
Advancing DNS Performance Through an Adaptive Transport Layer Security Model (ad-

TLSM)

Onome B. Ohwo* , Folasade Y. Ayankoya , Oluwabukola F. Ajayi , Daniel O. Alao

Department of Computer Science, Babcock University, Ilishan-Remo 121103, Nigeria

Corresponding Author Email: ohwoo@babcock.edu.ng

https://doi.org/10.18280/isi.280329 ABSTRACT

Received: 6 March 2023

Accepted: 5 June 2023

The present study endeavors to enhance DNS over TLS performance via the development

of an Adaptive Transport Layer Security Model (ad-TLSM). DNS over TLS, which

employs TLS encryption to safeguard communication between clients and DNS recursive

resolvers, suffers from performance issues that pose significant challenges. In response to

these issues, the ad-TLSM has been designed to boost DNS performance by integrating a

monitoring mechanism for real-time observation of the DNS recursive resolver. During the

TLS handshake, crucial data, including throughput, CPU load, and the active cryptographic

algorithm, are meticulously monitored and documented. This data forms the foundation for

an adaptive strategy, which facilitates intelligent security adaptation during runtime, based

on the prevailing conditions between the client and the server at the time of secure

connection establishment. The performance evaluation of the ad-TLSM demonstrated that

the DNS recursive resolver experiences excessive load while employing AES-GCM 256.

However, it was found capable of managing an additional 15%-25% requests per second

when ChaCha20 was implemented. These findings led to the formation of an adaptive

strategy that effectively alleviates CPU load by adjusting the security level, thereby

ameliorating the overall performance. In summary, the ad-TLSM surpasses existing models

in latency performance and can be employed to improve performance, while satisfying

quality of service constraints. This research represents a significant step towards the

development of more efficient and secure DNS services.

Keywords:

domain name system, adaptive security,

quality of service, DNS security, security

architecture, cybersecurity, performance

issue

1. INTRODUCTION

In the early stages of the Internet, navigation proved

challenging, with messages manually transmitted from one

computer to another [1]. This process necessitated a

comprehensive understanding of the Internet's architecture

from source to destination. However, the introduction of the

Berkeley Internet Name Domain (BIND) program in 1984 at

the University of California, Berkeley, revolutionized Internet

navigation by establishing a decentralized mechanism for

naming Internet-connected nodes based on hierarchical

records [1]. This innovation eliminated the need for each node

to maintain a complete routing database and introduced the

concept of mapping data in the namespace to an IP address.

Today, two primary namespaces are utilized by the Internet:

the Internet Protocol (IP) address spaces and the domain name

space [2]. Whereas an IP address serves as a numerical label

for each device on a computer network using the Internet

Protocol for communication, the Domain Name System (DNS)

performs translation services between itself and the address

spaces, maintaining the domain name hierarchy [2]. The DNS

provides a distributed, fault-tolerant global directory service,

vital for Internet operations. By delegating domain name

assignment and mapping those names to Internet resources to

authoritative name servers for each domain, the DNS

effectively circumvents the need for a single, large centralized

database.

The DNS protocol specifically articulates data structures

and data transmission exchanges. A host's domain name is

assembled from individual group names, comprising strings

separated by dots. The highest authority is the root domain

(Top Level Domains (TLDs)), which is subdivided into

Generic Top-Level Domains (gTLDs) (e.g., edu, com, net, and

mil) and Country Code Top-Level Domains (ccTLDs)

(e.g., .ng, .se, .us, .ca) [2]. As such, the DNS is instrumental

for the reliable and trustworthy operation of the Internet, with

disruptions in its operation potentially causing significant

impact on provided services and the global Internet at large.

Regrettably, breaches of DNS security have been attempted

over the years, resulting in various attacks [3]. The existing

DNS recursive resolver lacks adequate security mechanisms

for data confidentiality, availability, and integrity, making it

susceptible to hackers and attackers who could falsify DNS

records and redirect genuine users to malicious domains [4].

To mitigate these challenges, new protocols such as DNS over

Hypertext Transfer Protocol Secure (DoH), DNS over

Transport Layer Security (DoT), and DNS over Quick UDP

Internet Connections (DoQ) have been introduced [5].

DNS encryption, typically achieved through the encryption

of the content of queries and responses (between clients and

recursive resolvers) using cryptographic techniques in an

upper layer protocol, has the potential to maintain user privacy

against attacks. However, the introduction of encrypted

transports incurs new performance costs, including overhead

associated with Transmission Control Protocol (TCP) and

TLS connection establishment, and additional application-

Ingénierie des Systèmes d’Information
Vol. 28, No. 3, June, 2023, pp. 777-790

Journal homepage: http://iieta.org/journals/isi

777

https://orcid.org/0000-0001-9739-5165
https://orcid.org/0000-0003-0308-2753
https://orcid.org/0009-0008-7951-1319
https://orcid.org/0000-0001-7378-7105
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280329&domain=pdf

layer overhead [6]. These performance costs were not well

understood initially [6]. Therefore, numerous researchers have

probed into how encrypted transports for DNS impact the end-

user experience [7-10]. Their findings suggest that DNS

queries are generally slower with encrypted transports, and

these protocols begin to experience difficulties on networks

with sub-optimal performance due to their connection and

transport overhead.

The relative costs and benefits of a particular DNS transport

protocol and its implementation for DNS query response times

are heavily influenced by the underlying network conditions.

Therefore, the features and ideologies of adaptive security, a

new architectural approach, warrant consideration. Adaptive

security techniques, akin to risk management, strive to manage

risk and meet the required Service Level Agreement (SLA).

They aim to circumvent the impact and degree of potential

threats in a timely manner [11].

The implementation of an adaptive security approach can be

achieved using currently available technologies [11]. Besides

upholding SLAs, adaptive security seeks to maintain integrity,

foster trustworthiness, and provide assurance, inspiring

confidence in data and processing resources, ensuring

trustworthiness, reliability, availability, and operation within

satisfactory parameters. What distinguishes adaptive security

architecture from existing advanced practices is its design to

guard against identified threats and anticipate unidentified

threats in a fashion resembling the human immune-response

system.

Given the inherent performance issues and the need to

ensure complete security service, it is necessary to improve

DNS security by deploying an adaptive solution. This solution

should enhance DNS performance with an increasing client

base and satisfy diverse usage patterns.

1.1 Statement of the problem

The Domain Name System (DNS) is integral to the

functionality of the Internet, offering global distributed

directory services. However, it has been found that the DNS

recursive resolver lacks adequate security mechanisms for data

confidentiality, availability, and integrity. Several security

measures, including DNS over TLS (DoT), DNS over HTTPS

(DoH), and DNS over QUIC (DoQ), have been developed to

secure communications with the DNS recursive resolver.

While these techniques have indeed bolstered DNS security,

they have also introduced significant performance costs, with

overall failure rates fluctuating between 1.3% and 39.4%.

Further, research has revealed that the use of cryptography

in Transport Layer Security (TLS) can negatively impact

performance. Both asymmetric and symmetric cryptographic

primitives are employed by TLS, with the former requiring

more memory. Symmetric cryptography involves the use of

the Advanced Encryption Standard (AES) – typically fast and

efficient in hardware implementation – and ChaCha20-

Poly1305, which excels in software implementation. More

importantly, DNS query processing may necessitate high CPU

usage due to the cryptographic operations performed by TLS.

Previous efforts to address this performance problem have

utilized various techniques such as an authoritative DNS

server (ADNS) and Private DNS over TLS (PDOT). While the

ADNS approach improved DNS performance, this was only

true for policies on resource records with smaller authoritative

Time-To-Live (ATTL). Larger ATTL values resulted in

performance issues. On the other hand, PDOT focused on

privacy, taking performance into account. However,

applications needing functionality not available within the

Trusted Execution Environment (TEE) had to switch to the

non-Trusted Execution Environment, leading to overhead

associated with TEE Call-in/Call-out. Despite addressing

privacy concerns, performance issues persist.

Given that current security techniques do not provide

satisfactory performance, this study aims to develop an

Adaptive Transport Layer Security Model (ad-TLSM) to

enhance DNS throughput.

1.2 Justification of the study

Considering the biased and abstract factors that influence

security decisions, threats to the system remain a significant

concern. Therefore, it's vital to continue efforts to mitigate

these threats by enhancing DNS security, using Adaptive TLS

to provide optimum security while maintaining Quality of

Service (QoS) constraints.

A specific constraint involves the effective management of

available DNS resources without causing congestion or

violating client QoS constraints. A security measure capable

of utilizing available DNS resources to maintain high security

levels offers the potential for timely and fine-grained security

control.

2. LITERATURE REVIEW

2.1 The domain name system security

DNS security, a strategy aimed at safeguarding the DNS

infrastructure from cyberattacks, seeks to maintain its robust

and efficient performance. A successful DNS security strategy

incorporates a blend of overlapping defenses, which may

include the implementation of redundant DNS servers, the

application of security protocols such as DNSSEC, and the

insistence on comprehensive DNS logging. As with many

Internet protocols, the DNS infrastructure was not originally

designed with an emphasis on security, resulting in several

inherent design limitations. These limitations, when coupled

with technological advancements, render DNS servers

vulnerable to a wide spectrum of attacks such as Denial of

Service, spoofing, amplification, and private data interception.

Given that DNS forms a crucial component of the majority

of web requests, it presents an attractive target for attackers.

DNS attacks are often executed in conjunction with other

cyberattacks, thereby diverting the attention of security teams

from the primary target. It is imperative for organizations to

swiftly neutralize DNS attacks to avoid being overly

preoccupied, thereby leaving them vulnerable to simultaneous

attacks from other vectors.

Privacy constitutes another significant issue within DNS

security. The lack of encryption for DNS queries, even when

the client uses a DNS resolver that does not log their activities,

means that these queries traverse the Internet in plaintext. This

lack of privacy not only jeopardizes security but also, in

certain contexts, infringes upon human rights. The visibility of

DNS queries simplifies the task for governments seeking to

censor the Internet and for attackers aiming to monitor users'

online activities.

Research conducted by Wessels [12] estimated that there

are approximately 11.7 million public DNS servers on the

Internet. Of these, around 52% permit arbitrary queries due to

778

improper configuration, while approximately 33% allow

denial of service attacks or cache poisoning attack, given that

their authoritative name servers reside on the same network.

Additionally, the sophistication of attacks targeting DNS

has increased, complicating detection and control processes.

For instance, the Fast Flux attack swiftly modifies DNS

information about the domain to delay or evade detection.

Similarly, the conficker worm attacks [13], also known as SQL

Slammer, leverage domain names to make network attacks

resilient against detection and shutdown. To assist in

identifying attacked domains, the Internet Corporation for

Assigned Names and Numbers (ICANN) has compiled a list

of domains that could potentially be used in such attacks

across each Top-Level Domain.

2.2 Adaptive security

Security threats are counter-productive to the functionality,

performance, availability, and integrity of Information

Technology systems. The goal is to decrease possible security

threats to the level wherein Service Level Agreements (SLAs)

can still be satisfied; as well as the risk management concept.

By timely prevention of an attack, adaptive security attempts

to decrease the effect and degree of possible threats.

2.2.1 Characteristics of an adaptive security

de Castro and Timmis [14] identified some characteristics

of adaptive security useful in Information Technology systems

to include preventing attacks, contain the impact of attacks,

and timely responds to attacks. Other characteristics includes:

1) Self-identity: This involve separating and removing what

does not belong in line with the governing security policy.

This comprises of support for systems communication

and information exchange on attacks and threats,

preventive measures, security guidelines and policies, and

trust relations amongst 3rd party systems.

2) Diversity: This shows itself via diverse control

mechanisms such as compartmentalization. This can be

achieved through operating system (OS) virtualization or

Trusted Platform Module (TPM)-based hardware trust

anchors.

3) Autonomy: There are different components that controls

the security system function autonomously to prevent

attacks and threats. This is required for security and

integrity control devices to autonomously function in

responding to attacks and threats.

4) Multi-layered: This can be likened to the idea of

“defense-in-depth”, where in a properly designed security

architecture preserves and employs multiple security

measures to subdue the hazard of a compromised single

measure.

5) Resilience: The effectiveness of a security system can be

decreased by various factors. By maintaining a level of

resilience, it can continuously recognize and prevent

attacks in spite of reduced capacity.

6) Anomaly detection: This involves supporting the ability

to detect and prevent any abnormal behavior or known

threats automatically.

2.2.2 Adaptive security capabilities

New approaches in information security techniques have

tried to mimic adaptive system so as to be able to fine-tune to

continuously developing and varying security threats. The

core of Adaptive Security is to serve as the immune system of

a system. This is realized by developing an Adaptive Security

aimed at containing active attacks and neutralizing possible

threat vectors [15]. Adaptive security is defined based on four

security abilities:

1) Preventive capability: A set of rules, guidelines and

policies that prevents an attack from being successful.

Thus, information is protected from illegal alteration, ruin,

or exposure, whether unintentionally or deliberately.

2) Detective capabilities: These are controls (including

logging of events) intended to recognize attacks, that

have eluded the preventive procedures, and decrease the

attack magnification. Thus, this provides an outlook into

malicious actions, violation and attacks.

3) Retrospective capabilities: These provide a way of

reducing the attack area, the attack rate and recovery time.

Thus, this provides the procedures necessary to take

suitable action in responding to diverse cybersecurity

events.

4) Predictive capabilities: These allows attack predictions,

security trends analysis and changing to a proactive

security from reactive security. Thus, security

intelligence is achieved from internal and external events

monitoring to recognize attackers, their purposes and

approaches before the appearance of the attacks.

2.3 Transport layer security

Transport Layer Security (TLS) is used to secure

communications via a consistent transport protocol (such as

TCP/IP) between a web server and client using a cryptographic

protocol. This allows client-server applications to

communicate via a public network, while preventing messages

from eavesdropping, altering, and counterfeiting. TLS

provides the following security characteristics such as

confidentiality, integrity, authentication and non-repudiation

of messages. The TLS protocol goals are extensibility,

cryptographic security, interoperability and efficiency. There

are two main components of TLS protocol: Handshake

protocol and Record protocol. Through the handshake, to

meet the mentioned security characteristics, algorithms are

selected based on availability to both the client and server.

This is generally known as TLS negotiation, with the ensuing

secured connection called a session. Also, an established TLS

session can be renegotiated at the decision of the client or

server [16]. Figure 1 depicts the logical description of

Transport Layer Security (TLS) architecture.

Figure 1. Transport layer security architecture [17]

2.3.1 DNS over TLS

This study looks to investigate Domain Name System

security such as DNS over TLS (DoT) to find some fact that

helps to analyze the problems and capitalizing on them to

develop the proposed solution. When initiating a TLS

handshake, the client and the DNS resolver negotiate and

779

agree upon a cryptographic algorithm to be used for encrypting

and decrypting the data exchanged during the communication.

This algorithm is typically selected from a set of available

options supported by both the client and the DNS resolver.

Figure 2 shows the typical TLS 1.3 handshake process.

During lookups, the client establishes a TCP connection to

a selected DoT port TCP/853 on the DoT-enabled resolver.

Next, a TLS connection will be established via a typical TLS

handshake process to exchange their cryptographic keys. TLS

1.3 uses the “key_share” and “pre_key_share” parameters in

the “ClientHello” handshake message for encryption purposes.

The “key_share” parameter is used to exchange the end-

point’s public key share required to generate secret key at the

remote end-point. The “pre_key_share” parameter specifies

the index of the presently used shared key for encryption in the

list of negotiated shared keys. Then, TLS 1.3 encrypts the

server security certificate. Upon successful establishment of

the TLS session, the client is able to perform TLS-encrypted

DNS lookups through the DoT port TCP/853 on the resolver

side. Depending on the configurations of clients and servers,

the TLS connections may remain open for further DNS

lookups, reducing latency (that is, preventing additional

TCP/TLS handshakes for subsequent requests).

The cryptographic algorithm plays a vital role in ensuring

the confidentiality, integrity, and authenticity of the DNS

query transactions. It determines how the data is encrypted,

decrypted, and authenticated, providing protection against

eavesdropping, tampering, and spoofing attacks. By using

TLS to secure DNS query transactions, sensitive information,

such as the domain names being queried, is encrypted and

protected from unauthorized access. This helps to prevent

malicious actors from intercepting and manipulating DNS

queries, thereby safeguarding the privacy and integrity of the

communication. TLS is employed in DoT to secure DNS

query transactions by selecting an appropriate cryptographic

algorithm that ensures the confidentiality, integrity, and

authenticity of the exchanged data.

Though DoT is a viable approach for DNS encryption, it

faces several performance challenges that may hinder its usage,

such as high failure rate due to timeouts (that is, no response

within 5 seconds), head-of-line blocking, and computational

overhead [7-10].

Figure 2. A typical TLS 1.3 handshake [18]

2.3.2 Security services of cryptography

The essential security objectives of cryptography are to

offer the accompanying vital services. According to Willian

[19], these vital services are:

1) Confidentiality: It is a security service that keeps the data

from an unapproved individual. Cryptography ensures

that DNS data remains confidential by encrypting it. With

encryption, sensitive information, such as the domain

names being queried, is transformed into ciphertext that

is unreadable without the corresponding decryption key.

This prevents unauthorized parties from accessing and

understanding the contents of DNS queries, protecting the

privacy of users.

2) Data integrity: It is a security service that deals with

perceiving any alteration to the information.

Cryptographic algorithms, such as message

authentication codes (MACs) and digital signatures,

ensure the integrity of DNS data. MACs provide a way to

verify that the data has not been tampered with during

transmission, as any modifications to the data would

result in an invalid MAC. Digital signatures, on the other

hand, provide a mechanism for verifying the authenticity

and integrity of DNS responses, ensuring that they have

not been altered by malicious actors.

3) Authentication: This gives the identity of the message

originator. Cryptography enables the verification of the

authenticity of DNS data. Digital signatures, for instance,

can be used to verify that a DNS response has been

generated by a trusted DNS server and has not been

tampered with during transit. This prevents attackers from

impersonating DNS servers and providing false or

malicious responses.

4) Non-repudiation: It is a security service which

guarantees an entity cannot reject the ownership of a prior

action. Cryptographic mechanisms, such as digital

signatures, provide non-repudiation, which means that a

party cannot deny their involvement in generating a

particular DNS response. This is important in DNS

security as it ensures accountability and prevents

malicious actors from denying their actions.

2.3.3 Review of related works

It is unknown how much information may be gleaned via

traffic analysis on DoT communications, despite the fact that

DoT is meant to stop on-path adversaries from observing and

manipulating the victims' DNS requests and responses. A DoT

fingerprinting technique was proposed by Houser et al. [20] to

examine DoT traffic and identify whether a user has visited

websites that are of interest to adversaries. When DNS

messages are not padded, the suggested approach can detect

DoT traffic for websites with a false negative rate of less than

17% and a false positive rate of less than 0.5%. Furthermore,

it was demonstrated that even when DoT messages are padded,

information leakage is still feasible.

For five months at the start of 2021, this study tracked the

adoption of DoH (DNS over HTTPS), DoT (DNS over TLS),

and DoQ (DNS over QUIC) by three separate enterprises with

worldwide reach. García et al. [5] analyzed the overall

numbers, requests made per user, and traffic seasonality in

order to determine the potential adoption trends. It was

concluded that, despite increasing in 2020, there was

statistically substantial evidence that the average volume of

Internet traffic for DoH, DoT, and DoQ remained constant

throughout the first five months of 2021. However, we

discovered that the number of DoH servers that are available

for use has increased by a factor of 4. These findings indicate

that although the volume of encrypted DNS is not now

780

increasing, there may soon be an increase in connections to

unknown DoH servers for both good and bad intentions.

Although DNS over TLS (DoT) was established as an

addition to the DNS protocol in 2016, little research has been

done on how it performs. Research by Doan et al. [7] used 3.2k

RIPE Atlas probes installed in home networks to quantify DoT

from the edge and compare its adoption, dependability, and

response times to DNS via UDP/53 (Do53). It was found that

open resolvers are becoming more supportive of DoT. DoT is

still only supported by regional resolvers. However, the

reliability of DoT decreased while failure rates rose. Response

times, according to DoT, are getting longer. Most failures

occur due to timeout, that is no response within 5 seconds,

which was suspected to be as a result of the intervening

middleboxes on the path that blackhole the connections by

dropping packets destined for port 853.

Using Transport Layer Security (TLS) to secure DNS

communication has become popular recently. But at least two

significant problems continue: (1) How can DNS-over-TLS

endpoints be authenticated by clients in a scalable and

extendable way? (2) How can clients be confident that

endpoints will act as expected? A revolutionary Private DNS-

over-TLS (PDOT) architecture was proposed by Nakatsuka et

al. [21]. A DNS Recursive Resolver (Rec Res) that works in a

Trusted Execution Environment (TEC) is part of PDOT. The

study offered an open-source PDOT proof-of-concept

implementation and empirically showed that its throughput

and latency matched those of the well-known Unbound DNS-

over-TLS resolver. The functionality that is available to code

that runs within them is constrained, which presented the

following major difficulties throughout the design process of

PDoT. It also has a little quantity of memory. And applications

must move to the non-TEE side if they need functionality that

is not provided by the TEE.

Security has been largely handled by Transport Layer

Security (TLS). However, the initial handshakes of vanilla

TLS send information about the sort of service being accessed

in plain-text, possibly disclosing user behavior and

jeopardizing privacy. The "Encrypted ClientHello" (ECH), is

a TLS 1.3 extension that Khandkar et al. [18] suggested to

address the privacy concerns in TLS 1.3 by masking all of the

information that may potentially disclose the service type. This

study showed that the Encrypted Client Hellos (ECH) TLS 1.3

enhancement does not deliver the desired privacy. This is

partly due to the fact that many services continue to use TLS

1.2, whilst ECH only supports TLS 1.3. The limited

switchover to TLS 1.3+ECH can fall short of protecting

against malicious attacks that throttling/blocking particular

internet services, as well as failing to fulfill the stated goals of

privacy and anonymity.

The impact of Do53, DoT, and DoH on query response

times and page load times was measured, in the study by

Hounsel et al. [8], from five different worldwide perspectives.

This study discovered that although while DoH and DoT

response times are often higher than Do53, both protocols can

outperform Do53 in terms of how quickly pages load.

However, significant packet loss and latency are introduced

when network conditions deteriorate.

Böttger et al. [9] examined the DNS-over-HTTPS

environment in this study, paying particular attention to the

cost of the added security. And to demonstrate the gains DoH

offers over its predecessor, DoT, they examined various secure

DNS protocols. It was then determined that head-of-line-

blocking affects DoT and DoH/1. This difference in behavior

may (at least partially) explain why DoH/2.0 gained traction

more quickly than DoT.

According to research by Jonglez [10], DNS-over-TCP

performance with few clients is comparable to DNS-over-

UDP with only a 30% lag. Performance of DNS-over-TCP

decreases as the number of clients rises and stabilizes at a 75%

slowness. The performance profile for DoT is comparable to

TCP, although there is a 30% to 45% speed impact. However,

performance suffers noticeably as the number of clients rises

for both TCP and TLS. This was thought to be a result of the

kernel's need to manage a large number of TCP connections

concurrently.

In this research, Shang and Wills [22] presented a novel

approach called an authoritative DNS server (ADNS), that can

piggyback resolutions for future queries as part of the response

message for an initial query. This exploits the relationships

among domain names to improve the cache hit rate for a local

DNS server. The approach improves the cache hit rate as well

as reducing the total queries and responses. Trace-based

simulations show more than 50% of cache misses can be

reduced in the best case while straightforward policies, using

frequency and relevancy data for an ADNS, reduce cache

misses by 25-40% and DNS traffic by 20-35%. However,

these percentages improve if focused on the resource records

policy with smaller authoritative Time-To-Lives.

Khandkar and Hanawal [23] presented a method called

Encrypted TLS/SSL Handshake, to mask the server host

identity by encrypting the Server Name Indicator (SNI). This

simple method completes the SSL/TLS connection

establishment over two handshakes-the first handshake

establishes a secure channel without sharing SNI information,

and the second handshake shares the encrypted SNI. This

method makes it mandatory for fronting servers to always

accept the handshake request without the SNI and respond

with a valid SSL certificate. However, specific changes in the

handshake parameter setting limit the operational viability of

the solution.

In this paper, the present state of DNS security architecture

was evaluated, and saw clearly that existing DNS security

architectures are insufficient to secure DNS data transiting

over the network; considering the growing cybersecurity

landscape. On this note, Alao et al. [24] propose the need and

adoption of a security architecture named Adaptive Security

Architecture. Adaptive Security Architecture is devised to

guard against identified threats, and anticipate unidentified

threats in a manner similar to the immune-response system of

human. Basically, mimicking nature’s biodiversity as the

fundamental means of effective attack responses. Finally, we

conclude by an analysis to prove the need to improve DNS

security architecture.

Hounsel et al. [25] studied the performance of encrypted

DNS protocols and conventional DNS from thousands of

home networks. They found that clients do not have to trade

DNS performance for privacy. For certain resolvers, DoT was

able to perform faster than DNS in median response times,

even as latency increased. Also, there was significant variation

in DoH performance across recursive resolvers. Based on

these results, it was recommended that DNS clients (such as,

web browsers) should periodically conduct simple latency and

response time measurements to determine which protocol and

resolver a client should use. However, no single DNS protocol

nor resolver performed the best for all clients.

Emerging protocols such as DNS-over-HTTPS (DoH) and

DNS-over-TLS (DoT) improve the privacy of DNS queries

781

and responses. While this trend towards encryption is positive,

deployment of these protocols has in some cases resulted in

further centralization of the DNS, which introduces new

challenges. In particular, centralization has consequences for

performance, privacy, and availability. Towards this goal of

increased de-centralization and improved flexibility, Hounsel

et al. [26] presents the design and implementation of a

refactored DNS resolver architecture that allows for de-

centralized name resolution, preserving the benefits of

encrypted DNS while satisfying other desirable properties,

including performance and privacy. The researchers argued

for a re-decentralization of the DNS, considering users may

prefer one distribution strategy over another. They explored

various alternative strategies for resolving and distributing

encrypted DNS queries. However, this research provides only

a starting point as a proof-of-concept.

In the DNS resolution process, packet losses and ensuing

retransmission timeouts induce marked latencies: the current

UDP-based resolution process takes up to 5 seconds to detect

a loss event. Jonglez et al. [27] explored persistent DNS

connections based on TCP or TLS as a possible solution to this

problem. Experimentation showed that persistent DNS

connections significantly reduces worst-case latency. Thus, a

large-scale platform was leveraged to study the performance

impact of TCP/TLS on recursive resolvers. The results showed

that off-the-shelf software and reasonably powerful hardware

can effectively provide recursive DNS service over TCP and

TLS, with a manageable performance hit compared to UDP.

However, switching to TCP or TLS has an impact on the load

of the recursive resolver, which is significant, especially with

a large number of concurrent connections.

2.3.4 Limitations of related works

From the literatures reviewed, two research works focused

on improving performance of DNS, by piggyback resolutions

for future queries as part of the response message for an initial

query, and a DNS Recursive Resolver (Rec Res) that operates

within a Trusted Execution Environment (TEE) respectively.

The outcome of the research works was encouraging but are

limited by the additional performance overhead. The first

research used an authoritative DNS server to improving DNS

performance; however, this is only true for the policies on

resource records with smaller authoritative Time-To-Live

(ATTL). This means with larger ATTL, performance issues

arise. Also, the last research used a novel Private DNS-over-

TLS (PDoT) architecture. However, applications requiring

functionality that is not available within the TEE must switch

to the non-TEE side, this introduces TEE Call-in/Call-out

Overhead.

It can be concluded that attempt at improving performance

has resulted in additional performance issues. Therefore, the

primary purpose of this research is to develop an adaptive

Transport Layer Security Model (ad-TLSM) that adapts

security in light of DNS contextual features to provide

optimum performance; whilst preserving Quality of Service

(QoS) constraints. The task is to effectively manage available

DNS resources without congestion or breaching client’s QoS

constraints.

3. METHODOLOGY

This section presents a description of the methodology used

to satisfy the objective of this research work. These includes

several processes, procedures and architectural structures

adopted within the research.

Figure 3 represents a typical DNS over TLS session during

a DNS server request-response processing cycle. It uses a

Transport Layer Security (TLS) layer under the Transmission

Control Protocol (TCP) transport layer to encrypt the

communication channel between the user and DNS recursive

resolver thus securing queries and responses.

Figure 3. Research design [20]

3.1 Proposed adaptive TLS model (ad-TLSM)

The proposed adaptive TLS method incorporates a feedback

loop mechanism to enhance security adaptation. It relies on

measuring contextual features such as logging, monitoring,

error detection, and information security to make informed

security decisions. These measurements are compared with

offline data to determine the impact of security adaptation. In

the case of DNS recursive resolver, a monitoring mechanism

is used to measure contextual features like throughput and

CPU load of the DNS recursive resolver during the TLS

handshake. This information forms the basis for an adaptation

strategy that enables smart security decisions based on real-

time client-server conditions. Figure 4 shows the ad-TLSM

handshake process.

Figure 4. The ad-TLSM handshake

The adaptive TLS handshake involves the client generating

a "ClientHello" request, the server monitoring contextual

features, and responding with a partially encrypted

"ServerHello" message. If successful, a TLS-encrypted DNS

lookup can be performed. Through this tight coupling of

security and runtime monitoring, the proposed solution

ensures improved performance of the DNS recursive resolver.

By monitoring throughput and encryption and applying this

information to an adaptation strategy, the system can balance

security and performance based on workload and capacity.

782

Regular monitoring and adaptation ensure efficient and

effective system operation.

The primary objective of the ad-TLSM is to enable security

adaptation in systems where all measurable contextual features,

such as logging, monitoring, error detection and correction,

and information security, are present. By leveraging these

contextual features, the method aims to dynamically adjust

security measures at runtime, ensuring optimum performance

while preserving Quality of Service (QoS) constraints. The

concepts and components include:

1) Feedback Loop: The ad-TLSM incorporates a feedback

loop mechanism, where the impact of security adaptation

serves as a response to the monitoring component. This

connection between contextual features and security

adaptation enables runtime automated security actions to

be taken, based on real-time data analysis and comparison.

2) Runtime Monitoring: The ad-TLSM includes a

monitoring mechanism that allows for the real-time

monitoring of the DNS recursive resolver during the TLS

handshake. Contextual features such as throughput and

CPU load are measured and recorded to provide a basis

for the adaptation strategy.

3) Adaptation Strategy: The adaptation strategy utilizes the

monitored contextual features to make smart security

decisions at runtime, based on the present client-server

conditions during the establishment of a secure

connection. This strategy aims to balance the need for

security with other factors such as performance and

resource utilization. Figure 5 shows the process flow

diagram of the ad-TLSM.

Figure 5. The process flow diagram of the ad-TLSM

The ad-TLSM follows a step-by-step procedure to

dynamically adjust security measures based on real-time

monitoring and contextual features. The client creates a TCP

connection to the DoT-enabled resolver's TCP/853 port during

lookups. The ad-TLSM will then be used to establish a TLS

connection as follows:

1. The client creates "ClientHello" requests by using the

data from the content-public server's URL. This data, which is

sent in plain text, contains the server's name (SNI) that the

client wants to connect to.

2. The server’s monitors the contextual feature (such as,

throughput and CPU load) using the Log file and the presently

used cryptographic algorithm in the list of negotiated shared

keys provided by the “pre_key_share” parameter in the TLS

library.

3. This information is then applied to the Adaptation

strategy for smart security decision.

4. If the request is approved, the “pre_key_share”

parameter is updated.

5. The server replies with a "ServerHello" message that

is only partially encrypted and contains the server certificate

and other details pertaining to encryption. To authenticate the

server connection, the client validates the hostname in the

server certificate it receives.

6. Finally, after the TLS session has been successfully

established, the client can do TLS-encrypted DNS lookups

through the DoT port TCP/853 on the resolver side.

This permits the tight coupling of security with runtime

monitoring of the DNS recursive resolver, allowing security

adaptation as the environment or security requirements varies.

Note that, should step 2 fail, it reverts back to using the default

cryptographic algorithm for encryption. This ensures

improved performance of the DNS recursive resolver using the

ad-TLSM.

3.2 Security-performance evaluation parameter

A security-performance evaluation will be conducted on the

ad-TLSM to demonstrate the practical utility in adapting

security and performance at runtime. The evaluation will

follow this process:

1) Security Algorithm Performance: The performance

overhead and security level of typical cryptographic

algorithm implementations will be investigated by

measuring their throughput when subjected to same data

size.

2) Use-case Scenario: To examine how the DNS recursive

resolver performs utilizing different cryptographic

algorithm under varying client-server conditions.

3) Based on step 2, the indirect monitoring adaptation

strategy was used. This strategy relies on examining the

DNS recursive resolver throughput indirectly, by

recognizing that increased throughput suggests increased

CPU load.

4) Such understandings will offer the foundation for a

security-performance adaptation strategy. This will all the

more essentially use the accessible DNS recursive

resolver assets to further improve security without over-

burdening the DNS recursive resolver and upsetting client

QoS requirements. This grants clever security

transformation at runtime in view of current client-server

conditions. Then, the proposed solution will be compared

to existing DNS over TLS (DoT) technique using the

throughput and latency metrics.

783

3.2.1 Evaluation metrics

A security-performance evaluation will be conducted on the

ad-TLSM to demonstrate the practical utility in adapting

security and performance at runtime. The evaluation will

follow this process:

1) Throughput: This refers to the number of DNS requests

that can be processed per second by a DNS recursive

resolver. It is generally measured in requests per second

(req/s). The higher the throughput, the more efficiently

the DNS server can handle incoming requests, resulting

in faster response times and a better user experience. For

example, a basic DNS recursive resolver running on a

low-end server with limited processing power and

network bandwidth may have a throughput of a few

hundred requests per second. In contrast, a high-

performance DNS recursive resolver running on a

powerful server with multiple CPUs and high-speed

network connections can handle thousands or even

millions of requests per second.

2) Latency: This refers to the time it takes for a DNS query

to receive a response from the DNS recursive resolver. It

is measured in seconds and directly impacts the speed and

responsiveness of website access. If a DNS query

experiences high latency, it means that the resolver took a

longer time to provide a response, which can result in

slower website load times or even complete inability to

access a website if the DNS lookup times out.

In conclusion, the ad-TLSM presents a systematic approach

to enhance DNS security while considering runtime

monitoring and adaptation. The objective of this methodology

is to dynamically adjust security measures based on real-time

contextual features of the DNS recursive resolver. By

monitoring factors such as throughput and CPU load, the

adaptation strategy intelligently adapts security measures

during the TLS handshake process.

The significance of this methodology lies in its ability to

balance security and performance, preserving Quality of

Service (QoS) constraints. By dynamically selecting

cryptographic algorithms and making security-related

adaptations, the proposed method ensures optimum security

while improving DNS performance.

The outcomes of applying this methodology have shown

promising results. The evaluation demonstrated that by

adapting the security measures, such as utilizing different

cryptographic algorithms, the DNS recursive resolver could

handle a higher number of requests per second. This translates

to improved performance and reduced CPU load.

The implications of the applied methodology are far-

reaching. It addresses the limitations of existing security

measures in DNS over TLS and provides a framework for

adapting security at runtime. This methodology enables

systems to respond effectively to varying client-server

conditions, enhancing both security and performance. The ad-

TLSM offers a structured and systematic approach to optimize

DNS security. By incorporating real-time monitoring,

adaptation strategies, and runtime security actions, it ensures a

fine balance between security and performance, ultimately

improving the overall effectiveness of DNS systems.

4. IMPLEMENTATION AND EVALUATION

4.1 Implementation

The experiments were conducted on a Windows 10 system

with an Intel Core i5 processor, 16GB RAM, and Apache 2.4.

OpenSSL 1.1.1 was utilized by both Apache's TLS module

and the proposed solution module. This investigation focuses

on the design of the Adaptive Transport Layer Security Model

(ad-TLSM) for DNS recursive resolver. Apache's flexibility as

an open-source web server makes it a suitable platform for

implementing the ad-TLSM design. The ad-TLSM allows for

runtime security adaptation based on the contextual features of

the DNS recursive resolver. The modular architecture of

Apache enables the integration of modules, such as the TLS

module, which configures TLS session security using the SSL

Cipher Suite directive. Similarly, the proposed solution acts as

a module that can be added to existing Apache installations

without requiring any modifications to Apache or TLS code.

By leveraging these features, security can be adapted at

runtime, providing flexibility and enhancing the overall

security of DNS sessions. Figure 6 shows the ad-TLSM.

Figure 6. The ad-TLSM

TLS Handshake: To securely connect to a server, a

hostname (www.example.com) and a port (433) is required.

Based on the implementation, the certificate authority was also

added. For instance:

openssl s_client-connect www.example.com: 443-CAfile

c:/cacert.pem

Figure 7 to Figure 9 show the TLS handshake using AES-

GCM 256, ChaCha20 and AES-GCM 128 respectively.

Once you type the command, diagnostic output is displayed

followed by an input prompt. Because when interacting with a

server, a request is submitted. Now, the TLS communication

layer is working, as request is sent to the server and response

received. For a better look at the certificate, Figure 6 to Figure

8 show a self-explanatory information about the TLS

Handshake using the available cryptographic algorithm

respectively:

The vital information is the protocol version (TLSv1.3) and

cipher suite utilized (TLS_AES_256_GCM_SHA 384). It also

showed the server has allotted a session ID and a TLS session

ticket.

The security policy in the proposed solution consists of

condition and SSL Cipher Suite pairings that trigger the

renegotiation of the client's security session if the requirements

are met and the current session security is not dependent on

the chosen SSL Cipher Suite. The conditions, created using the

Require directive, are complex Boolean expressions utilizing

CGI, Apache, and TLS variables. These conditions are

checked in order, and the first matching condition is selected.

The Require env provider allows access control based on the

784

existence of an environment variable. By using mod setenvif

directives, environment variables can be set based on client

request characteristics like User-Agent or HTTP request

header fields. This flexibility enables the module to be applied

in various applications and data settings at different levels of

abstraction.

Figure 7. TLS handshake using AES-GCM 256

Figure 8. TLS handshake using CHACHA20

Figure 9. TLS handshake using AES-GCM 128

The ad-TLSM registers hooks with Apache, seamlessly

integrating with existing TLS hooks and assuming control of

the TLS renegotiation function. The TLS's SSL Cipher Suite

directive is stored for future application when the Security

Policy is empty or none of its requirements match the client's

request. This ensures that existing or previously applied

security remains in control of session security.

A load generator was used to reproduce multiple client

requests to a server. New user sessions are created with the

server at a specific rate (λ), according to a Poisson process with

some mean. Multiple requests (λn) can be made by users within

each session, according to a typical request rate based on a

Poisson process with some mean. Mean user arrival and

request rates can be altered during an experimentation, to

simulate genuine user load. Each user’s session maintains an

exclusive security state. During a session or its creation,

exclusive user information stored permits the server to adjust

the security for users. Client load was produced utilizing

HTTPerf and Autobench.

For the ad-TLSM evaluation, the client activity is as follows:

1) This HTTPerf script generates a total of 10 sessions at a

rate of 1 session per 256 seconds. Each session consists

of 64 calls that are spaced out by 4 seconds.

2) During the first 500seconds, 10 clients arrive every

3seconds (average request rate at 200req/s).

3) Then, the next 250 seconds, client’s arrival increases at

10 clients every 2.5 seconds (245req/s)

4) And then, reduces to 200req/s for the last 500 seconds.

Furthermore, HTTPerf will use HTTP version 1.0, this

requires new TCP connection per request. Also, no reuse of

the TLS session ids, so the TLS handshake occurs for each

connection. To automate the client workload generation

process, The Autobench script repeatedly runs HTTPerf

against the host, requesting more connections per second with

each run, and extracts the important information from the

output, delivering a CSV or TSV format file that can be

785

directly loaded into a spreadsheet for analysis or graphing.

4.2 Evaluation

This section demonstrates the adaptation of security and

performance to achieve the objectives of the proposed solution.

The Adaptive Transport Layer Security Model (ad-TLSM)

design was implemented to maximize security by effectively

utilizing available processing resources while considering

client Quality of Service (QoS) requirements. Monitoring

components collect data on system resources and encryption,

which is then used by the adaptation strategy to determine the

performance gains of security adaptations based on the

gathered information. The ad-TLSM module enables

successful runtime security adaptation, ensuring the effective

adjustment of security measures.

4.2.1 Security algorithm performance

Table 1 show the default TLS cryptography algorithms

performance effect, when 532B file requests are made. This

supports the statement [10] that AES is typically very fast and

efficient when implemented in hardware and ChaCha20 is

efficient in software implementation.

Client arrival rate starts with a set of 10 new clients each 2.5

seconds (240req/s), until the server is overloaded, the client

load pattern is followed, with a 0.1 second wait between each

group of 10 client arrivals. 90% confidence intervals are <2ms

for all response times under 250ms and under 10ms for all

response times beyond 250ms.

Table 1. Average number of bytes per second

Cryptographic algorithm Throughput (kB/s)

ChaCha20-Poly1305 112000

AES-GCM 128 36000

AES-GCM 256 26500

Figure 10 illustrates that as the client load increases, the

DNS recursive resolver can handle approximately 318req/s

with AES-GCM 256 before becoming overloaded. By using a

different algorithm, it can respond to 15%-25% more requests

per second. AES-GCM 128 and ChaCha20 outperformed

AES-GCM 256 by approximately 15% and 25% respectively,

achieving 333req/s and 343req/s with the same file size and

client concurrency level. While the DNS recursive resolver

allocates more resources to tasks other than cryptography, the

choice of encryption algorithm significantly impacts its

throughput. Therefore, using a different security level can

increase the number of supported clients by 15%-25%.

Figure 10. Security algorithm performance

4.2.2 Use-case scenario

In the given use-case, we examine the impact of increasing

client entries on a DNS recursive resolver using three

cryptography algorithms for TLS: AES-GCM 128, AES-GCM

256, and ChaCha20-Poly1305. We demonstrate the effect of

these algorithms on the resolver's performance and compare it

to the proposed solution's enhancement in security level,

considering client Quality of Service (QoS) requirements. The

figures display average throughput values over 10-second

intervals, while the average number of timed out requests was

determined through repeated evaluations.

Based on this scenario, AES-GCM 128 is deemed suitable

for protecting the data, ensuring a satisfactory level of QoS for

clients who expect timely responses from the resolver.

Figure 11 depicts the DNS recursive resolver throughput

when AES-GCM 128 encryption is used. It demonstrates that

the resolver can handle client load without any timed-out

requests. The experiment was repeated multiple times with

consistent results. The graph shows that 10 clients arrive at

intervals of 3 seconds during the first 500 seconds, and start

leaving the system after 256 seconds. The resolver's

throughput stabilizes at 250 requests per second. The

subsequent evaluation phases show an increase in client entry

as expected. Despite a higher CPU load, the throughput for

ChaCha20-Poly1305 is comparable to AES-GCM 128. As

shown in Figure 10, ChaCha20-Poly1305 can handle a request

rate of 343 requests per second within the 6-second client QoS

constraint, with no reported time-outs.

Figure 11. DNS recursive resolver throughput using AES-

GCM 128

Figure 12. DNS recursive resolver throughput using AES-

GCM 256

Figure 12 illustrates the impact of client activities on the

throughput of a DNS recursive resolver using AES-GCM 256

encryption. The bar graph shows the percentage of timed-out

786

requests in each interval. As the client load increases beyond

the resolver's capacity, requests start timing out at 500 seconds.

With longer response times, clients send fewer queries per

second, resulting in a decrease in resolver throughput. The

slow request rate leads to extended sessions and an increase in

simultaneous sessions as more clients enter. This increase in

simultaneous sessions further elevates the total request rate,

causing nearly all requests to time out. Even after the arrival

of new client requests ceases and current sessions finish, many

requests still time out due to the server's ongoing load. New

requests are delayed until the server clears its load, potentially

leading to additional timeouts. This use-case scenario

highlights the performance degradation that occurs in a non-

adaptive DNS recursive resolver server when faced with a

spike in client arrivals.

4.2.3 Adaptation strategy

This section will illustrate how the ad-TLSM can be utilized

to adapt security and performance utilizing available system

resources to adapt security with regards to client QoS

constraints. In light of the client load patterns, indirect

monitoring adaptation strategy was considered. This approach

relies on indirectly monitoring of the DNS recursive resolver

throughput by identifying that upsurge in throughput infers

increased DNS recursive resolver CPU load. Also, CPU load

is monitored in the background by the Log file and the

information can be utilized by the proposed solution. Thus,

effectively utilize available resources, requires the need to

know how much resource is free, how much resource is needed

or released when the security is adapted.

Figure 13 depicts the performance of the DNS recursive

resolver under different levels of encryption, with an average

session duration of 256 seconds and varying client arrival rates.

The graph demonstrates that the DNS recursive resolver

becomes overloaded at different request rates depending on

the encryption used. AES-GCM 256 overloads at 230req/s,

while ChaCha20-Poly1305 and AES-GCM 128 overload at

296req/s. These findings align with the outcomes in Figure 10

and provide additional insights. It is important to note that a

DNS recursive resolver with a CPU load over 90% using AES-

GCM 128 should not switch to AES-GCM 256, as it would

result in overload. Similar considerations apply to ChaCha20-

Poly1305 to AES-GCM 128 (over 70%) and ChaCha20-

Poly1305 to AES-GCM 256 (less than 50%). Lowering the

security level becomes practical when the CPU utilization

reaches 100%. Based on these insights, a security policy was

formulated and presented in Table 2. This policy ensures

efficient utilization of system resources to enhance security

while avoiding DNS recursive resolver overload and

maintaining QoS constraints.

By comparing the current CPU load to values in Table 2,

this policy determines if the security level needs to be adapted.

The current CPU load is evaluated against each value in the

security policy reference table. If the CPU load is lower/higher

than a specific value, the security may be adapted to the

corresponding algorithm.

Table 2. The ad-TLSM security policy reference

Cryptographic

Algorithm

AES

256

ChaCha

20

AES

128

AES 256 X 0.7 0.9

ChaCha20 0.5 X 0.9

AES-GCM 128 0.5 0.7 X

Figure 13. CPU utilization under different client loads

To achieve the indirect monitoring adaptation strategy, the

following procedure was utilized:

set cpu_load_low=0.5

set cpu_load_meduim=0.7

set cpu_load_high=0.9

set load, crypto_algo, N

for (i=0; i<=N, i++) {

if (load<cpu_load_low)

{

set crypto_algo=1

 }

else if (load>=cpu_load_low && load<=cpu_load_medium)

{

set crypto_algo=0

 }

else if (load>=cpu_load_medium &&

load<=cpu_load_high)

{

set crypto_algo=0

 }

}

return crypto_algo

end procedure

For example, if the current security is ChaCha20-Poly1305,

the CPU load is compared to values in AES-GCM 128 or AES-

GCM 256. If the CPU load is 0.5, AES-GCM 256 is selected,

or if the CPU load is 0.9, AES-GCM 128 is selected. Similarly,

if the current security is AES-GCM 256, the CPU load is

compared to values in ChaCha20-Poly1305 or AES-GCM 128.

If the CPU load is 0.9, AES-GCM 128 is selected, or if the

CPU load is 0.7, ChaCha20-Poly1305 is selected. Lastly, if the

current security is AES-GCM 128, the CPU load is compared

to values in AES-GCM 256 or ChaCha20-Poly1305. If the

CPU load is less than 0.5, AES-GCM 256 is selected, or if the

CPU load is 0.7, ChaCha20-Poly1305 is selected.

4.2.4 Evaluation of the ad-TLSM

Every 10 seconds the average CPU load is documented over

the preceding 10 seconds and adapts the proposed solution

security in light of the indirect monitoring in Subsection 4.2.3.

By utilizing the ad-TLSM, Figure 14 demonstrates effective

maximization of security throughout most of the evaluation

duration. New clients arriving before 460 seconds and after

720 seconds received security levels that exceeded

recommendations while maintaining client Quality of Service

(QoS) constraints. The configuration depicted in Figure 14

allowed the DNS recursive resolver to handle client loads

successfully. The CPU load steadily decreased as security was

787

adapted to ChaCha20 and then to AES-GCM 128. This

occurred twice in a short interval, at 450 seconds and 460

seconds, preventing overloading of the DNS recursive resolver.

Once the CPU load reached a safe level below 50% (as shown

in Table 3.), AES-GCM 256 and then ChaCha20 were

employed for security, observed at 720 seconds and 750

seconds. However, the CPU load began increasing after

approximately 780 seconds, prompting the adaptation of

security to AES-GCM 128.

Table 3 and Figure 14 demonstrate the adaptation of

security measures. While the monitoring mechanism may

require additional processing time to gather and analyze data

on network conditions, the overhead is minimal due to its

efficient and lightweight design. The benefits of the ad-TLSM

outweigh the potential impact on throughput, as it enables

automatic adjustment to network changes, improving

performance and security management. To evaluate the ad-

TLSM's performance, we compared its throughput and latency

values with those of PDOT [21] using a similar client load

pattern, as shown in Table 4. Table 3 shows the ad-TLSM

security adaptation.

Figure 14. DNS recursive resolver throughput using ad-

TLSM

Table 3. The ad-TLSM security adaptation

Adaptation Time (seconds) Throughput (Req/s) (approx.)

AES 256 0 -

ChaCha20 450 318

AES 128 460 321

AES 256 720 348

ChaCha20 750 350

AES 128 780 375

Table 4. The ad-TLSM against PDoT based on throughput

and latency

Models Time (seconds) Throughput (Req/s) (approx.)

PDOT [21] 700 0.3

Ad-TLSM 700 0.2

Table 4 shows the ad-TLSM against PDoT based on

throughput and latency.

The evaluation of the ad-TLSM method demonstrated its

superior performance compared to other methods. However,

the CPU capacity directly affects the performance of both the

ad-TLSM and the DNS recursive resolver. Higher CPU

capacity enables more efficient handling of incoming requests,

resulting in faster response times and improved overall

performance. The ad-TLSM also shows similar throughput

values to other methods, indicating efficient handling of

requests and a better user experience. Furthermore, the ad-

TLSM exhibits better latency values, which can be attributed

to its effective adaptation strategy. The satisfactory throughput

and latency values of the ad-TLSM are presented in Table 4.

4.3 Security analysis

The section examines the potential risks and vulnerabilities

associated with a malicious operator and network adversary in

the context of the research on monitoring CPU load of a DNS

recursive resolver and applying an adaptation strategy for

enhancing performance. This section explores the importance

of selecting appropriate encryption algorithms, the need for an

adaptive security strategy, the impact on client QoS constraints,

and the measures to mitigate overload attacks. It highlights the

significance of protecting against malicious actors and

ensuring secure communication to safeguard the DNS

recursive resolver from potential threats and breaches. In terms

of security implications related to a malicious operator and

network adversary, the research and evaluation discussed

several important factors:

1) Encryption algorithm selection: The choice of

encryption algorithm can have significant security

implications when dealing with a malicious operator or

network adversary. The evaluation showed that different

encryption algorithms have varying levels of performance

and efficiency. It is important to choose an algorithm that

provides strong security against potential attacks, as a

malicious operator or network adversary may attempt to

exploit vulnerabilities in weaker algorithms.

2) Adaptive security strategy: The research proposed the

ad-TLSM strategy to adapt security and performance

based on system resources and client QoS requirements.

By monitoring the CPU load and dynamically adjusting

the security level, the ad-TLSM aims to optimize security

without overloading the DNS recursive resolver. This is

crucial in defending against malicious operators or

network adversaries who may attempt to overload the

resolver to disrupt its functionality.

3) Client QoS constraints: The research also emphasized

the importance of maintaining client QoS (Quality of

Service) constraints while adapting security. This ensures

that clients receive timely responses and are not

negatively impacted by security adaptations. By

considering client QoS requirements, the ad-TLSM

strategy aims to strike a balance between security and

performance, providing protection against malicious

actors while ensuring a satisfactory user experience.

4) Mitigating overload attacks: A malicious operator or

network adversary may attempt to overload the DNS

recursive resolver by sending a high volume of requests.

This can lead to denial-of-service (DoS) attacks and

disrupt the resolver's normal operation. The ad-TLSM

strategy, by monitoring CPU load and adapting security

accordingly, helps mitigate the risk of overload attacks by

ensuring that the resolver does not become overwhelmed

and can handle the incoming traffic effectively.

5) Secure communication: The use of strong encryption

algorithms, such as ChaCha20-Poly1305 and AES-GCM,

helps protect against potential attacks from malicious

operators or network adversaries. These algorithms

provide confidentiality, integrity, and authenticity of the

communication, making it difficult for adversaries to

788

intercept or tamper with the data exchanged between

clients and the DNS recursive resolver.

6) Privacy: By utilizing encryption algorithms and

adaptation strategies, the research aims to prevent

unauthorized access to user information, thereby

safeguarding privacy. The implementation of robust

encryption protocols helps in preventing eavesdropping,

data interception, and unauthorized data tampering,

thereby enhancing the overall privacy of users utilizing

the DNS recursive resolver. Additionally, the research

highlights the significance of selecting encryption

algorithms that offer strong privacy guarantees, ensuring

that user data remains confidential and protected from

potential privacy breaches.

4.4 Limitations of the study

Despite the limitations of this research, we believe that our

findings provide valuable insights into the impact of DNS on

user experience and how different DNS stakeholders can

improve it. Achieving a perfect balance between security and

performance is challenging, especially considering that our

measurements were conducted on the Windows operating

system, which may affect the results due to the networking

stack and algorithm parameters. However, we expect our

findings to be applicable to other operating systems as well,

considering the highly optimized nature of networking stacks.

Additionally, it is important to acknowledge that the direct

monitoring approach assumes file size as a direct indicator of

DNS recursive resolver workload, which may not always hold

true.

5. CONCLUSION

The research developed an Adaptive Transport Layer

Security Model (ad-TLSM) for enhancing DNS performance

by adapting security, without breaching QoS constraint. The

ad-TLSM was developed, implemented and evaluated. The

Adaption strategies used are based on an Indirect Monitoring

of contextual features. Evaluation results indicated that the ad-

TLSM could be adopted and used were security and

performance is required in communication.

The results of this study suggest that the methodology used

to achieve high throughput while maintaining low latency in

DNS security could be applied to other forms of network

environment. Using additional contextual features, such as

latency, Round-Trip-Time (RTT), would improve the security

and performance of the network environment. Furthermore, it

will be important to conduct field evaluations and obtain

information from local stakeholders on how to improve the

adaptation strategy, particularly in developing nations with

cyber-security deficiencies.

The research identifies the high failure rate in DNS

performance in DoT as a research gap. It then developed an

ad-TLSM to compensate for the identified inadequacy in DoT.

Additionally, the inclusion of an Adaptation strategy helped to

provide better results, qualifying the ad-TLSM for use in

secure and confidential communication in places where

performance is important. Finally, it gives academics a chance

to do further research to enhance the findings already made in

this study.

Further studies could focus on the implementation and

testing of the ad-TLSM scalability and how adaptive security

can be achieved with existing security protocols and

techniques.

REFERENCES

[1] Larry, L. The past, present and future of DNS security.

Security Intelligence.

https://securityintelligence.com/the-past-present-and-

future-of-dns-security/, accessed on Dec. 22, 2017.

[2] Kabelova, A., Dostalek, L. (2006). DNS in action: A

detailed and practical guide to DNS implementation,

configuration, and administration. Packt Publishing Ltd.

[3] Gupta, B.B. (2018). Computer and Cyber Security:

Principles, Algorithm, Applications, and Perspectives.

CRC Press.

[4] Khan, I., Farrelly, W., Curran, K. (2020). A

demonstration of practical DNS attacks and their

mitigation using DNSSEC. International Journal of

Wireless Networks and Broadband Technologies

(IJWNBT), 9(1): 56-78.

https://doi.org/10.4018/IJWNBT.2020010104

[5] García, S., Hynek, K., Vekshin, D., Čejka, T., Wasicek,

A. (2021). Large scale measurement on the adoption of

encrypted DNS. arXiv Preprint arXiv: 2107.04436.

https://doi.org/10.48550/arXiv.2107.04436

[6] Lyu, M., Gharakheili, H.H., Sivaraman, V. (2022). A

survey on DNS encryption: Current development,

malware misuse, and inference techniques. ACM

Computing Surveys, 55(8): 1-28.

https://doi.org/10.1145/3547331

[7] Doan, T.V., Tsareva, I., Bajpai, V. (2021). Measuring

DNS over TLS from the edge: adoption, reliability, and

response times. In Passive and Active Measurement:

22nd International Conference, PAM 2021, Virtual

Event, March 29-April 1, Springer International

Publishing. Proceedings, 22: 192-209.

https://doi.org/10.1007/978-3-030-72582-2_12

[8] Hounsel, A., Borgolte, K., Schmitt, P., Holland, J.,

Feamster, N. (2020). Comparing the effects of DNS, DoT,

and DoH on web performance. In Proceedings of The

Web Conference, 2020: 562-572.

https://doi.org/10.1145/3366423.3380139

[9] Böttger, T., Cuadrado, F., Antichi, G., Fernandes, E.L.,

Tyson, G., Castro, I., Uhlig, S. (2019). An empirical

study of the cost of DNS-over-https. In Proceedings of

the Internet Measurement Conference, pp. 15-21.

https://doi.org/10.1145/3355369.3355575

[10] Jonglez, B. (2020). End-to-end mechanisms to improve

latency in communication networks. Doctoral

Dissertation, Université Grenoble Alpes.

[11] Joel, W. (2008). Designing an adaptive security

architecture. Sun BluePrints™ Online, 1-19.

[12] Wessels, D. (2004). A recent DNS survey. DNS-OARC.

[13] Piscitello, D. (2010). Conficker summary and review.

Technical Report.

[14] de Castro, L.N., Timmis, J. (2002). Artificial immune

systems: A new computational intelligence approach.

Springer Science & Business Media.

[15] Srihari, H.S., Koundinya, A.K., Srinivasan, G.N. (2018).

Generalized adaptive security for computer systems. In

Proceedings of the World Congress on Engineering and

Computer Science, Vol. 1.

[16] Vahab, P. (2010). Notes on transport layer security.

789

Computer Science Department, University of California,

1-6.

[17] Hao, Y. (2017). Transport layer security (TLS)-

Transport layer security performance testing. Xena

Networks, 1-13.

[18] Khandkar, V.S., Hanawal, M.K., Kulkarni, S.G. (2022).

Challenges in adapting ECH in TLS for privacy

enhancement over the internet. arXiv Preprint arXiv:

2207.01841. https://doi.org/10.48550/arXiv.2207.01841

[19] Willian, S. (2005). Cryptography and network security:

Principles and practice (4th ed.). Prentice.

[20] Houser, R., Li, Z., Cotton, C., Wang, H. (2019). An

investigation on information leakage of DNS over TLS.

In Proceedings of the 15th International Conference on

Emerging Networking Experiments and Technologies,

pp. 123-137. https://doi.org/10.1145/3359989.3365429

[21] Nakatsuka, Y., Paverd, A., Tsudik, G. (2021). PDOT:

Private DNS-over-TLS with TEE support. Digital

Threats: Research and Practice, 2(1): 1-22.

https://doi.org/10.1145/3431171

[22] Shang, H., Wills, C.E. (2006). Piggybacking related

domain names to improve DNS performance. Computer

Networks, 50(11): 1733-1748.

https://doi.org/10.1016/j.comnet.2005.06.016

[23] Khandkar, V.S., Hanawal, M.K. (2021). Masking host

identity on internet: Encrypted TLS/SSL handshake.

arXiv Preprint arXiv: 2101.04556.

https://doi.org/10.48550/arXiv.2101.04556

[24] Alao, D.O., Ayankoya, F.Y., Ajayi, O.F., Ohwo, O.B.

(2023). The need to improve DNS security architecture:

An adaptive security approach. Information Dynamics

and Applications, 2(1): 19-30.

https://doi.org/10.56578/ida020103

[25] Hounsel, A., Schmitt, P., Borgolte, K., Feamster, N.

(2021). Can encrypted DNS be fast? In Passive and

Active Measurement: 22nd International Conference,

PAM 2021, Virtual Event, March 29-April 1, Springer

International Publishing, 22: 444-459.

https://doi.org/10.1007/978-3-030-72582-2_26

[26] Hounsel, A., Schmitt, P., Borgolte, K., Feamster, N.

(2021). Encryption without centralization: Distributing

DNS queries across recursive resolvers. In Proceedings

of the Applied Networking Research Workshop, pp. 62-

68. https://doi.org/10.1145/3472305.3472318

[27] Jonglez, B., Birbalta, S., Heusse, M. (2019). Poster:

Persistent DNS connections for improved performance.

In 2019 IFIP Networking Conference. IEEE, pp. 1-2.

https://doi.org/10.23919/IFIPNetworking46909.2019.89

99394

790

