon Valley, CA, USA, pp. 257-267.

https://doi.org/10.1109/ASE.2013.6693085

[14] Yu, B., Pang, Z. (2012). Generating test data based on

improved uniform design strategy. Physics Procedia, 25:

1245-1252. https://doi.org/10.1016/j.phpro.2012.03.228

[15] Padgham, L., Zhang, Z., Thangarajah, J., Miller, T.

(2013). Model-based test oracle generation for

automated unit testing of agent systems. IEEE

Transactions on Software Engineering, 39(9): 1230-1244.

https://doi.org/10.1109/TSE.2013.10

[16] Ahmed, B.S., Sahib, M.A., Potrus, M.Y. (2014).

Generating combinatorial test cases using Simplified

Swarm Optimization (SSO) algorithm for automated

GUI functional testing. Engineering Science and

Technology, an International Journal, 17(4): 218-226.

https://doi.org/10.1016/j.jestch.2014.06.001

[17] Arcuri, A., Briand, L. (2011). Formal analysis of the

probability of interaction fault detection using random

testing. IEEE Transactions on Software Engineering,

38(5): 1088-1099. https://doi.org/10.1109/TSE.2011.85

[18] Minku, L.L., Sudholt, D., Yao, X. (2013). Improved

evolutionary algorithm design for the project scheduling

problem based on runtime analysis. IEEE Transactions

on Software Engineering, 40(1): 83-102.

https://doi.org/10.1109/TSE.2013.52

572

[19] Lv, J., Hu, H., Cai, K.Y., Chen, T.Y. (2014). Adaptive

and random partition software testing. IEEE

Transactions on Systems, Man, and Cybernetics:

Systems, 44(12): 1649-1664.

https://doi.org/10.1109/TSMC.2014.2318019

[20] Arts, T., Gerdes, A., Kronqvist, M. (2013). Requirements

on automatically generated random test cases. In 2013

Federated Conference on Computer Science and

Information Systems Krakow, Poland, pp. 1347-1354.

IEEE.

[21] Barus, A.C., Chen, T.Y., Kuo, F.C., Liu, H., Merkel, R.,

Rothermel, G. (2016). A cost-effective random testing

method for programs with non-numeric inputs. IEEE

Transactions on Computers, 65(12): 3509-3523.

https://doi.org/10.1109/TC.2016.2547380

[22] McMinn, P., Harman, M., Lakhotia, K., Hassoun, Y.,

Wegener, J. (2011). Input domain reduction through

irrelevant variable removal and its effect on local, global,

and hybrid search-based structural test data generation.

IEEE Transactions on Software Engineering, 38(2): 453-

477. https://doi.org/10.1109/TSE.2011.18

[23] Arcuri, A. (2011). A theoretical and empirical analysis of

the role of test sequence length in software testing for

structural coverage. IEEE Transactions on Software

Engineering, 38(3): 497-519.

https://doi.org/10.1109/TSE.2011.44

[24] Kempka, J., McMinn, P., Sudholt, D. (2013). A

theoretical runtime and empirical analysis of different

alternating variable searches for search-based testing. In

Proceedings of the 15th Annual Conference on Genetic

and Evolutionary Computation, New York, NY, pp.

1445-1452. https://doi.org/10.1145/2463372.2463549

573

