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The present study endeavors to enhance DNS over TLS performance via the development 

of an Adaptive Transport Layer Security Model (ad-TLSM). DNS over TLS, which 

employs TLS encryption to safeguard communication between clients and DNS recursive 

resolvers, suffers from performance issues that pose significant challenges. In response to 

these issues, the ad-TLSM has been designed to boost DNS performance by integrating a 

monitoring mechanism for real-time observation of the DNS recursive resolver. During the 

TLS handshake, crucial data, including throughput, CPU load, and the active cryptographic 

algorithm, are meticulously monitored and documented. This data forms the foundation for 

an adaptive strategy, which facilitates intelligent security adaptation during runtime, based 

on the prevailing conditions between the client and the server at the time of secure 

connection establishment. The performance evaluation of the ad-TLSM demonstrated that 

the DNS recursive resolver experiences excessive load while employing AES-GCM 256. 

However, it was found capable of managing an additional 15%-25% requests per second 

when ChaCha20 was implemented. These findings led to the formation of an adaptive 

strategy that effectively alleviates CPU load by adjusting the security level, thereby 

ameliorating the overall performance. In summary, the ad-TLSM surpasses existing models 

in latency performance and can be employed to improve performance, while satisfying 

quality of service constraints. This research represents a significant step towards the 

development of more efficient and secure DNS services. 
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1. INTRODUCTION

In the early stages of the Internet, navigation proved 

challenging, with messages manually transmitted from one 

computer to another [1]. This process necessitated a 

comprehensive understanding of the Internet's architecture 

from source to destination. However, the introduction of the 

Berkeley Internet Name Domain (BIND) program in 1984 at 

the University of California, Berkeley, revolutionized Internet 

navigation by establishing a decentralized mechanism for 

naming Internet-connected nodes based on hierarchical 

records [1]. This innovation eliminated the need for each node 

to maintain a complete routing database and introduced the 

concept of mapping data in the namespace to an IP address. 

Today, two primary namespaces are utilized by the Internet: 

the Internet Protocol (IP) address spaces and the domain name 

space [2]. Whereas an IP address serves as a numerical label 

for each device on a computer network using the Internet 

Protocol for communication, the Domain Name System (DNS) 

performs translation services between itself and the address 

spaces, maintaining the domain name hierarchy [2]. The DNS 

provides a distributed, fault-tolerant global directory service, 

vital for Internet operations. By delegating domain name 

assignment and mapping those names to Internet resources to 

authoritative name servers for each domain, the DNS 

effectively circumvents the need for a single, large centralized 

database. 

The DNS protocol specifically articulates data structures 

and data transmission exchanges. A host's domain name is 

assembled from individual group names, comprising strings 

separated by dots. The highest authority is the root domain 

(Top Level Domains (TLDs)), which is subdivided into 

Generic Top-Level Domains (gTLDs) (e.g., edu, com, net, and 

mil) and Country Code Top-Level Domains (ccTLDs) 

(e.g., .ng, .se, .us, .ca) [2]. As such, the DNS is instrumental 

for the reliable and trustworthy operation of the Internet, with 

disruptions in its operation potentially causing significant 

impact on provided services and the global Internet at large. 

Regrettably, breaches of DNS security have been attempted 

over the years, resulting in various attacks [3]. The existing 

DNS recursive resolver lacks adequate security mechanisms 

for data confidentiality, availability, and integrity, making it 

susceptible to hackers and attackers who could falsify DNS 

records and redirect genuine users to malicious domains [4]. 

To mitigate these challenges, new protocols such as DNS over 

Hypertext Transfer Protocol Secure (DoH), DNS over 

Transport Layer Security (DoT), and DNS over Quick UDP 

Internet Connections (DoQ) have been introduced [5]. 

DNS encryption, typically achieved through the encryption 

of the content of queries and responses (between clients and 

recursive resolvers) using cryptographic techniques in an 

upper layer protocol, has the potential to maintain user privacy 

against attacks. However, the introduction of encrypted 

transports incurs new performance costs, including overhead 

associated with Transmission Control Protocol (TCP) and 

TLS connection establishment, and additional application-
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layer overhead [6]. These performance costs were not well 

understood initially [6]. Therefore, numerous researchers have 

probed into how encrypted transports for DNS impact the end-

user experience [7-10]. Their findings suggest that DNS 

queries are generally slower with encrypted transports, and 

these protocols begin to experience difficulties on networks 

with sub-optimal performance due to their connection and 

transport overhead. 

The relative costs and benefits of a particular DNS transport 

protocol and its implementation for DNS query response times 

are heavily influenced by the underlying network conditions. 

Therefore, the features and ideologies of adaptive security, a 

new architectural approach, warrant consideration. Adaptive 

security techniques, akin to risk management, strive to manage 

risk and meet the required Service Level Agreement (SLA). 

They aim to circumvent the impact and degree of potential 

threats in a timely manner [11]. 

The implementation of an adaptive security approach can be 

achieved using currently available technologies [11]. Besides 

upholding SLAs, adaptive security seeks to maintain integrity, 

foster trustworthiness, and provide assurance, inspiring 

confidence in data and processing resources, ensuring 

trustworthiness, reliability, availability, and operation within 

satisfactory parameters. What distinguishes adaptive security 

architecture from existing advanced practices is its design to 

guard against identified threats and anticipate unidentified 

threats in a fashion resembling the human immune-response 

system. 

Given the inherent performance issues and the need to 

ensure complete security service, it is necessary to improve 

DNS security by deploying an adaptive solution. This solution 

should enhance DNS performance with an increasing client 

base and satisfy diverse usage patterns. 

 

1.1 Statement of the problem 

 

The Domain Name System (DNS) is integral to the 

functionality of the Internet, offering global distributed 

directory services. However, it has been found that the DNS 

recursive resolver lacks adequate security mechanisms for data 

confidentiality, availability, and integrity. Several security 

measures, including DNS over TLS (DoT), DNS over HTTPS 

(DoH), and DNS over QUIC (DoQ), have been developed to 

secure communications with the DNS recursive resolver. 

While these techniques have indeed bolstered DNS security, 

they have also introduced significant performance costs, with 

overall failure rates fluctuating between 1.3% and 39.4%. 

Further, research has revealed that the use of cryptography 

in Transport Layer Security (TLS) can negatively impact 

performance. Both asymmetric and symmetric cryptographic 

primitives are employed by TLS, with the former requiring 

more memory. Symmetric cryptography involves the use of 

the Advanced Encryption Standard (AES) – typically fast and 

efficient in hardware implementation – and ChaCha20-

Poly1305, which excels in software implementation. More 

importantly, DNS query processing may necessitate high CPU 

usage due to the cryptographic operations performed by TLS. 

Previous efforts to address this performance problem have 

utilized various techniques such as an authoritative DNS 

server (ADNS) and Private DNS over TLS (PDOT). While the 

ADNS approach improved DNS performance, this was only 

true for policies on resource records with smaller authoritative 

Time-To-Live (ATTL). Larger ATTL values resulted in 

performance issues. On the other hand, PDOT focused on 

privacy, taking performance into account. However, 

applications needing functionality not available within the 

Trusted Execution Environment (TEE) had to switch to the 

non-Trusted Execution Environment, leading to overhead 

associated with TEE Call-in/Call-out. Despite addressing 

privacy concerns, performance issues persist. 

Given that current security techniques do not provide 

satisfactory performance, this study aims to develop an 

Adaptive Transport Layer Security Model (ad-TLSM) to 

enhance DNS throughput. 

 

1.2 Justification of the study 

 

Considering the biased and abstract factors that influence 

security decisions, threats to the system remain a significant 

concern. Therefore, it's vital to continue efforts to mitigate 

these threats by enhancing DNS security, using Adaptive TLS 

to provide optimum security while maintaining Quality of 

Service (QoS) constraints. 

A specific constraint involves the effective management of 

available DNS resources without causing congestion or 

violating client QoS constraints. A security measure capable 

of utilizing available DNS resources to maintain high security 

levels offers the potential for timely and fine-grained security 

control. 

 

 

2. LITERATURE REVIEW 

 

2.1 The domain name system security 

 

DNS security, a strategy aimed at safeguarding the DNS 

infrastructure from cyberattacks, seeks to maintain its robust 

and efficient performance. A successful DNS security strategy 

incorporates a blend of overlapping defenses, which may 

include the implementation of redundant DNS servers, the 

application of security protocols such as DNSSEC, and the 

insistence on comprehensive DNS logging. As with many 

Internet protocols, the DNS infrastructure was not originally 

designed with an emphasis on security, resulting in several 

inherent design limitations. These limitations, when coupled 

with technological advancements, render DNS servers 

vulnerable to a wide spectrum of attacks such as Denial of 

Service, spoofing, amplification, and private data interception. 

Given that DNS forms a crucial component of the majority 

of web requests, it presents an attractive target for attackers. 

DNS attacks are often executed in conjunction with other 

cyberattacks, thereby diverting the attention of security teams 

from the primary target. It is imperative for organizations to 

swiftly neutralize DNS attacks to avoid being overly 

preoccupied, thereby leaving them vulnerable to simultaneous 

attacks from other vectors. 

Privacy constitutes another significant issue within DNS 

security. The lack of encryption for DNS queries, even when 

the client uses a DNS resolver that does not log their activities, 

means that these queries traverse the Internet in plaintext. This 

lack of privacy not only jeopardizes security but also, in 

certain contexts, infringes upon human rights. The visibility of 

DNS queries simplifies the task for governments seeking to 

censor the Internet and for attackers aiming to monitor users' 

online activities. 

Research conducted by Wessels [12] estimated that there 

are approximately 11.7 million public DNS servers on the 

Internet. Of these, around 52% permit arbitrary queries due to 
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improper configuration, while approximately 33% allow 

denial of service attacks or cache poisoning attack, given that 

their authoritative name servers reside on the same network. 

Additionally, the sophistication of attacks targeting DNS 

has increased, complicating detection and control processes. 

For instance, the Fast Flux attack swiftly modifies DNS 

information about the domain to delay or evade detection. 

Similarly, the conficker worm attacks [13], also known as SQL 

Slammer, leverage domain names to make network attacks 

resilient against detection and shutdown. To assist in 

identifying attacked domains, the Internet Corporation for 

Assigned Names and Numbers (ICANN) has compiled a list 

of domains that could potentially be used in such attacks 

across each Top-Level Domain. 

 

2.2 Adaptive security 

 

Security threats are counter-productive to the functionality, 

performance, availability, and integrity of Information 

Technology systems. The goal is to decrease possible security 

threats to the level wherein Service Level Agreements (SLAs) 

can still be satisfied; as well as the risk management concept. 

By timely prevention of an attack, adaptive security attempts 

to decrease the effect and degree of possible threats. 

 

2.2.1 Characteristics of an adaptive security 

de Castro and Timmis [14] identified some characteristics 

of adaptive security useful in Information Technology systems 

to include preventing attacks, contain the impact of attacks, 

and timely responds to attacks. Other characteristics includes: 

1) Self-identity: This involve separating and removing what 

does not belong in line with the governing security policy. 

This comprises of support for systems communication 

and information exchange on attacks and threats, 

preventive measures, security guidelines and policies, and 

trust relations amongst 3rd party systems. 

2) Diversity: This shows itself via diverse control 

mechanisms such as compartmentalization. This can be 

achieved through operating system (OS) virtualization or 

Trusted Platform Module (TPM)-based hardware trust 

anchors. 

3) Autonomy: There are different components that controls 

the security system function autonomously to prevent 

attacks and threats. This is required for security and 

integrity control devices to autonomously function in 

responding to attacks and threats. 

4) Multi-layered: This can be likened to the idea of 

“defense-in-depth”, where in a properly designed security 

architecture preserves and employs multiple security 

measures to subdue the hazard of a compromised single 

measure. 

5) Resilience: The effectiveness of a security system can be 

decreased by various factors. By maintaining a level of 

resilience, it can continuously recognize and prevent 

attacks in spite of reduced capacity. 

6) Anomaly detection: This involves supporting the ability 

to detect and prevent any abnormal behavior or known 

threats automatically. 

 

2.2.2 Adaptive security capabilities 

New approaches in information security techniques have 

tried to mimic adaptive system so as to be able to fine-tune to 

continuously developing and varying security threats. The 

core of Adaptive Security is to serve as the immune system of 

a system. This is realized by developing an Adaptive Security 

aimed at containing active attacks and neutralizing possible 

threat vectors [15]. Adaptive security is defined based on four 

security abilities: 

1) Preventive capability: A set of rules, guidelines and 

policies that prevents an attack from being successful. 

Thus, information is protected from illegal alteration, ruin, 

or exposure, whether unintentionally or deliberately. 

2) Detective capabilities: These are controls (including 

logging of events) intended to recognize attacks, that 

have eluded the preventive procedures, and decrease the 

attack magnification. Thus, this provides an outlook into 

malicious actions, violation and attacks. 

3) Retrospective capabilities: These provide a way of 

reducing the attack area, the attack rate and recovery time. 

Thus, this provides the procedures necessary to take 

suitable action in responding to diverse cybersecurity 

events. 

4) Predictive capabilities: These allows attack predictions, 

security trends analysis and changing to a proactive 

security from reactive security. Thus, security 

intelligence is achieved from internal and external events 

monitoring to recognize attackers, their purposes and 

approaches before the appearance of the attacks. 

 

2.3 Transport layer security 

 

Transport Layer Security (TLS) is used to secure 

communications via a consistent transport protocol (such as 

TCP/IP) between a web server and client using a cryptographic 

protocol. This allows client-server applications to 

communicate via a public network, while preventing messages 

from eavesdropping, altering, and counterfeiting. TLS 

provides the following security characteristics such as 

confidentiality, integrity, authentication and non-repudiation 

of messages. The TLS protocol goals are extensibility, 

cryptographic security, interoperability and efficiency. There 

are two main components of TLS protocol: Handshake 

protocol and Record protocol. Through the handshake, to 

meet the mentioned security characteristics, algorithms are 

selected based on availability to both the client and server. 

This is generally known as TLS negotiation, with the ensuing 

secured connection called a session. Also, an established TLS 

session can be renegotiated at the decision of the client or 

server [16]. Figure 1 depicts the logical description of 

Transport Layer Security (TLS) architecture. 

 

 
 

Figure 1. Transport layer security architecture [17] 

 

2.3.1 DNS over TLS 

This study looks to investigate Domain Name System 

security such as DNS over TLS (DoT) to find some fact that 

helps to analyze the problems and capitalizing on them to 

develop the proposed solution. When initiating a TLS 

handshake, the client and the DNS resolver negotiate and 
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agree upon a cryptographic algorithm to be used for encrypting 

and decrypting the data exchanged during the communication. 

This algorithm is typically selected from a set of available 

options supported by both the client and the DNS resolver. 

Figure 2 shows the typical TLS 1.3 handshake process. 

During lookups, the client establishes a TCP connection to 

a selected DoT port TCP/853 on the DoT-enabled resolver. 

Next, a TLS connection will be established via a typical TLS 

handshake process to exchange their cryptographic keys. TLS 

1.3 uses the “key_share” and “pre_key_share” parameters in 

the “ClientHello” handshake message for encryption purposes. 

The “key_share” parameter is used to exchange the end-

point’s public key share required to generate secret key at the 

remote end-point. The “pre_key_share” parameter specifies 

the index of the presently used shared key for encryption in the 

list of negotiated shared keys. Then, TLS 1.3 encrypts the 

server security certificate. Upon successful establishment of 

the TLS session, the client is able to perform TLS-encrypted 

DNS lookups through the DoT port TCP/853 on the resolver 

side. Depending on the configurations of clients and servers, 

the TLS connections may remain open for further DNS 

lookups, reducing latency (that is, preventing additional 

TCP/TLS handshakes for subsequent requests). 

The cryptographic algorithm plays a vital role in ensuring 

the confidentiality, integrity, and authenticity of the DNS 

query transactions. It determines how the data is encrypted, 

decrypted, and authenticated, providing protection against 

eavesdropping, tampering, and spoofing attacks. By using 

TLS to secure DNS query transactions, sensitive information, 

such as the domain names being queried, is encrypted and 

protected from unauthorized access. This helps to prevent 

malicious actors from intercepting and manipulating DNS 

queries, thereby safeguarding the privacy and integrity of the 

communication. TLS is employed in DoT to secure DNS 

query transactions by selecting an appropriate cryptographic 

algorithm that ensures the confidentiality, integrity, and 

authenticity of the exchanged data. 

Though DoT is a viable approach for DNS encryption, it 

faces several performance challenges that may hinder its usage, 

such as high failure rate due to timeouts (that is, no response 

within 5 seconds), head-of-line blocking, and computational 

overhead [7-10]. 

 

 
 

Figure 2. A typical TLS 1.3 handshake [18] 

 

2.3.2 Security services of cryptography 

The essential security objectives of cryptography are to 

offer the accompanying vital services. According to Willian 

[19], these vital services are: 

1) Confidentiality: It is a security service that keeps the data 

from an unapproved individual. Cryptography ensures 

that DNS data remains confidential by encrypting it. With 

encryption, sensitive information, such as the domain 

names being queried, is transformed into ciphertext that 

is unreadable without the corresponding decryption key. 

This prevents unauthorized parties from accessing and 

understanding the contents of DNS queries, protecting the 

privacy of users. 

2) Data integrity: It is a security service that deals with 

perceiving any alteration to the information. 

Cryptographic algorithms, such as message 

authentication codes (MACs) and digital signatures, 

ensure the integrity of DNS data. MACs provide a way to 

verify that the data has not been tampered with during 

transmission, as any modifications to the data would 

result in an invalid MAC. Digital signatures, on the other 

hand, provide a mechanism for verifying the authenticity 

and integrity of DNS responses, ensuring that they have 

not been altered by malicious actors. 

3) Authentication: This gives the identity of the message 

originator. Cryptography enables the verification of the 

authenticity of DNS data. Digital signatures, for instance, 

can be used to verify that a DNS response has been 

generated by a trusted DNS server and has not been 

tampered with during transit. This prevents attackers from 

impersonating DNS servers and providing false or 

malicious responses. 

4) Non-repudiation: It is a security service which 

guarantees an entity cannot reject the ownership of a prior 

action. Cryptographic mechanisms, such as digital 

signatures, provide non-repudiation, which means that a 

party cannot deny their involvement in generating a 

particular DNS response. This is important in DNS 

security as it ensures accountability and prevents 

malicious actors from denying their actions. 

 

2.3.3 Review of related works 

It is unknown how much information may be gleaned via 

traffic analysis on DoT communications, despite the fact that 

DoT is meant to stop on-path adversaries from observing and 

manipulating the victims' DNS requests and responses. A DoT 

fingerprinting technique was proposed by Houser et al. [20] to 

examine DoT traffic and identify whether a user has visited 

websites that are of interest to adversaries. When DNS 

messages are not padded, the suggested approach can detect 

DoT traffic for websites with a false negative rate of less than 

17% and a false positive rate of less than 0.5%. Furthermore, 

it was demonstrated that even when DoT messages are padded, 

information leakage is still feasible. 

For five months at the start of 2021, this study tracked the 

adoption of DoH (DNS over HTTPS), DoT (DNS over TLS), 

and DoQ (DNS over QUIC) by three separate enterprises with 

worldwide reach. García et al. [5] analyzed the overall 

numbers, requests made per user, and traffic seasonality in 

order to determine the potential adoption trends. It was 

concluded that, despite increasing in 2020, there was 

statistically substantial evidence that the average volume of 

Internet traffic for DoH, DoT, and DoQ remained constant 

throughout the first five months of 2021. However, we 

discovered that the number of DoH servers that are available 

for use has increased by a factor of 4. These findings indicate 

that although the volume of encrypted DNS is not now 
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increasing, there may soon be an increase in connections to 

unknown DoH servers for both good and bad intentions. 

Although DNS over TLS (DoT) was established as an 

addition to the DNS protocol in 2016, little research has been 

done on how it performs. Research by Doan et al. [7] used 3.2k 

RIPE Atlas probes installed in home networks to quantify DoT 

from the edge and compare its adoption, dependability, and 

response times to DNS via UDP/53 (Do53). It was found that 

open resolvers are becoming more supportive of DoT. DoT is 

still only supported by regional resolvers. However, the 

reliability of DoT decreased while failure rates rose. Response 

times, according to DoT, are getting longer. Most failures 

occur due to timeout, that is no response within 5 seconds, 

which was suspected to be as a result of the intervening 

middleboxes on the path that blackhole the connections by 

dropping packets destined for port 853. 

Using Transport Layer Security (TLS) to secure DNS 

communication has become popular recently. But at least two 

significant problems continue: (1) How can DNS-over-TLS 

endpoints be authenticated by clients in a scalable and 

extendable way? (2) How can clients be confident that 

endpoints will act as expected? A revolutionary Private DNS-

over-TLS (PDOT) architecture was proposed by Nakatsuka et 

al. [21]. A DNS Recursive Resolver (Rec Res) that works in a 

Trusted Execution Environment (TEC) is part of PDOT. The 

study offered an open-source PDOT proof-of-concept 

implementation and empirically showed that its throughput 

and latency matched those of the well-known Unbound DNS-

over-TLS resolver. The functionality that is available to code 

that runs within them is constrained, which presented the 

following major difficulties throughout the design process of 

PDoT. It also has a little quantity of memory. And applications 

must move to the non-TEE side if they need functionality that 

is not provided by the TEE. 

Security has been largely handled by Transport Layer 

Security (TLS). However, the initial handshakes of vanilla 

TLS send information about the sort of service being accessed 

in plain-text, possibly disclosing user behavior and 

jeopardizing privacy. The "Encrypted ClientHello" (ECH), is 

a TLS 1.3 extension that Khandkar et al. [18] suggested to 

address the privacy concerns in TLS 1.3 by masking all of the 

information that may potentially disclose the service type. This 

study showed that the Encrypted Client Hellos (ECH) TLS 1.3 

enhancement does not deliver the desired privacy. This is 

partly due to the fact that many services continue to use TLS 

1.2, whilst ECH only supports TLS 1.3. The limited 

switchover to TLS 1.3+ECH can fall short of protecting 

against malicious attacks that throttling/blocking particular 

internet services, as well as failing to fulfill the stated goals of 

privacy and anonymity. 

The impact of Do53, DoT, and DoH on query response 

times and page load times was measured, in the study by 

Hounsel et al. [8], from five different worldwide perspectives. 

This study discovered that although while DoH and DoT 

response times are often higher than Do53, both protocols can 

outperform Do53 in terms of how quickly pages load. 

However, significant packet loss and latency are introduced 

when network conditions deteriorate. 

Böttger et al. [9] examined the DNS-over-HTTPS 

environment in this study, paying particular attention to the 

cost of the added security. And to demonstrate the gains DoH 

offers over its predecessor, DoT, they examined various secure 

DNS protocols. It was then determined that head-of-line-

blocking affects DoT and DoH/1. This difference in behavior 

may (at least partially) explain why DoH/2.0 gained traction 

more quickly than DoT. 

According to research by Jonglez [10], DNS-over-TCP 

performance with few clients is comparable to DNS-over-

UDP with only a 30% lag. Performance of DNS-over-TCP 

decreases as the number of clients rises and stabilizes at a 75% 

slowness. The performance profile for DoT is comparable to 

TCP, although there is a 30% to 45% speed impact. However, 

performance suffers noticeably as the number of clients rises 

for both TCP and TLS. This was thought to be a result of the 

kernel's need to manage a large number of TCP connections 

concurrently. 

In this research, Shang and Wills [22] presented a novel 

approach called an authoritative DNS server (ADNS), that can 

piggyback resolutions for future queries as part of the response 

message for an initial query. This exploits the relationships 

among domain names to improve the cache hit rate for a local 

DNS server. The approach improves the cache hit rate as well 

as reducing the total queries and responses. Trace-based 

simulations show more than 50% of cache misses can be 

reduced in the best case while straightforward policies, using 

frequency and relevancy data for an ADNS, reduce cache 

misses by 25-40% and DNS traffic by 20-35%. However, 

these percentages improve if focused on the resource records 

policy with smaller authoritative Time-To-Lives. 

Khandkar and Hanawal [23] presented a method called 

Encrypted TLS/SSL Handshake, to mask the server host 

identity by encrypting the Server Name Indicator (SNI). This 

simple method completes the SSL/TLS connection 

establishment over two handshakes-the first handshake 

establishes a secure channel without sharing SNI information, 

and the second handshake shares the encrypted SNI. This 

method makes it mandatory for fronting servers to always 

accept the handshake request without the SNI and respond 

with a valid SSL certificate. However, specific changes in the 

handshake parameter setting limit the operational viability of 

the solution. 

In this paper, the present state of DNS security architecture 

was evaluated, and saw clearly that existing DNS security 

architectures are insufficient to secure DNS data transiting 

over the network; considering the growing cybersecurity 

landscape. On this note, Alao et al. [24] propose the need and 

adoption of a security architecture named Adaptive Security 

Architecture. Adaptive Security Architecture is devised to 

guard against identified threats, and anticipate unidentified 

threats in a manner similar to the immune-response system of 

human. Basically, mimicking nature’s biodiversity as the 

fundamental means of effective attack responses. Finally, we 

conclude by an analysis to prove the need to improve DNS 

security architecture. 

Hounsel et al. [25] studied the performance of encrypted 

DNS protocols and conventional DNS from thousands of 

home networks. They found that clients do not have to trade 

DNS performance for privacy. For certain resolvers, DoT was 

able to perform faster than DNS in median response times, 

even as latency increased. Also, there was significant variation 

in DoH performance across recursive resolvers. Based on 

these results, it was recommended that DNS clients (such as, 

web browsers) should periodically conduct simple latency and 

response time measurements to determine which protocol and 

resolver a client should use. However, no single DNS protocol 

nor resolver performed the best for all clients. 

Emerging protocols such as DNS-over-HTTPS (DoH) and 

DNS-over-TLS (DoT) improve the privacy of DNS queries 
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and responses. While this trend towards encryption is positive, 

deployment of these protocols has in some cases resulted in 

further centralization of the DNS, which introduces new 

challenges. In particular, centralization has consequences for 

performance, privacy, and availability. Towards this goal of 

increased de-centralization and improved flexibility, Hounsel 

et al. [26] presents the design and implementation of a 

refactored DNS resolver architecture that allows for de-

centralized name resolution, preserving the benefits of 

encrypted DNS while satisfying other desirable properties, 

including performance and privacy. The researchers argued 

for a re-decentralization of the DNS, considering users may 

prefer one distribution strategy over another. They explored 

various alternative strategies for resolving and distributing 

encrypted DNS queries. However, this research provides only 

a starting point as a proof-of-concept. 

In the DNS resolution process, packet losses and ensuing 

retransmission timeouts induce marked latencies: the current 

UDP-based resolution process takes up to 5 seconds to detect 

a loss event. Jonglez et al. [27] explored persistent DNS 

connections based on TCP or TLS as a possible solution to this 

problem. Experimentation showed that persistent DNS 

connections significantly reduces worst-case latency. Thus, a 

large-scale platform was leveraged to study the performance 

impact of TCP/TLS on recursive resolvers. The results showed 

that off-the-shelf software and reasonably powerful hardware 

can effectively provide recursive DNS service over TCP and 

TLS, with a manageable performance hit compared to UDP. 

However, switching to TCP or TLS has an impact on the load 

of the recursive resolver, which is significant, especially with 

a large number of concurrent connections. 
 

2.3.4 Limitations of related works 

From the literatures reviewed, two research works focused 

on improving performance of DNS, by piggyback resolutions 

for future queries as part of the response message for an initial 

query, and a DNS Recursive Resolver (Rec Res) that operates 

within a Trusted Execution Environment (TEE) respectively. 

The outcome of the research works was encouraging but are 

limited by the additional performance overhead. The first 

research used an authoritative DNS server to improving DNS 

performance; however, this is only true for the policies on 

resource records with smaller authoritative Time-To-Live 

(ATTL). This means with larger ATTL, performance issues 

arise. Also, the last research used a novel Private DNS-over-

TLS (PDoT) architecture. However, applications requiring 

functionality that is not available within the TEE must switch 

to the non-TEE side, this introduces TEE Call-in/Call-out 

Overhead. 

It can be concluded that attempt at improving performance 

has resulted in additional performance issues. Therefore, the 

primary purpose of this research is to develop an adaptive 

Transport Layer Security Model (ad-TLSM) that adapts 

security in light of DNS contextual features to provide 

optimum performance; whilst preserving Quality of Service 

(QoS) constraints. The task is to effectively manage available 

DNS resources without congestion or breaching client’s QoS 

constraints. 
 

 

3. METHODOLOGY 
 

This section presents a description of the methodology used 

to satisfy the objective of this research work. These includes 

several processes, procedures and architectural structures 

adopted within the research. 

Figure 3 represents a typical DNS over TLS session during 

a DNS server request-response processing cycle. It uses a 

Transport Layer Security (TLS) layer under the Transmission 

Control Protocol (TCP) transport layer to encrypt the 

communication channel between the user and DNS recursive 

resolver thus securing queries and responses. 

 

 
 

Figure 3. Research design [20] 

 

3.1 Proposed adaptive TLS model (ad-TLSM) 

 

The proposed adaptive TLS method incorporates a feedback 

loop mechanism to enhance security adaptation. It relies on 

measuring contextual features such as logging, monitoring, 

error detection, and information security to make informed 

security decisions. These measurements are compared with 

offline data to determine the impact of security adaptation. In 

the case of DNS recursive resolver, a monitoring mechanism 

is used to measure contextual features like throughput and 

CPU load of the DNS recursive resolver during the TLS 

handshake. This information forms the basis for an adaptation 

strategy that enables smart security decisions based on real-

time client-server conditions. Figure 4 shows the ad-TLSM 

handshake process. 

 

 
 

Figure 4. The ad-TLSM handshake 

 

The adaptive TLS handshake involves the client generating 

a "ClientHello" request, the server monitoring contextual 

features, and responding with a partially encrypted 

"ServerHello" message. If successful, a TLS-encrypted DNS 

lookup can be performed. Through this tight coupling of 

security and runtime monitoring, the proposed solution 

ensures improved performance of the DNS recursive resolver. 

By monitoring throughput and encryption and applying this 

information to an adaptation strategy, the system can balance 

security and performance based on workload and capacity. 
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Regular monitoring and adaptation ensure efficient and 

effective system operation. 

The primary objective of the ad-TLSM is to enable security 

adaptation in systems where all measurable contextual features, 

such as logging, monitoring, error detection and correction, 

and information security, are present. By leveraging these 

contextual features, the method aims to dynamically adjust 

security measures at runtime, ensuring optimum performance 

while preserving Quality of Service (QoS) constraints. The 

concepts and components include: 

1) Feedback Loop: The ad-TLSM incorporates a feedback 

loop mechanism, where the impact of security adaptation 

serves as a response to the monitoring component. This 

connection between contextual features and security 

adaptation enables runtime automated security actions to 

be taken, based on real-time data analysis and comparison. 

2) Runtime Monitoring: The ad-TLSM includes a 

monitoring mechanism that allows for the real-time 

monitoring of the DNS recursive resolver during the TLS 

handshake. Contextual features such as throughput and 

CPU load are measured and recorded to provide a basis 

for the adaptation strategy. 

3) Adaptation Strategy: The adaptation strategy utilizes the 

monitored contextual features to make smart security 

decisions at runtime, based on the present client-server 

conditions during the establishment of a secure 

connection. This strategy aims to balance the need for 

security with other factors such as performance and 

resource utilization. Figure 5 shows the process flow 

diagram of the ad-TLSM. 

 

 
 

Figure 5. The process flow diagram of the ad-TLSM 

The ad-TLSM follows a step-by-step procedure to 

dynamically adjust security measures based on real-time 

monitoring and contextual features. The client creates a TCP 

connection to the DoT-enabled resolver's TCP/853 port during 

lookups. The ad-TLSM will then be used to establish a TLS 

connection as follows: 

1. The client creates "ClientHello" requests by using the 

data from the content-public server's URL. This data, which is 

sent in plain text, contains the server's name (SNI) that the 

client wants to connect to. 

2. The server’s monitors the contextual feature (such as, 

throughput and CPU load) using the Log file and the presently 

used cryptographic algorithm in the list of negotiated shared 

keys provided by the “pre_key_share” parameter in the TLS 

library. 

3. This information is then applied to the Adaptation 

strategy for smart security decision. 

4. If the request is approved, the “pre_key_share” 

parameter is updated. 

5. The server replies with a "ServerHello" message that 

is only partially encrypted and contains the server certificate 

and other details pertaining to encryption. To authenticate the 

server connection, the client validates the hostname in the 

server certificate it receives. 

6. Finally, after the TLS session has been successfully 

established, the client can do TLS-encrypted DNS lookups 

through the DoT port TCP/853 on the resolver side. 

This permits the tight coupling of security with runtime 

monitoring of the DNS recursive resolver, allowing security 

adaptation as the environment or security requirements varies. 

Note that, should step 2 fail, it reverts back to using the default 

cryptographic algorithm for encryption. This ensures 

improved performance of the DNS recursive resolver using the 

ad-TLSM. 

 

3.2 Security-performance evaluation parameter 

 

A security-performance evaluation will be conducted on the 

ad-TLSM to demonstrate the practical utility in adapting 

security and performance at runtime. The evaluation will 

follow this process: 

1) Security Algorithm Performance: The performance 

overhead and security level of typical cryptographic 

algorithm implementations will be investigated by 

measuring their throughput when subjected to same data 

size. 

2) Use-case Scenario: To examine how the DNS recursive 

resolver performs utilizing different cryptographic 

algorithm under varying client-server conditions. 

3) Based on step 2, the indirect monitoring adaptation 

strategy was used. This strategy relies on examining the 

DNS recursive resolver throughput indirectly, by 

recognizing that increased throughput suggests increased 

CPU load. 

4) Such understandings will offer the foundation for a 

security-performance adaptation strategy. This will all the 

more essentially use the accessible DNS recursive 

resolver assets to further improve security without over-

burdening the DNS recursive resolver and upsetting client 

QoS requirements. This grants clever security 

transformation at runtime in view of current client-server 

conditions. Then, the proposed solution will be compared 

to existing DNS over TLS (DoT) technique using the 

throughput and latency metrics. 
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3.2.1 Evaluation metrics 

A security-performance evaluation will be conducted on the 

ad-TLSM to demonstrate the practical utility in adapting 

security and performance at runtime. The evaluation will 

follow this process: 

1) Throughput: This refers to the number of DNS requests 

that can be processed per second by a DNS recursive 

resolver. It is generally measured in requests per second 

(req/s). The higher the throughput, the more efficiently 

the DNS server can handle incoming requests, resulting 

in faster response times and a better user experience. For 

example, a basic DNS recursive resolver running on a 

low-end server with limited processing power and 

network bandwidth may have a throughput of a few 

hundred requests per second. In contrast, a high-

performance DNS recursive resolver running on a 

powerful server with multiple CPUs and high-speed 

network connections can handle thousands or even 

millions of requests per second. 

2) Latency: This refers to the time it takes for a DNS query 

to receive a response from the DNS recursive resolver. It 

is measured in seconds and directly impacts the speed and 

responsiveness of website access. If a DNS query 

experiences high latency, it means that the resolver took a 

longer time to provide a response, which can result in 

slower website load times or even complete inability to 

access a website if the DNS lookup times out. 

In conclusion, the ad-TLSM presents a systematic approach 

to enhance DNS security while considering runtime 

monitoring and adaptation. The objective of this methodology 

is to dynamically adjust security measures based on real-time 

contextual features of the DNS recursive resolver. By 

monitoring factors such as throughput and CPU load, the 

adaptation strategy intelligently adapts security measures 

during the TLS handshake process. 

The significance of this methodology lies in its ability to 

balance security and performance, preserving Quality of 

Service (QoS) constraints. By dynamically selecting 

cryptographic algorithms and making security-related 

adaptations, the proposed method ensures optimum security 

while improving DNS performance. 

The outcomes of applying this methodology have shown 

promising results. The evaluation demonstrated that by 

adapting the security measures, such as utilizing different 

cryptographic algorithms, the DNS recursive resolver could 

handle a higher number of requests per second. This translates 

to improved performance and reduced CPU load. 

The implications of the applied methodology are far-

reaching. It addresses the limitations of existing security 

measures in DNS over TLS and provides a framework for 

adapting security at runtime. This methodology enables 

systems to respond effectively to varying client-server 

conditions, enhancing both security and performance. The ad-

TLSM offers a structured and systematic approach to optimize 

DNS security. By incorporating real-time monitoring, 

adaptation strategies, and runtime security actions, it ensures a 

fine balance between security and performance, ultimately 

improving the overall effectiveness of DNS systems. 
 

 

4. IMPLEMENTATION AND EVALUATION 
 

4.1 Implementation 

 

The experiments were conducted on a Windows 10 system 

with an Intel Core i5 processor, 16GB RAM, and Apache 2.4. 

OpenSSL 1.1.1 was utilized by both Apache's TLS module 

and the proposed solution module. This investigation focuses 

on the design of the Adaptive Transport Layer Security Model 

(ad-TLSM) for DNS recursive resolver. Apache's flexibility as 

an open-source web server makes it a suitable platform for 

implementing the ad-TLSM design. The ad-TLSM allows for 

runtime security adaptation based on the contextual features of 

the DNS recursive resolver. The modular architecture of 

Apache enables the integration of modules, such as the TLS 

module, which configures TLS session security using the SSL 

Cipher Suite directive. Similarly, the proposed solution acts as 

a module that can be added to existing Apache installations 

without requiring any modifications to Apache or TLS code. 

By leveraging these features, security can be adapted at 

runtime, providing flexibility and enhancing the overall 

security of DNS sessions. Figure 6 shows the ad-TLSM. 

 

 
 

Figure 6. The ad-TLSM 

 

TLS Handshake: To securely connect to a server, a 

hostname (www.example.com) and a port (433) is required. 

Based on the implementation, the certificate authority was also 

added. For instance: 

openssl s_client-connect www.example.com: 443-CAfile 

c:/cacert.pem 

Figure 7 to Figure 9 show the TLS handshake using AES-

GCM 256, ChaCha20 and AES-GCM 128 respectively. 

Once you type the command, diagnostic output is displayed 

followed by an input prompt. Because when interacting with a 

server, a request is submitted. Now, the TLS communication 

layer is working, as request is sent to the server and response 

received. For a better look at the certificate, Figure 6 to Figure 

8 show a self-explanatory information about the TLS 

Handshake using the available cryptographic algorithm 

respectively: 

The vital information is the protocol version (TLSv1.3) and 

cipher suite utilized (TLS_AES_256_GCM_SHA 384). It also 

showed the server has allotted a session ID and a TLS session 

ticket. 

The security policy in the proposed solution consists of 

condition and SSL Cipher Suite pairings that trigger the 

renegotiation of the client's security session if the requirements 

are met and the current session security is not dependent on 

the chosen SSL Cipher Suite. The conditions, created using the 

Require directive, are complex Boolean expressions utilizing 

CGI, Apache, and TLS variables. These conditions are 

checked in order, and the first matching condition is selected. 

The Require env provider allows access control based on the 
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existence of an environment variable. By using mod setenvif 

directives, environment variables can be set based on client 

request characteristics like User-Agent or HTTP request 

header fields. This flexibility enables the module to be applied 

in various applications and data settings at different levels of 

abstraction. 

 

 
 

Figure 7. TLS handshake using AES-GCM 256 

 

 
 

Figure 8. TLS handshake using CHACHA20 

 
 

Figure 9. TLS handshake using AES-GCM 128 

 

The ad-TLSM registers hooks with Apache, seamlessly 

integrating with existing TLS hooks and assuming control of 

the TLS renegotiation function. The TLS's SSL Cipher Suite 

directive is stored for future application when the Security 

Policy is empty or none of its requirements match the client's 

request. This ensures that existing or previously applied 

security remains in control of session security. 

A load generator was used to reproduce multiple client 

requests to a server. New user sessions are created with the 

server at a specific rate (λ), according to a Poisson process with 

some mean. Multiple requests (λn) can be made by users within 

each session, according to a typical request rate based on a 

Poisson process with some mean. Mean user arrival and 

request rates can be altered during an experimentation, to 

simulate genuine user load. Each user’s session maintains an 

exclusive security state. During a session or its creation, 

exclusive user information stored permits the server to adjust 

the security for users. Client load was produced utilizing 

HTTPerf and Autobench. 

For the ad-TLSM evaluation, the client activity is as follows: 

1) This HTTPerf script generates a total of 10 sessions at a 

rate of 1 session per 256 seconds. Each session consists 

of 64 calls that are spaced out by 4 seconds. 

2) During the first 500seconds, 10 clients arrive every 

3seconds (average request rate at 200req/s). 

3) Then, the next 250 seconds, client’s arrival increases at 

10 clients every 2.5 seconds (245req/s) 

4) And then, reduces to 200req/s for the last 500 seconds. 

Furthermore, HTTPerf will use HTTP version 1.0, this 

requires new TCP connection per request. Also, no reuse of 

the TLS session ids, so the TLS handshake occurs for each 

connection. To automate the client workload generation 

process, The Autobench script repeatedly runs HTTPerf 

against the host, requesting more connections per second with 

each run, and extracts the important information from the 

output, delivering a CSV or TSV format file that can be 
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directly loaded into a spreadsheet for analysis or graphing. 

 

4.2 Evaluation 

 

This section demonstrates the adaptation of security and 

performance to achieve the objectives of the proposed solution. 

The Adaptive Transport Layer Security Model (ad-TLSM) 

design was implemented to maximize security by effectively 

utilizing available processing resources while considering 

client Quality of Service (QoS) requirements. Monitoring 

components collect data on system resources and encryption, 

which is then used by the adaptation strategy to determine the 

performance gains of security adaptations based on the 

gathered information. The ad-TLSM module enables 

successful runtime security adaptation, ensuring the effective 

adjustment of security measures. 

 

4.2.1 Security algorithm performance 

Table 1 show the default TLS cryptography algorithms 

performance effect, when 532B file requests are made. This 

supports the statement [10] that AES is typically very fast and 

efficient when implemented in hardware and ChaCha20 is 

efficient in software implementation. 

Client arrival rate starts with a set of 10 new clients each 2.5 

seconds (240req/s), until the server is overloaded, the client 

load pattern is followed, with a 0.1 second wait between each 

group of 10 client arrivals. 90% confidence intervals are <2ms 

for all response times under 250ms and under 10ms for all 

response times beyond 250ms. 

 

Table 1. Average number of bytes per second 

 
Cryptographic algorithm Throughput (kB/s) 

ChaCha20-Poly1305 112000 

AES-GCM 128 36000 

AES-GCM 256 26500 

 

Figure 10 illustrates that as the client load increases, the 

DNS recursive resolver can handle approximately 318req/s 

with AES-GCM 256 before becoming overloaded. By using a 

different algorithm, it can respond to 15%-25% more requests 

per second. AES-GCM 128 and ChaCha20 outperformed 

AES-GCM 256 by approximately 15% and 25% respectively, 

achieving 333req/s and 343req/s with the same file size and 

client concurrency level. While the DNS recursive resolver 

allocates more resources to tasks other than cryptography, the 

choice of encryption algorithm significantly impacts its 

throughput. Therefore, using a different security level can 

increase the number of supported clients by 15%-25%. 

 

 
 

Figure 10. Security algorithm performance 

4.2.2 Use-case scenario 

In the given use-case, we examine the impact of increasing 

client entries on a DNS recursive resolver using three 

cryptography algorithms for TLS: AES-GCM 128, AES-GCM 

256, and ChaCha20-Poly1305. We demonstrate the effect of 

these algorithms on the resolver's performance and compare it 

to the proposed solution's enhancement in security level, 

considering client Quality of Service (QoS) requirements. The 

figures display average throughput values over 10-second 

intervals, while the average number of timed out requests was 

determined through repeated evaluations. 

Based on this scenario, AES-GCM 128 is deemed suitable 

for protecting the data, ensuring a satisfactory level of QoS for 

clients who expect timely responses from the resolver. 

Figure 11 depicts the DNS recursive resolver throughput 

when AES-GCM 128 encryption is used. It demonstrates that 

the resolver can handle client load without any timed-out 

requests. The experiment was repeated multiple times with 

consistent results. The graph shows that 10 clients arrive at 

intervals of 3 seconds during the first 500 seconds, and start 

leaving the system after 256 seconds. The resolver's 

throughput stabilizes at 250 requests per second. The 

subsequent evaluation phases show an increase in client entry 

as expected. Despite a higher CPU load, the throughput for 

ChaCha20-Poly1305 is comparable to AES-GCM 128. As 

shown in Figure 10, ChaCha20-Poly1305 can handle a request 

rate of 343 requests per second within the 6-second client QoS 

constraint, with no reported time-outs. 
 

 
 

Figure 11. DNS recursive resolver throughput using AES-

GCM 128 

 

 
 

Figure 12. DNS recursive resolver throughput using AES-

GCM 256 

 

Figure 12 illustrates the impact of client activities on the 

throughput of a DNS recursive resolver using AES-GCM 256 

encryption. The bar graph shows the percentage of timed-out 
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requests in each interval. As the client load increases beyond 

the resolver's capacity, requests start timing out at 500 seconds. 

With longer response times, clients send fewer queries per 

second, resulting in a decrease in resolver throughput. The 

slow request rate leads to extended sessions and an increase in 

simultaneous sessions as more clients enter. This increase in 

simultaneous sessions further elevates the total request rate, 

causing nearly all requests to time out. Even after the arrival 

of new client requests ceases and current sessions finish, many 

requests still time out due to the server's ongoing load. New 

requests are delayed until the server clears its load, potentially 

leading to additional timeouts. This use-case scenario 

highlights the performance degradation that occurs in a non-

adaptive DNS recursive resolver server when faced with a 

spike in client arrivals. 

 

4.2.3 Adaptation strategy 

This section will illustrate how the ad-TLSM can be utilized 

to adapt security and performance utilizing available system 

resources to adapt security with regards to client QoS 

constraints. In light of the client load patterns, indirect 

monitoring adaptation strategy was considered. This approach 

relies on indirectly monitoring of the DNS recursive resolver 

throughput by identifying that upsurge in throughput infers 

increased DNS recursive resolver CPU load. Also, CPU load 

is monitored in the background by the Log file and the 

information can be utilized by the proposed solution. Thus, 

effectively utilize available resources, requires the need to 

know how much resource is free, how much resource is needed 

or released when the security is adapted. 

Figure 13 depicts the performance of the DNS recursive 

resolver under different levels of encryption, with an average 

session duration of 256 seconds and varying client arrival rates. 

The graph demonstrates that the DNS recursive resolver 

becomes overloaded at different request rates depending on 

the encryption used. AES-GCM 256 overloads at 230req/s, 

while ChaCha20-Poly1305 and AES-GCM 128 overload at 

296req/s. These findings align with the outcomes in Figure 10 

and provide additional insights. It is important to note that a 

DNS recursive resolver with a CPU load over 90% using AES-

GCM 128 should not switch to AES-GCM 256, as it would 

result in overload. Similar considerations apply to ChaCha20-

Poly1305 to AES-GCM 128 (over 70%) and ChaCha20-

Poly1305 to AES-GCM 256 (less than 50%). Lowering the 

security level becomes practical when the CPU utilization 

reaches 100%. Based on these insights, a security policy was 

formulated and presented in Table 2. This policy ensures 

efficient utilization of system resources to enhance security 

while avoiding DNS recursive resolver overload and 

maintaining QoS constraints. 

By comparing the current CPU load to values in Table 2, 

this policy determines if the security level needs to be adapted. 

The current CPU load is evaluated against each value in the 

security policy reference table. If the CPU load is lower/higher 

than a specific value, the security may be adapted to the 

corresponding algorithm. 

 

Table 2. The ad-TLSM security policy reference 

 
Cryptographic 

Algorithm 

AES 

256 

ChaCha

20 

AES 

128 

AES 256 X 0.7 0.9 

ChaCha20 0.5 X 0.9 

AES-GCM 128 0.5 0.7 X 

 

 
 

Figure 13. CPU utilization under different client loads 

 

To achieve the indirect monitoring adaptation strategy, the 

following procedure was utilized: 

set cpu_load_low=0.5 

set cpu_load_meduim=0.7 

set cpu_load_high=0.9 

set load, crypto_algo, N 

for (i=0; i<=N, i++) { 

if (load<cpu_load_low) 

{  

set crypto_algo=1 

 } 

else if (load>=cpu_load_low && load<=cpu_load_medium) 

{ 

set crypto_algo=0 

 } 

else if (load>=cpu_load_medium && 

load<=cpu_load_high) 

{ 

set crypto_algo=0 

 } 

} 

return crypto_algo 

end procedure 

For example, if the current security is ChaCha20-Poly1305, 

the CPU load is compared to values in AES-GCM 128 or AES-

GCM 256. If the CPU load is 0.5, AES-GCM 256 is selected, 

or if the CPU load is 0.9, AES-GCM 128 is selected. Similarly, 

if the current security is AES-GCM 256, the CPU load is 

compared to values in ChaCha20-Poly1305 or AES-GCM 128. 

If the CPU load is 0.9, AES-GCM 128 is selected, or if the 

CPU load is 0.7, ChaCha20-Poly1305 is selected. Lastly, if the 

current security is AES-GCM 128, the CPU load is compared 

to values in AES-GCM 256 or ChaCha20-Poly1305. If the 

CPU load is less than 0.5, AES-GCM 256 is selected, or if the 

CPU load is 0.7, ChaCha20-Poly1305 is selected. 

 

4.2.4 Evaluation of the ad-TLSM 

Every 10 seconds the average CPU load is documented over 

the preceding 10 seconds and adapts the proposed solution 

security in light of the indirect monitoring in Subsection 4.2.3. 

By utilizing the ad-TLSM, Figure 14 demonstrates effective 

maximization of security throughout most of the evaluation 

duration. New clients arriving before 460 seconds and after 

720 seconds received security levels that exceeded 

recommendations while maintaining client Quality of Service 

(QoS) constraints. The configuration depicted in Figure 14 

allowed the DNS recursive resolver to handle client loads 

successfully. The CPU load steadily decreased as security was 
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adapted to ChaCha20 and then to AES-GCM 128. This 

occurred twice in a short interval, at 450 seconds and 460 

seconds, preventing overloading of the DNS recursive resolver. 

Once the CPU load reached a safe level below 50% (as shown 

in Table 3.), AES-GCM 256 and then ChaCha20 were 

employed for security, observed at 720 seconds and 750 

seconds. However, the CPU load began increasing after 

approximately 780 seconds, prompting the adaptation of 

security to AES-GCM 128. 

Table 3 and Figure 14 demonstrate the adaptation of 

security measures. While the monitoring mechanism may 

require additional processing time to gather and analyze data 

on network conditions, the overhead is minimal due to its 

efficient and lightweight design. The benefits of the ad-TLSM 

outweigh the potential impact on throughput, as it enables 

automatic adjustment to network changes, improving 

performance and security management. To evaluate the ad-

TLSM's performance, we compared its throughput and latency 

values with those of PDOT [21] using a similar client load 

pattern, as shown in Table 4. Table 3 shows the ad-TLSM 

security adaptation. 
 

 
 

Figure 14. DNS recursive resolver throughput using ad-

TLSM 
 

Table 3. The ad-TLSM security adaptation 
 

Adaptation Time (seconds) Throughput (Req/s) (approx.) 

AES 256 0 - 

ChaCha20 450 318 

AES 128 460 321 

AES 256 720 348 

ChaCha20 750 350 

AES 128 780 375 

 

Table 4. The ad-TLSM against PDoT based on throughput 

and latency 
 

Models Time (seconds) Throughput (Req/s) (approx.) 

PDOT [21] 700 0.3 

Ad-TLSM 700 0.2 
 

Table 4 shows the ad-TLSM against PDoT based on 

throughput and latency. 

The evaluation of the ad-TLSM method demonstrated its 

superior performance compared to other methods. However, 

the CPU capacity directly affects the performance of both the 

ad-TLSM and the DNS recursive resolver. Higher CPU 

capacity enables more efficient handling of incoming requests, 

resulting in faster response times and improved overall 

performance. The ad-TLSM also shows similar throughput 

values to other methods, indicating efficient handling of 

requests and a better user experience. Furthermore, the ad-

TLSM exhibits better latency values, which can be attributed 

to its effective adaptation strategy. The satisfactory throughput 

and latency values of the ad-TLSM are presented in Table 4. 

 

4.3 Security analysis 

 

The section examines the potential risks and vulnerabilities 

associated with a malicious operator and network adversary in 

the context of the research on monitoring CPU load of a DNS 

recursive resolver and applying an adaptation strategy for 

enhancing performance. This section explores the importance 

of selecting appropriate encryption algorithms, the need for an 

adaptive security strategy, the impact on client QoS constraints, 

and the measures to mitigate overload attacks. It highlights the 

significance of protecting against malicious actors and 

ensuring secure communication to safeguard the DNS 

recursive resolver from potential threats and breaches. In terms 

of security implications related to a malicious operator and 

network adversary, the research and evaluation discussed 

several important factors: 

1) Encryption algorithm selection: The choice of 

encryption algorithm can have significant security 

implications when dealing with a malicious operator or 

network adversary. The evaluation showed that different 

encryption algorithms have varying levels of performance 

and efficiency. It is important to choose an algorithm that 

provides strong security against potential attacks, as a 

malicious operator or network adversary may attempt to 

exploit vulnerabilities in weaker algorithms. 

2) Adaptive security strategy: The research proposed the 

ad-TLSM strategy to adapt security and performance 

based on system resources and client QoS requirements. 

By monitoring the CPU load and dynamically adjusting 

the security level, the ad-TLSM aims to optimize security 

without overloading the DNS recursive resolver. This is 

crucial in defending against malicious operators or 

network adversaries who may attempt to overload the 

resolver to disrupt its functionality. 

3) Client QoS constraints: The research also emphasized 

the importance of maintaining client QoS (Quality of 

Service) constraints while adapting security. This ensures 

that clients receive timely responses and are not 

negatively impacted by security adaptations. By 

considering client QoS requirements, the ad-TLSM 

strategy aims to strike a balance between security and 

performance, providing protection against malicious 

actors while ensuring a satisfactory user experience. 

4) Mitigating overload attacks: A malicious operator or 

network adversary may attempt to overload the DNS 

recursive resolver by sending a high volume of requests. 

This can lead to denial-of-service (DoS) attacks and 

disrupt the resolver's normal operation. The ad-TLSM 

strategy, by monitoring CPU load and adapting security 

accordingly, helps mitigate the risk of overload attacks by 

ensuring that the resolver does not become overwhelmed 

and can handle the incoming traffic effectively. 

5) Secure communication: The use of strong encryption 

algorithms, such as ChaCha20-Poly1305 and AES-GCM, 

helps protect against potential attacks from malicious 

operators or network adversaries. These algorithms 

provide confidentiality, integrity, and authenticity of the 

communication, making it difficult for adversaries to 
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intercept or tamper with the data exchanged between 

clients and the DNS recursive resolver. 

6) Privacy: By utilizing encryption algorithms and 

adaptation strategies, the research aims to prevent 

unauthorized access to user information, thereby 

safeguarding privacy. The implementation of robust 

encryption protocols helps in preventing eavesdropping, 

data interception, and unauthorized data tampering, 

thereby enhancing the overall privacy of users utilizing 

the DNS recursive resolver. Additionally, the research 

highlights the significance of selecting encryption 

algorithms that offer strong privacy guarantees, ensuring 

that user data remains confidential and protected from 

potential privacy breaches. 

 

4.4 Limitations of the study 

 

Despite the limitations of this research, we believe that our 

findings provide valuable insights into the impact of DNS on 

user experience and how different DNS stakeholders can 

improve it. Achieving a perfect balance between security and 

performance is challenging, especially considering that our 

measurements were conducted on the Windows operating 

system, which may affect the results due to the networking 

stack and algorithm parameters. However, we expect our 

findings to be applicable to other operating systems as well, 

considering the highly optimized nature of networking stacks. 

Additionally, it is important to acknowledge that the direct 

monitoring approach assumes file size as a direct indicator of 

DNS recursive resolver workload, which may not always hold 

true. 

 

 

5. CONCLUSION 

 

The research developed an Adaptive Transport Layer 

Security Model (ad-TLSM) for enhancing DNS performance 

by adapting security, without breaching QoS constraint. The 

ad-TLSM was developed, implemented and evaluated. The 

Adaption strategies used are based on an Indirect Monitoring 

of contextual features. Evaluation results indicated that the ad-

TLSM could be adopted and used were security and 

performance is required in communication. 

The results of this study suggest that the methodology used 

to achieve high throughput while maintaining low latency in 

DNS security could be applied to other forms of network 

environment. Using additional contextual features, such as 

latency, Round-Trip-Time (RTT), would improve the security 

and performance of the network environment. Furthermore, it 

will be important to conduct field evaluations and obtain 

information from local stakeholders on how to improve the 

adaptation strategy, particularly in developing nations with 

cyber-security deficiencies. 

The research identifies the high failure rate in DNS 

performance in DoT as a research gap. It then developed an 

ad-TLSM to compensate for the identified inadequacy in DoT. 

Additionally, the inclusion of an Adaptation strategy helped to 

provide better results, qualifying the ad-TLSM for use in 

secure and confidential communication in places where 

performance is important. Finally, it gives academics a chance 

to do further research to enhance the findings already made in 

this study. 

Further studies could focus on the implementation and 

testing of the ad-TLSM scalability and how adaptive security 

can be achieved with existing security protocols and 

techniques. 
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