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Melanoma, a lethal form of skin cancer, poses a significant risk to global health if not 

detected and treated promptly. Its early detection is pivotal in increasing the likelihood of 

successful treatment and patient survival. However, the accurate diagnosis of melanoma 

remains a challenge, even for seasoned dermatologists. Consequently, there has been a 

growing interest in leveraging Machine Learning (ML) algorithms to augment the accuracy 

of melanoma diagnosis. Typically, melanoma is identified through dermoscopic imaging. 

Numerous previous studies have proposed the automated analysis of skin lesions using both 

traditional classification techniques and deep learning models. These analyses often involve 

the feeding of designed functions into traditional categorization systems. Nonetheless, the 

high visual similarity between different skin lesion types and the complexity of skin 

diseases often renders manual features insufficiently discriminative, leading to failure in 

various scenarios. Recent research suggests that convolutional networks with short 

connections between layers near the input and the output can be deeper, more precise, and 

more efficient in training. This paper adopts this approach and introduces the application of 

Hadoop's HdiDenseNet techniques. DenseNets offer several notable advantages: they 

alleviate the vanishing-gradient problem, enhance feature propagation, encourage feature 

reuse, and substantially reduce the number of parameters. The performance of our proposed 

architecture is evaluated against four highly competitive benchmark object identification 

challenges using a dataset comprising over 40,000 images sourced diversely. The results 

demonstrate that the most effective method is a densely connected distributed convolutional 

network, particularly when applied to patient metadata. Ultimately, this paper aims to 

contribute to the field of medical image analysis and potentially enhance the accuracy of 

melanoma diagnosis. By doing so, it could play a crucial role in improving patient prognosis 

and saving lives. 
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1. INTRODUCTION

Skin cancer, characterized by the abnormal proliferation of 

melanocyte cells in the skin, can metastasize via lymphoid 

tissue, causing damage to adjacent tissues [1]. The three 

primary forms of skin cancer are basal cell carcinoma, 

squamous cell carcinoma, and melanoma, of which melanoma 

is the most dangerous malignant skin tumor. The prevalence 

of melanoma skin cancer is exhibiting a daily increase, 

necessitating immediate treatment upon discovery to enhance 

patients' chances of recovery. 

Skin cancer, predominantly preventable and treatable if 

detected early, is mainly attributable to sun exposure. 

Therefore, it is imperative to employ preventive measures 

during outdoor activities, irrespective of the season. 

Overexposure to the sun can significantly escalate the risk of 

skin cancer and precipitate premature skin aging. 

Without early detection, melanoma has the potential to 

proliferate and penetrate the epidermis, the skin's uppermost 

layer, until it encounters a lymph vessel and ultimately 

infiltrates the bloodstream. 

Professional visual evaluations typically facilitate 

melanoma diagnoses. However, this process can be time-

consuming and challenging, potentially leading to 

misdiagnoses [2]. To devise a machine learning (ML)-based 

system capable of efficiently detecting melanoma, numerous 

researchers have collaborated over time [3-6]. 

Melanoma, a perilous affliction, necessitates immediate 

detection. The diagnosis process, traditionally manual, is both 

time-consuming and expensive. However, advancements in 

machine learning offer potential solutions. Machine learning 

can simplify the identification of malignant cells, leading to 

the adoption of convolutional neural networks, a type of 

machine learning, to expedite and enhance the efficiency of 

cancerous cell detection (Figure 1). 

Figure 1. Workflow of melanoma detection 
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The pre-processing stage includes performing primary 

operations such as noise reduction, feature extraction, resizing, 

grayscale conversion or illumination modifications, 

binarization and, most importantly, concentration and edge 

development [7]. The segmentation process is a controversial 

topic and a challenging task. This stage is the part of the 

algorithm that allows the image to be divided into different 

sets of pixels [8], identifying areas of interest as a consequence 

of an automated or semi-automated procedure [9, 10]. 

Algorithms based on neural networks are among the most 

widely used techniques for identifying and segmenting 

melanoma. In general, if feature retrieval is successful, ACC 

detection will increase dramatically. Ramezanis et al. [11] 

have previously used the A-Asymmetry, B-Edge C-Color, D-

Differential Structure Rule as an approach built on deriving 

characteristics to detect melanoma, but others now apply deep 

learning techniques to improve feature retrieval. The 

qualification phase is the last and most discussed element of 

our exam. In the case of the identification of melanoma by AI, 

significant results have been obtained, as visual examination 

of Skin Lesions is no longer a reliable approach. Machine 

Learning mainly uses previous experience to increase the 

results given [12]. Traditional Machine Learning based 

approaches have worked well, but there have been some 

drawbacks. 

The motivation of the skin cancer melanoma diagnosis 

machine learning paper is to develop a model that can 

accurately diagnose melanoma using images of skin lesions. 

This paper aims to contribute to the existing body of research 

on melanoma diagnosis using ML and to potentially provide a 

practical solution for improving diagnosis accuracy in clinical 

settings. 

The scope of the paper may include data collection, pre-

processing, and feature extraction, as well as the development, 

evaluation, and validation of the ML model. The researchers 

may use various image processing techniques to extract 

features such as color, texture, and shape, which can be used 

to train the ML model. The ML model could be a supervised 

learning algorithm that can classify skin lesions into malignant 

or benign classes, or it could be an unsupervised learning 

algorithm that can detect anomalies in skin lesion images. 

The image's pixels are supplied into the convolutional layer, 

which executes the convolution function. It produces a 

jumbled map. The convolved map is fed into a ReLU function, 

which produces a corrected feature map. To locate the features, 

the image is processed with numerous convolutions and ReLU 

layers. A CNN can contain numerous layers that train to 

recognise distinct features in an input image. A filter or kernel 

is performed to every image to produce output that improves 

and becomes more detailed with each layer. Filters in the 

bottom layers can begin as simple features. 
 

 

2. LITERATURE SURVEY 

 

2.1 Datasets used previously 

 

The systems are intended to be learned from one or more 

Data Sets. Based on existing publications in the literature, our 

research intends to demonstrate the expanding tendency of 

such self-diagnosing automated systems, segmenting or 

detecting certain Skin Lesions (especially melanoma) 

available in Table 1 and Table 2.  

Clinicians examine the lesions visually using the ABCDE 

criteria [13], followed by histological examination. Due to the 

comprehensive understanding of biological models, many 

algorithms [14] relied mainly on craft feature sets that had low 

aggregation for dermoscopic images. 

 

Table 1. Frequently used datasets of skin lesions 

 
Dataset name References SL ME 

PH2 [15] 200 40 

ISIC 2018, HAM10000 [16, 17] 10,015 1113 

ISIC 2019 [18-20] 25,333 4522 

ISIC 2020 [20] 33,126 584 

Dermquest [21] 126 66 

Med-node [22] 170 100 

Dermnet [23, 24] 22,500 635 

Dermofit [25] 1300 76 

 

2.2 Melanoma detection, segmentation, and classification 

using neural networks 

 

Deep Convolutional Neural NetworksCNNs, NNs and TL 

for NNs are used majorly. According to the most recent 

research on Skin Disease prediction, segmentation, and 

classification publications in the literature. As a result, NNs 

are used in the vast majority detection of Melanoma, 

segmentation, and classification systems. 

 

Table 2. Neural networks used majorly 

 
NN family Representative 

Inception/GoogLeNet 

Google Net (Inception v2), 

InceptionResNet-v2, Inception v3, 

Inception v4 

DenseNet 
DenseNet121, DenseNet161, 

DenseNet169, DenseNet201 

Xception Xception 

 

2.2.1 GoogLeNet/Inception 

GoogLeNet, commonly known as Inception v1. 

GoogLeNet's simplified architecture has twenty-two layers 

using a Softmax layer of Thousand neurons. Another essential 

point to note is that ReLU is used as an activation function by 

all convolutions within the design. 

 

2.2.2 Xception network 

Another CNN used to diagnose skin lesions is Xception, 

which is designed to Replace standard Inception modules with 

depth-separable curves to boost performance. The superior to 

Inception v3 Xception architecture consists of 36 

convolutional layers grouped in 14 modules, all of which are 

surrounded by residual connections [26]. 

 

2.2.3 DenseNet 

DenseNet is a family of CNNs commonly used in the 

diagnosis of skin lesions, all of which were published in 2020, 

are examples of publications that use DenseNet (especially 

DenseNet-201). Thanks to its efficiency and higher ACC, 

DenseNet is a recent trend in recently published articles. The 

reason for this is that in the early work [27] the authors 

included tightly bound layers, which changed the usual design 

of CNN. DenseNet networks published in various studies 

include DenseNet-121, DenseNet-169, DenseNet-201 and 

DenseNet-264. 

 

2.2.4 NASNet 

“A convolutional neural network named NASNet-Large 

was developed and trained using more than a million photos 
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from the ImageNet collection” [1]. The network has 1000 item 

categories it may use to categorise photos. NASNet (Neural 

Architecture Search Network) models using weights which 

have already been trained on ImageNet. For the NASNetLarge 

model, the default input image size is 331×331; for the 

NASNetMobile model, it is 224×224. 

In the year 2019, the main goal is to Pipeline architecture 

for SL segmentation, combining YOLO v3 and the GrabCut 

algorithm. This novelty can be attained by combining YOLO 

v3 and the GrabCut Algorithm for SL segmentation. Here the 

type of NN used is YOLOv3/ detection and segmentation. This 

was taken from the dataset PH2, ISIC 2017. In 2019, The goal 

is New FCNN architecture for SL segmentation-DermoNet 

because it describes that FCNN contains densely connected 

convolutional blocks and skip connections. Here type of NN 

used is FCNN-DermoNet/ segmentation from the dataset PH2, 

ISIC 2016, ISIC 2017. 

In the year 2020, New deep CNN-based model for face skin 

disease classification using a triplet loss function is the novelty 

that can be described by Fine-tuning layers of ResNet152 and 

InceptionResNet-v2 by using ResNet152, Inception 

ResNetv2/classification function of NN. This dataset was 

taken from a hospital in Wuhan China. 

Also in 2020, the novelty is Me detection using an 

optimized set of Gabor-based features and a fast MNN 

classifier. Here Gabor features combined with a fast (Multi-

Level Neural Network) MNN and the type of NN used is 

MNN/classification. This dataset was taken from PH2. 

In the year 2021, the novelty is to Design of a new DCNN 

model with multiple filter sizes-Classification of Skin Lesions 

Network (CSLNet). Here Fewer filters, parameters, and layers 

to improve SL classification performances. The NN function 

used is DCNN (CSLNet)/classification. This dataset was 

collected from ISIC 2017, ISCI 2018, ISIC 2019.In 2021, the 

goal is to Test different NN for recognition of pigmented SL 

by using ResNet50, DenseNet121, VGG16/classification. This 

dataset was collected from ISIC, HAM10000, PH2, 

BCN20000, SKUNK2. 

In the year 2021, Combining the MobileNetV2 with the 

Spiking Neural Network (SNN) into a DCNN for the 

classification is the main goal where Three NNs connected 

into an intelligent decision support system for skin cancer 

detection. Here the type of NN used is Autoencoder, 

MobileNetv2, SNN/classification. This dataset was collected 

from ISIC [17]. 

To propose a fully automatic method for classifying several 

skin cancers by fine-tuning the deep learning models VGG16, 

ResNet50, and ResNet101. Prior to model creation, the 

training dataset should undergo data augmentation using 

traditional image transformation techniques and Generative 

Adversarial Networks (GANs) to prevent class imbalance 

issues that may lead to model overfitting [14]. With 

appropriate data augmentation, the proposed models attained 

an accuracy of 92% for VGG16, 92% for ResNet50, and 

92.25% for ResNet101, respectively. The ensemble of these 

models increased the accuracy to 93.5%. 

To stated that the limited size and shortage of diversity of 

accessible datasets of dermatoscopic images hampered 

intensive training of neural networks for automatic detection 

and classification of pigmented skin lesions, which had been 

addressed by the release of the HAM10000 [15]. 

To proposed method made use of transfer learning with a 

pre-trained AlexNet. The parameters of the original model 

were used as initial values, and the weights of the last three 

replaced layers were randomly initialised. The proposed 

method was a huge success because it accurately classified 

skin problems into seven classes. For accuracy, sensitivity, 

specificity, and precision, the attained percentages are 98.70%, 

95.60%, 99.27%, and 95.06%, respectively [18]. 

To propose a unique category of fully convolutional 

network in this paper, along with new dense pooling layers, 

for segmentation of lesion regions in non-dermoscopic images. 

This proposed network, with exception of other established 

convolutional networks, is intended to generate dense feature 

maps [19]. This network results in highly accurate lesion 

segmentation. The produced dice score is 91.6%, which 

outclasses state-of-the-art algorithms in skin lesion 

segmentation using the Dermquest dataset. 

To propose a systematic overview of recent advances in an 

area of growing involvement for cancer detection, with a 

concentrate on a contrasting perspective of cancer detection 

using artificial intelligence, particularly neural network-based 

systems. Such structures can be thought of as intelligent 

dermatologist support systems [20]. Theoretical and applied 

contributions to the major development trends of multiple 

neural network architecture based on decision fusion were 

investigated. 

The study proof of dermoscopy's accuracy in diagnosing 

pigmented skin lesions, notably melanoma. The authors go 

through the numerous dermoscopy diagnostic criteria for 

melanoma as well as the value of dermoscopy training and 

experience [14]. In addition to highlighting the limits of 

dermoscopy in the identification of nonmelanocytic 

pigmented lesions, the study also discusses the possibility of 

computer-aided diagnosis (CAD) systems to increase 

diagnostic accuracy. 

 

 

3. SYSTEM ARCHITECTURE 

 

 
 

Figure 2. System architecture 
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3.1 Workflow and algorithm 

 

Image data is taken as input and compared with dataset 

(Figure 2). 

1. Select the patient’s image block. 

2. Remove the noise from the input image through feature 

extraction. 

3. Perform normalization. 

4. Apply Convolution blocks (ReLu) and Pooling Blocks. 

5. Use the Dropout block. 

6. Repeat steps 3 through 5 as often as necessary. (Until 

the precision is at its best). 

7. Make use of certain flattening blocks and some core 

layers (Dense blocks preferably). Make that the proper output 

value parameter for the data (output) categories is included in 

the final core layer before the output block. 

8. Apply the output block. 

9. Set the model's constraints (Hyper parameter setting). 

10. Finally, check that the Model construction box says 

Green "OK"; if not, adjust your choices. 

 

 

4. METHODOLOGIES AND WORKFLOW 

 

A skin cancer melanoma diagnosis machine learning project 

typically involves the following steps: 

 

4.1 Data collection 
 

The first step is to gather a dataset of skin lesion images, 

which includes both malignant and benign cases. 

ISIC is an academic industry collaboration aimed at 

facilitating the use of skin image to help reduce melanoma 

death rate. ISIC achieves its goals by developing and 

promoting digital skin imaging standards and by collaborating 

with the dermatological and computer science communities to 

ensure diagnosis. ISIC is establishing suggested standards to 

improve the quality, privacy, and interoperability of digital 

skin scans ISIC is techniques for the computer science 

communities and dermatological, such as a massive and 

developing open source public access skin imaging archive. 

 

4.2 Data pre-processing 

 

The skin lesion images are pre-processed to enhance the 

contrast, remove artifacts, and standardize the size of the 

images. 

 

4.2.1 Multi crop 

To multi-crop, divide the input image into multiple sub-

images, feed them into a network for classification, then 

average the results to improve accuracy. 

 Five Crop divides the image into the four corners and 

a core crop. 

 Ten Crop divides it all into 4 corners and the centre 

crop, as well as their inverted counterparts. 

 

4.3 Feature extraction 

 

Various image processing techniques are applied to extract 

features such as color, texture, and shape from the skin lesion 

images. 
 

 

4.4 Model development 

 

ML models are trained on the extracted features to classify 

the skin lesion images into malignant or benign classes. There 

are several ML algorithms that can be used for this purpose, 

including deep learning neural networks. 

 

4.4.1 Algorithms 

We will implement the DenseNet-161 version of the model 

 

Bn-Relu-Conv Function 

Algorithm: 

Algorithm(bn_rl_conv(x,filters,kernel_size) 

{ 

Int X; 

      X=BatchNormalization(x) 

      X=ReLU(x) 

      X=Conv2D(filters=filters, 

                          kernel_size=kernel_size, 

                          padding=same)(x) 

return X 

 

Dense Block 

 

Algorithm: 

Algorithm(dense_block(tensor,k,reps): 

{ 

Int x; 

     for_in range(reps): 

     x=bn_rl_conv(tensor,filters=4*k,kernel_size=1) 

     x=bn_rl_conv(x,filters=k,kernel_size=3) 

     tensor=Concatenate()([tensor,x]) 

} 

Return tensor 

 

4.4.2 Multi model 

A multimodel of machine learning algorithms typically 

refers to the combination of multiple models, each utilizing a 

different algorithm, to create a more accurate and robust 

overall model. Algorithms like DenseNet and Xception are 

both popular deep learning architectures that can be used as 

base models in a multimodel approach. 

In the case of algorithms like using DenseNet and Xception 

in a multimodel approach, one possible strategy would be to 

train each model independently on the same dataset, and then 

combine their predictions using an ensemble approach. 

Alternatively, the models could be combined into a single 

multimodal architecture, with each model feeding into a 

shared output layer. This approach is called a multi-input 

model and can be useful when the models have 

complementary strengths and weaknesses. 

 

4.5 Model evaluation and validation 

 

The performance of the ML model is evaluated using 

metrics such as accuracy, sensitivity, specificity, and area 

under the receiver operating characteristic curve (AUC-ROC). 

The model is also validated using a separate dataset to test its 

generalization capability. 

 

4.5.1 Measurement units 

Loss Function 

For a classification model that provides raw scores for each 

class, Cross Entropy Loss is the appropriate loss function. 
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Despite the fact that our samples will be appropriately 

balanced at each cycle, we want to punish melanoma loss by 

50%. 

Precision-Recall 

Precision and recall are performance measurements used in 

pattern recognition, information retrieval, and classification 

(machine learning) that apply to data recovered from a 

collection, corpus, or sample space. 

P=Div {TP, TP+FP} 

R=Div {TP, TP+FN} 

P-Precision 

R-Recall 

TP-True Positive 

FP-False Positive 

FN-False Negative 

 

AUC ROC 

ROC (Receiver Operating Characteristic) curve and AUC 

(Area Under the Curve) are commonly used evaluation metrics 

in machine learning, especially for binary classification 

problems. 

ROC curve is a graphical representation of the performance 

of a binary classifier system as its discrimination threshold is 

varied. The curve is created by plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR) at various 

threshold settings. The TPR (also known as recall or 

sensitivity) is the proportion of actual positive cases that are 

correctly identified as positive by the classifier. The FPR is the 

proportion of negative cases that are incorrectly classified as 

positive. 

AUC is a numerical value that represents the overall 

performance of a classifier system based on its ROC curve. 

The AUC value ranges from 0 to 1, where an AUC of 1 

indicates a perfect classifier, while an AUC of 0.5 represents a 

random classifier that is no better than chance. The AUC value 

can be interpreted as the probability that a randomly chosen 

positive example is ranked higher by the classifier than a 

randomly chosen negative example. 

 

4.6 Deployment 

 

The final step is to deploy the ML model in a clinical setting 

to assist dermatologists in diagnosing skin lesions accurately. 

 

 

5. EXPERIMENTAL RESULTS AND PREDICTION 

 

We apply different model methods to train multi crops, such 

as DenseNet, Inception3_3_0.9051, Inception 3_3_0.9089, 

NASNetALarge, Xception 1 and plot the accuracy and 

maximum ROC AUC. 

 

5.1 Single model using 1 crop 

 

Table 3. Single model using 1 crop 

 
Algorithm Crops Accuracy ROC AUC 

DenseNet 1 0.75 0.909 

Inception3_3_0.9051 1 0.777 0.897 

Inception3_3_0.9089 1 0.727 0.906 

NASNetALarge 1 0.712 0.884 

Xception_1 1 0.798 0.908 

 

Table 3 describes the accuracy and ROC AUC (Area under 

Curve) when a single model is trained with 1 crop respectively. 

It gives an accuracy of 75.2% and ROC AUC of 90.8% as 

shown in Figure 3. 

Graph Analysis: The maximum accuracy and ROC AUC 

was yielded by the DenseNet model. 

 

 
 

Figure 3. Single model using 1 crop 

 

5.2 Single model using 5 crop 

 

Table 4 describes the accuracy and ROC AUC (Area under 

Curve) when a single model is trained with 5 crops 

respectively. It gives an accuracy of 77.6% and ROC AUC of 

90.4% as shown in Figure 4. 

 

Table 4. Single model using 5 crops 

 
Algorithm Crops Accuracy ROC AUC 

DenseNet 5 0.757 0.911 

Inception3_3_0.9 051 5 0.788 0.905 

Inception3_3_0.9089 5 0.753 0.909 

NASNetALarge 5 0.765 0.885 

Xception_1 5 0.817 0.912 

 

 
 

Figure 4. Single model using 5 crops 

 

Graph Analysis: The maximum accuracy and maximum 

ROC AUC was yielded by the Xception_1 model. 

 

5.3 Single model using 10 crop 

 

Table 5 describes the accuracy and ROC AUC (Area under 

Curve) when a single model is trained with 10 crops 

respectively as shown in Figure 5. It gives an accuracy of 

77.8% and maximum ROC AUC of 91%. 
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Table 5. Single model using 10 crops 

 

Algorithm Crops Accuracy ROC AUC 

Algorithm 10 0.755 0.914 

DenseNet 10 0.79 0.907 

Inception3_3_0.9051 10 0.752 0.911 

Inception3_3_0.9089 10 0.778 0.909 

NASNetALarge 10 0.817 0.913 

 

 
 

Figure 5. Single model using 10 crops 

 

Graph Analysis: The maximum accuracy was yielded by the 

Xception_1 model and maximum ROC AUC was yielded by 

the DenseNet model. 

 

5.4 Single model using 20 crop 

 

Table 6 describes the accuracy and ROC AUC (Area under 

Curve) and maximum ROC AUC was yielded by the 

DenseNet model. when a single model is trained with 20 crops 

respectively. It gives an accuracy of 78.3% and ROC AUC of 

91% as shown in Figure 6. 

 

Table 6. Single model using 20 crops 

 
Algorithm Crops Accuracy ROC AUC 

DenseNet 20 0.753 0.914 

Inception3_3_0.9051 20 0.797 0.907 

Inception3_3_0.9089 20  0.76 0.912 

NASNetALarge 20 0.783 0.888 

Xception_1 20 0.822 0.911 

 

 
 

Figure 6. Single model using 20 crops 

 

Graph Analysis: The maximum accuracy was yielded by the 

Xception_1 model. 

5.5 Combination of two models 

 

Table 7. Combination of two models 

 

Models(n-crops) 

F1. 

melanoma 

threshold 

Accuracy 
ROC 

AUC 

M1(1-crops)+M4(1-crops) 0.094 0.785 0.931 

M1(1-crops)+M4(5-crops) 0.327 0.782 0.931 

M1(1-crops)+M4(10-crops) 0.333 0.783 0.931 

M4(1-crops)+M5(1-crops) 0.043 0.835 0.933 

M4(5-crops)+M5(1-crops) 0.043 0.83 0.934 

M4(10-crops)+M5(1-crops) 0.061 0.835 0.934 

M4(20-crops)+M5(1-crops) 0.037 0.835 0.935 

M4(1-crops)+M5(5-crops) 0.042 0.827 0.936 

M4(5-crops)+M5(5-crops) 0.069 0.828 0.936 

M4(10-crops)+M5(5-crops) 0.053 0.83 0.937 

M4(20-crops)+M5(5-crops) 0.188 0.828 0.937 

 

Table 7 describes the accuracy and ROC AUC (Area under 

Curve) and F1. melanoma threshold, when combinations of 

two models are trained with various crops respectively as 

shown in Figure 7. 

M1=DenseNet 

M2=Inception3_3_0.9051 

M3=Inception3_3_0.9089 

M4=NASNetALarge 

M5=Xception1 

It gives an accuracy of 81.8% and ROC AUC of 93.4%. 

 

 
 

Figure 7. Combination of 2 models 

 

Graph Analysis: The maximum accuracy and maximum 

ROC AUC was yielded by the combination of 

M4(NASNetALarge) and M5(Xception_1) (1-crops) models. 

 

5.6 Combination of three models 

 

 
 

Figure 8. Combination of 3 models 
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Table 8. Combination of three models 

 

Model(n-crops) 
F1-Melanoma 

threshold 
Accuracy 

ROC 

AUC 

M1(1-crops)+M2(1-

crops)+M4(1-crops) 
0.063 0.787 0.937 

M1(1-crops)+M4(1-crops) 

+M5(10-crops) 
0.063 0.82 0.937 

M1(1-crops)+M4(1-crops) 

+M5(20-crops) 
0.063 0.815 0.937 

M1(1-crops)+M4(5-crops) 

+ M5(5-crops) 
0.066 0.818 0.937 

M1(1-crops)+M4(10-crops) 

+ M5(5-crops) 
0.178 0.822 0.938 

M2(1-crops)+M4(1-crops) 

+M5(1-crops) 
0.061 0.807 0.939 

M2(1-crops)+M4(10-crops) 

+M5(1-crops) 
0.098 0.808 0.939 

M2(1-crops)+M4(1-crops) 

+ M5(5-crops) 
0.061 0.813 0.941 

M2(1-crops)+M4(10-

crops)+M5(5-crops) 
0.1 0.817 0.941 

 

Table 8 describes the accuracy and ROC AUC (Area under 

Curve) and F1. melanoma threshold, when combinations of 

three models are trained with various crops respectively. It 

gives an accuracy of 82% and ROC AUC of 94.1%. 

In Figure 8, Graph Analysis: The maximum accuracy was 

yielded by the combination of M1(DenseNet 

Model)+M4(NASNet5Large_3 Model)+M5(Xception_1 

model) and maximum ROC AUC was yielded by the 

combination of InceptionV4_2(1-

crops)+PNASNet5Large_3(1-crops)+Xception_1 (5-crops) 

models. 

 

 

6. CONCLUSIONS 

 

The data augmentation and data set studies mentioned in the 

"Experimental results and observation" section reflects that 

combinations of crops can help improve accuracy performance, 

for example, getting data training fully balanced does not 

always result in a better model. Neural networks are 

increasingly being researched as part of Artificial Intelligence 

algorithms in picture capture for detecting Skin Lesion and 

identifying Melanoma. New Databases and even challenges to 

the categorization of Skin Lesion develop on a regular basis. 

That is why there is a lot of interest in upgrading these 

classifiers so that they can detect and follow the emergence of 

Skin Lesion even from a long distance with high accuracy. 

Multiple Neural Networks for diverse functions and fusion 

combinations produced the greatest results. Observing the 

importance of artificial intelligence networks in identifying 

Melanoma, we conclude methods of problem solving are 

important goals in the medical field. The use of Networks in 

the prediction of melanoma supports systems for the 

dermatologist, who must ultimately conclude whether that is 

cancerous lesion. In this situation, the algorithm can be trained 

to recognise various sorts of cancerous SLs. Given the 

evolution of Neural Networks, such systems are predicted to 

improve their performance by utilising upgraded, modified, 

and coupled networks. 

A potential future analysis is to employ these methods to 

detect Melanoma that grows under the nails, which is therefore 

the most difficult analysis. We are not aware of such an 

algorithm, nor have we recognised it in literature surveys. If 

the nail remains visible, an image enhancing algorithm and 

methods can be retained to remove the Melanoma from the 

nail. 
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