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Frequency estimation of sinusoidal signals is a critical task in various signal processing 

applications, including control systems, monitoring, radio broadcasts, and more. The Fast 

Fourier Transform (FFT) is a widely employed technique for signal analysis; however, it 

suffers from spectral leakage issues. To mitigate this problem, windowing functions are 

utilized, aiming to enhance frequency estimation accuracy through the combination of an 

optimal window and a precise frequency correction formula. In this study, a novel frequency 

estimation algorithm based on a three-point spectral interpolation method is proposed and 

compared with the Jacobsen algorithm. Simulation results demonstrate that the proposed 

algorithm exhibits superior performance in terms of frequency estimation errors. 

Specifically, the maximum frequency estimation error for the proposed algorithm, when 

using the Nuttall window, was found to be 0.001, representing a 29-fold reduction compared 

to the error of 0.029 for the Jacobsen algorithm. This improvement highlights the 

effectiveness of the proposed interpolation-based algorithm for accurate frequency 

estimation in signal processing applications. 
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1. INTRODUCTION

Estimating the frequency of a sinusoidal signal is an 

important task in signal processing in many applications such 

as control, monitoring, radio broadcasts and others. On the 

other hand, the signal processing performance of the spectral 

analyses of the sinusoidal waveforms may be usefully utilized 

in the field of the measurements on the power systems [1]. The 

Fast Fourier Transform (FFT) is one of the most common 

procedures used in digital signal processing [2]. The 

discretization of the signal leads to the fact that the amplitude 

spectrum of the signal is infinitely repeated on the frequency 

axis with a period equal to =1/Td. FFT is an algorithm that 

computes the Discrete Fourier Transform (DFT) of a sequence. 

DFT is a discrete frequency spectrum much like a time domain 

signal is formed by an ADC. The result of the DFT is similar 

to viewing a continuous windowed spectrum through a picket 

fence with slots in the intervals corresponding to the frequency 

slots. 

Kotelnikov's theorem states that a signal can be completely 

reconstructed from discrete, equally spaced samples if the 

sampling rate is at least twice the highest frequency of that 

signal. If the signal is not with an integer number of periods 

within the sampling window, then there will be discontinuities 

at the boundaries of this window, which result in additional 

spectral components in the frequency domain, known as 

spectral leakage or spectrum spreading. To minimize spectral 

leakage, the data samples at the beginning and end of the signal 

are smoothed by reducing them to zero. The smoothing of the 

time sequence consists in multiplying all signal samples by the 

weight coefficients of a special function called the "window" 

as shown in Figure 1. A large number of windows have been 

developed that differ in terms of resolution, degree of 

smoothing, influence on the signal-to-noise ratio, etc.  

High-performance computing algorithms are available to 

perform digital signals DFT [3]. The spectral leakage problem 

occurs when the number of sample signal periods is not integer 

number, when the sampling process is not synchronized with 

the main component of the test signal [4-7]. In this paper, 

simple interpolation formulas with a Nuttall window were 

used to reduce the spectral leakage effect for precise frequency 

detection. This approach has high accuracy in frequency 

estimation. Many frequency assessment studies have been 

conducted [8-13]. The 4-point model-normalized algorithm, 

bounded by least squares, was poorly evaluated [8]. Integrated 

treatment approach was studied to reduce spectrum leakage [9]. 

Kaiser-based window algorithm was proposed to minimize the 

spectral leakage effect [10]. Luo et al. [11] uses zero 

completion in window algorithms. The work of the iterative 

algorithm is suggested [12, 13]. In this algorithm A&M-

estimation is used to improve the evaluation performance. In 

2007, Jacobsen et al. [14] proposed a trispectral correction 

algorithm, in which the normalized correction frequency 

expression suitable is: 

δ =  
| 𝑈𝑛+1−𝑈𝑛−1|

|4∗𝑈𝑛  −2∗𝑈𝑛+1−2∗𝑈𝑛−1|
(1) 

where, 𝑈𝑛, 𝑈𝑛+1, 𝑈𝑛−1and are shown in Figure 2a, δ is the

frequency deviation from true frequency is determined by the 

mutual position of the line of the spectrum of maximum 

amplitude and the second line of the spectrum of maximum 

amplitude (see Figure 2a and Figure 2b). 

An uncomplicated algorithm has been suggested in this 
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paper to canceling the spectral leakage used multiplying the 

respective signal by a time window, equation for correction 

frequency using linear interpolation shown in Eq. (4) were 

able to additionally enhance the accuracy of the estimation. In 

comparison to existing algorithms, the suggested algorithm 

presents a lower computational complexity and a better 

performance of estimation. 

Figure 1. Effect the window on the signal 

The rest of this paper is as follows: In the second section the 

proposed algorithm described. In the third section the results 

and discussion are described, Conclusions presented in the last 

section. 

Figure 2a. Spectrum DFT (signal frequency is between n and n+1) 

Figure 2b. Spectrum DFT (signal frequency is between n and n-1) 
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Figure 2c. Spectrum DFT (signal frequency is in n exactly) 

2. PROPOSED ALGORITHM

The general procedure of the interpolation estimator is 

shown in Figure 3. A sampled signal's time domain form can 

be written as [15]. 

X(n) = A sin(2πFc n/Fs + ȹ) (2) 

where, Fs is the sampling frequency, n=0, 1, 2..., N - 1, A is 

the amplitude, ȹ is the starting phase angle, and Fc is the 

fundamental frequency. The total number of sampling sites is 

N. Using a window function, w(n), and continuous Fourier

transform, it is possible to produce discrete estimate sequences

of the sampled signal in the frequency domain, X(f).

X(f) = ∑ 𝑥(𝑛)𝑤(𝑛) 𝑒−𝑗2𝜋𝑓𝑛

∞

𝑛=−∞

(3) 

The algorithm for determining the frequency from the 

spectrum with an estimate of the methodological error of the 

simulation can be represented in the form of steps: 

1. Select range of signal frequencies Fc, Sample size (N),

sampling frequency Fs, and type of window. 

2. Apply windowing function on the resulting array.

3. Compute FFT.

4. Determine the number of the component whose

amplitude is maximum in the complex spectrum FFT. 

5. Find the spectral lines left and right closest to the

maximum component. 

6. By propose formula calculate (delta δ) the correction

formula of frequency offset between n and index n' 

corresponding to the maximum amplitude in the spectrum. As 

shown in Figure 2a. 

Δ1 =
𝑈𝑛

𝑈𝑛−1
(4) 

Δ2 =
𝑈𝑛

𝑈𝑛+1
(5) 

δ =  
( Δ2/Δ1) − 1 

 ( Δ2/Δ1) + 1
(6) 

7. The signal frequency calculated:

Fest = (n + δ) ∗
Fs

N
(7) 

8. Estimate of the error of the frequency estimation by:

Erest =  (( Fest −  Fc)/Fc) (8) 

Figure 3. Procedure of the general interpolation method 

3. RESULT AND DISCUSSION

This section presents the results of modeling the algorithm 

proposed above. The considered parameters are closely related 
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to the signal in the Eq. (3). Let's consider an example of 

monitoring the frequency of a power supply network of 50 Hz, 

with a 1 Hz deviation frequency. A suitable frequency 

resolution value must be taken into account. This value should 

be small enough so that all of the signal components seem as 

certain spectral lines that are related to relative maximum 

points after the operation of the FFT. In order to do this, it 

suffices to take under consideration a suitable number of the 

samples, based on Δf= Fs/N=1/NΔt. Fs and samples values 

have been chosen as: Fs= 256 Hz, and N=256 samples. 

An analytical comparison was made between the proposed 

algorithm and Jacobsen’s algorithm shown in Figure 4 when 

Nuttall window is used. The value of the maximum systematic 

error in the Jacobsen algorithm was 0.029, while it was in the 

proposed algorithm 0.001 when sample size is 256, which 

means that the number of improvement times is 29. The 

simulation showed that the abrupt discontinuity in Figures 4 

especially when Fc=50.5 Hz is due to a change in the structure 

of an odd number of components taken into account at the 

maximum of the energy spectrum with two components, as 

shown in Figure 2. 

Depending on the ratio of the frequency of the fundamental 

signal to the sampling frequency, the following spectrum 

structures can be distinguished: 

1. Symmetry with respect to the central component close to

the desired signal frequency (Figure 2a). 

2. Symmetry with respect to two neighboring components,

between which the desired signal frequency is located (Figure 

2 b, c). 

For the purpose of verifying the effectiveness of the 

suggested windows and the algorithms of the interpolation, 

second simulations were performed. The analysis results 

shown in Figure 5, in which the error curves of frequency 

estimation measurements versus the ratio (Fc/Fs=4) are shown, 

for different size of samples. In particular, the maximum error 

curves of the frequency measurements for N= (32-8129) have 

been respectively reported. 

Moreover, an FPGA implementation of real-time 

interpolation is presented in Figure 6. The interpolator's 

approach is based on a one-dimensional Fast Fourier 

Transform (FFT).  

This requires the use of MATLAB with Xilinx ISE 14.4. 

You must be familiar with the MATLAB program and Verilog 

high-fidelity modeling languages. One needs to be accustomed 

to the Discrete Fourier Transformation in order to understand 

the design. Spartan 3E-100 (xc3s100e) and a computer 

running Fpga programmer, Function Generator, Diligent, and 

Oscilloscope are needed for the project's physical needs. 

Figure 4. Relative frequency estimation error for Nuttall 

window 

Table 1. Relative maximum frequency estimation error 

Size of sample 

(N) 

Maximum frequency estimation error 

Jacobsen 

algorithm 

Proposed 

algorithm 

32 0.17 0.003 

256 0.02 0.0008 

8192 0.0007 0.00002 

Figure 5. Relative maximum frequency estimation error for 

Nuttall window 

Figure 6 depicts the simulation and implementation process. 

The in and out pin blocks define the hardware's boundaries 

after several methods have been used to select the best design. 

With the help of the implementation on the hardware and 

Xilinx software such as nets list, bits flow, and time analysis, 

resource usage has been determined. 

The majority of recent studies [16-20] aim to decrease the 

set time deviation in order to lower the system size. However, 

on ASIC FPGA systems, reducing hardware size alone does 

not entirely contribute to cost savings in the physical design. 

Additionally, a smaller method may result in a longer word 

length size, which would increase unnecessary hardware and 

dramatically lower the SNR. 

The FPGA's parallelism functionality is used in the current 

work to reduce computing time without compromising system 

complexity. Due to the FPGA resource's plenty of switches 

and millions of transistors, the current system was developed 

using a parallel approach design using a low-power algorithm 

and hardware structure. 

With the help of the Xilinx platform generator platform 

Version 14.2, equipment on the Spartan 3E-100-CP132 is 

simulated. This application installs the FPGA block set 

required for embedded systems in the Matlab and Simulink 

library browsers.  

Moreover, an FPGA implementation of real-time 

interpolation is presented in Figure 7. The interpolator's 

approach is based on a one-dimensional Fast Fourier 

Transform (FFT).  

This requires the use of MATLAB with Xilinx ISE 14.4. 

You must be familiar with the MATLAB program and 

Verilog high-fidelity modeling languages.  

One needs to be accustomed to the Discrete Fourier 

Transformation in order to understand the design. Spartan 

3E-100 (xc3s100e) and a computer running FPGA 

programmer, Function Generator, Diligent, and Oscilloscope 

are needed for the project's physical needs. 
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Figure 6. For an FPGA board, the design algorithm produces synthesizable RTL 

 

 
 

Figure 7. The algorithm implementation on FPGA 

 

The implementation was synthesized on an FPGA board, 

and the process calculation has been optimized using a parallel 

technique to decrease the FPGA's area and power 

requirements as shown in Figure 7.  

Additionally, the implementation constraints of the 

Frequency Estimation Technique Utilizing a Three-Point 

Spectrum Interpolation may result in computing time savings, 

which is an important consideration in design approach. 

Because the output of these methods is mostly based on 

frequency domain rather than the time domain, stability is the 

key problem in their design. 

 

4. CONCLUSIONS 

 

In this paper, a new and accurate estimator algorithm for the 

electrical network frequency of real sinusoids is proposed 

using the three-point interpolation of DFT samples. In this 

algorithm, the electrical signal is multiplied by a time window 

to reduce the spectral leakage arising as a result of the fast 

Fourier transform process. Three windows are used and the 

experimental results of these windows are compared. The 

Nuttall window outperformed the other windows in the 

evaluation, as it gave the lowest error rate, from the analysis 

of this study and Table 1, the remarks below are noteworthy. 

 

1 The maximum frequency estimation error for the 

proposed algorithm at the Nuttall window was 0.003, 

i.e., it decreased 56 times compared to the error of 0.17 

for the Jacobsen algorithm when N=32 sample and 

Fc/Fs=4. 

2 The maximum frequency estimation error for the 

proposed algorithm at the Nuttall window was 0.0008, 

i.e., it decreased 25 times compared to the error of 0.02 

for the Jacobsen algorithm when N=256 sample and 

Fc/Fs=4. 

3 The maximum frequency estimation error for the 

proposed algorithm at the Nuttall window was 

0.00002, i.e., it decreased 35 times compared to the 

error of 0.0007 for the Jacobsen algorithm when 

N=8192 sample and Fc/Fs=4. 

4 The maximum frequency estimation error for the 

proposed algorithm at the Nuttall window was 0.001, 

i.e., it decreased 29 times compared to the error of 

0.029 for the Jacobsen algorithm when N=256 

samples, Fc=50 Hz and Fs=256 Hz. 
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