
Enhancing Virtual and Augmented Reality Interactions with a MediaPipe-Based Hand

Gesture Recognition User Interface

Beom Jun Jo1 , Seok-Kyoo Kim1 , SeongKi Kim2*

1 Department of Game Design and Development, Sangmyung University, Seoul 03016, Korea
2 National Centre of Excellence in Software, Sangmyung University, Seoul 03016, Korea

Corresponding Author Email: skkim9226@gmail.com

https://doi.org/10.18280/isi.280311 ABSTRACT

Received: 31 January 2023

Accepted: 18 May 2023

Interaction with virtual objects is crucial for presence in Virtual Reality (VR) and

Augmented Reality (AR) applications. However, controllers are still predominantly used

for operations in virtual spaces. Hand gestures offer a more intuitive approach than

keyboards and mice for interactions in these environments. In previous research, hand

motion classification was implemented using only simple heuristics. This study introduces

a User Interface (UI) employing MediaPipe and artificial intelligence to utilize hand

gestures as an input device. Unlike the previous research, which could only identify one

gesture, the current implementation successfully classifies three gestures with 95.4%

accuracy: pointer, pick, and fist. Efforts were made to optimize the process, including the

examination of multi-threading and PyWin32. While multi-threading did not yield

significant improvements, the use of PyWin32 resulted in approximately three times higher

Frames Per Second (FPS) compared to the absence of PyWin32. Further gestures can

potentially be added to enhance the system's capabilities. This line of research has potential

applications in diverse fields such as gaming, simulation, rehabilitation, and smart home

technology.

Keywords:

virtual reality, augmented reality, gesture

classification, MediaPipe, user interface

1. INTRODUCTION

Virtual Reality (VR) is an artificial environment rendered

by a computer, while Augmented Reality (AR) superimposes

virtual objects over physical ones. With the emergence of

these technologies, users are required to interact with virtual

objects. However, early implementations offered limited

interaction methods, allowing users to merely observe objects

without engaging with them. As technology advanced, various

equipment for interaction between virtual and physical objects

have been developed. For example, VR treadmills [1] can

simulate walking in virtual spaces, and haptic suits [2] can

deliver sensations from the virtual environment. Nevertheless,

controllers remain a common choice due to cost and space

constraints, reducing presence and immersion in VR and AR

experiences.

Meta Quest 2 has adopted hand tracking technology [3].

When the hand tracking option is enabled, users can interact

without controllers, utilizing three gestures [4]: "point and

pinch," "pinch and scroll," and "palm pinch." As these gestures

are limited in number, they are suitable only for simple games

or activities.

Just Dance serves as an example [5, 6]. This game has been

released on various platforms, with playing methods differing

across devices. While controllers such as smartphones or

Nintendo Switch Joy-Cons are typically used, body gestures

were employed on the Kinect and Xbox platforms, providing

users with a more natural interaction method. Interacting

through body gestures in games or VR/AR content frees users

from cost and space issues and can prevent accidents caused

by detached controllers, which are usually mitigated by wrist

straps.

In this study, a hand gesture-based user interface is

implemented as part of hand gesture classification. As hand

gestures resemble body language, the user interface is more

intuitive than using a mouse. This interaction method offers

extensive applicability, including hands-on games,

rehabilitation [7], fitness programs like Apple Fitness+ [8],

and sign language [9]. Furthermore, it can be employed in

automobile control and smart home applications.

Previous research [10] classified hand movements using

angles between vectors, obtained through point coordinates.

However, this method necessitated numerous angle

constraints for accurate motion estimation. In contrast, the

current study employs artificial intelligence (AI) to facilitate

the addition of more gestures. Nevertheless, this approach only

operates on Windows and has not yet been applied to the

ultimate goal: VR devices.

The contributions of this study include: (1) proposing a

basic method for classifying hand gestures, which tracks hands

through MediaPipe and utilizes a pre-trained model for gesture

classification; (2) implementing a user interface for controller-

free operation; and (3) suggesting an optimization method for

the implementation.

The remainder of this study is organized as follows: Section

2 presents related work and commercial products

exemplifying hand tracking and gesture classification

solutions. Section 3 details the realization of the proposed

system. Section 4 concludes the study.

Ingénierie des Systèmes d’Information
Vol. 28, No. 3, June, 2023, pp. 633-638

Journal homepage: http://iieta.org/journals/isi

633

https://orcid.org/0009-0006-3967-1372
https://orcid.org/0000-0003-4725-0288
https://orcid.org/0000-0002-2664-3632
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280311&domain=pdf

2. RELATED WORK

This section describes existing methods and current

research for using hands as the user interface.

2.1 Existing methods

Meta released the Meta Quest 2 in 2020, which supported a

hand tracking option. Three supported gestures are illustrated

in Figure 1. Although there are only a few movements, they

are comprised of three intuitive actions for the user. First,

"point and pinch" is an action to select something. Essentially,

the cursor moves along the hand. The user points to their

desired choice and pinches it. Second, "pinch and scroll" is an

action to scroll. If the user moves their hand while maintaining

the pinching posture, it scrolls in that direction. Third, "palm

pinch" is an action to return to the Meta Home menu. When

the user looks at their palm, holds their index finger and thumb

until the gauge is full, and then releases it, the Meta Home

menu can be accessed.

(a) (b) (c)

Figure 1. Three gestures supported by Meta Quest 2 [4] (a) point and pinch; (b) pinch and scroll; (c) palm pinch

2.2 Methods for hand tracking

In general, methods for tracking hands can be categorized

into three approaches: attaching sensors to hands, using

cameras with special functions, and utilizing machine learning

with a normal camera.

2.2.1 Sensors attached directly to the hand

The first approach involves attaching sensors directly to the

hands. This method has been developed since the early stages

of hand tracking. As it only requires attaching hardware to the

player's body, it is the easiest to implement and the most

accurate method. It is actively used in motion captured films,

and professional products such as MANUS metagloves [11]

can be found. HTC's VIVE tracker [12] is a popular

commercially available product. Additionally, SlimeVR [13]

is an open-source project. In the case of such trackers, full

tracking is possible by attaching them to the entire body.

In this approach, users directly attach sensors to their bodies.

Generally, sensors include gyroscopes and accelerometers,

which calculate and track necessary information such as angle,

acceleration, and gravity.

2.2.2 Using a specific camera

The second method utilizes cameras with special functions,

such as depth sensors. This method has been actively studied,

and commercially available products use specific sensors.

Examples include Kinect [14] and Leap Motion [15, 16],

which employ a depth camera and an infrared (IR) camera,

respectively. Microsoft's Azure Kinect implements the

Amplitude Modulated Continuous Wave Time-of-Flight

(AMCW ToF) principle and can measure up to millimeters [17,

18].

Using Azure Kinect as an example, the device employs both

an RGB camera and a depth camera for recording. Kinect's

depth cameras can measure Z coordinates through depth

measurements and IR images. Thus, when combined with

pixel information from an RGB camera, the depth of a specific

pixel can be obtained, allowing for accurate depth tracking

(See Figure 2).

Figure 2. (Left) Depth map obtained by Azure Kinect (Right) Image obtained by IR camera [14]

2.2.3 Using artificial intelligence

The third method involves using machine learning with a

regular camera. The most significant advantage of this method

is its compatibility with standard cameras. Mueller et al. [19]

demonstrate 3D hand pose tracking via GeoConGAN [20] and

RegNet [21]. Another hand tracking solution is MediaPipe

634

[22], which utilizes machine learning and is an open-source

platform that supports various platforms. Recent studies aim

to create a virtual hand based on information beyond tracking.

Grishchenko et al. [23] employ an improved model that

combines existing BlazePose and MediaPipe to track not only

the full body but also detailed hand movements, enabling the

creation of a virtual body using GHUM [24].

The third method has cost advantages since it operates with

a standard camera. Additionally, this method can be used if

screen input can be received, regardless of camera

performance.

2.3 Classification

Gesture classification allows for accurate motion

determination. A previous study [10] examined how to use

hand gestures in mobile games. A simple heuristic was

developed to recognize the hand shape as a gun. Several

attempts were made at coordinates and angles to recognize the

exact gun shape. However, using artificial intelligence for this

purpose could facilitate adding new movements.

Hand classification is typically conducted with images

alone, without tracking. Even when action classification is

considered, it tends to rely solely on RGB data from images or

videos. For example, Gadekallu et al. [25] classify using a

CNN-crow search algorithm, but only with images. However,

the study in question first tracks and then classifies actions

based on this information. As a one-dimensional array is used

for the classification process, it is faster than when using

images.

3. IMPLEMENTATION AND RESULTS

In the previous study [10], an action was classified through

a simple heuristic by using ManoMotion [26] on Unity. This

research aims to devise a method that could use hand gestures

as a user interface. This section describes the implementation

and results of the proposed approach, as well as performance

optimization. To implement the method, Ryzen 4800h and

GTX 1660Ti hardware were used, along with Python,

Google’s MediaPipe, and Windows for hand tracking software.

3.1 Gesture classification model

This subsection discusses hand tracking prior to the gesture

classification of hands, as hand tracking is utilized. While it is

feasible to classify solely based on images without extracting

information about the hands, the input image size must be

consistent for the model. Thus, it is necessary to make the

image identical only by cropping the hand. However, the

method presented in this paper does not necessitate a process

for adjusting the image size.

After processing with MediaPipe, hand coordinates are

obtained. Figure 3 displays the relevant landmarks. Using the

landmarks in Figure 3, gestures shown in Figure 4 were

recognized. Figure 4 depicts the hand gestures utilized for

controlling a cursor in this research. In Figure 4, the pointer

gesture moves the mouse cursor. The green dot in Figure 4(a).

corresponds to point 8 in the landmarks shown in Figure 3. The

cursor moves along this point. The pick gesture in Figure 4(b).

performs a drag, while the clenched gesture in Figure 4(c).

executes a click.

Figure 5 presents the architecture of the classification model.

MediaPipe generates coordinates for each landmark as an

output. The classification model receives a one-dimensional

array containing coordinates obtained through MediaPipe as

input [27]. The training process is similar. Ultimately, the

model classifies four gestures in Figure 4: Open hand, fist,

pointer, and pick. Table 1 lists the parameters used by the

model.

Figure 3. Hand landmarks tracked by MediaPipe

Figure 4. Images of gestures for controlling a cursor (a) a pointer gesture to move a cursor; (b) a pick gesture to drag; (c) a fist

gesture to click; (d) an open hand gesture

635

Figure 5. Suggested architecture of the classification model

Table 1. The parameters of the model

Parameter Description

Optimizer Adam optimizer

Loss function sparse_categorical_crossentropy

Number of epochs 1000

Batch size 128

Number of dropout 2

Number of dense layer 3

Activation function

at intermediate layer
Relu

Activation function

at output layer
Softmax

3.2 Implementation and results

The method outlined in Subsection 3.1 was implemented on

Windows using Python and MediaPipe. The following steps

were executed:

1. Capture an image from the webcam.

2. Pass the image through the MediaPipe classifier.

Various information about the hand is obtained after

processing.

3. The AI-based classifier model identifies the current

gesture among predetermined hand gestures.

4. Control the mouse according to the results from Step

2.

5. Repeat Steps 1-3.

Coordinates of hand landmarks are acquired through Steps

1 and 2. These coordinates were used to capture and store hand

gestures for future use. A classifier is created when the model

is trained with collected coordinates by capturing dozens of

samples.

Subsequently, the landmark coordinates are input into the

AI-based classifier in Step 3, and the corresponding gesture is

classified. Each gesture is assigned functions to perform in

Step 4.

Figure 6 demonstrates the implementation results. In Figure

6(a), the pointer gesture allows the cursor to move across the

desktop, following the green dot on the fingertip. In Figure

6(b), the pick gesture successfully performs dragging, as if

holding and lifting. The fist gesture in Figure 6(c) executes a

click. The open hand gesture in Figure 6(d) can be utilized as

a resting action for the hand.

Figure 7 displays the confusion matrix of the proposed

model. The vertical axis represents actual values, and the

horizontal axis represents predicted values. The numbers

indicate the open hand in Figure 3(d), fist in Figure 3(c),

pointer in Figure 3(a), and pick gesture in Figure 3(b) in order

from zero. When row numbers and column numbers are the

same in the matrix, it indicates the number of correct

predictions made by the model. By dividing the sum of these

values by the total, the accuracy can be calculated. As a result,

the proposed model achieves 95.4% accuracy

((403+326+339+86)/1210x100).

Figure 6. Running implementation (a) a pointer gesture; (b) a

pick gesture performing drag; (c) a fist gesture executing a

click; (d) an open hand gesture (Details can be watched at the

https://www.youtube.com/watch?v=OjzplypSBpA)

Figure 7. Confusion matrix of suggested model

3.3 Performance optimization

In Sub-sections 3.1 and 3.2, the AI-based method for using

hand gestures and provided examples of developed gestures

were described. However, the method could be challenging to

use if its performance is significantly decreased. To address

this issue, research on performance improvement was

conducted, which is detailed in this subsection.

636

https://www.youtube.com/watch?v=OjzplypSBpA

3.3.1 Multi-threading

To optimize performance, multi-threading was employed.

As most recent CPUs support multi-threading, this approach

has been adopted. Table 1 presents a comparison of FPS when

multi-threading is used and when it is not used.

Table 2 compares the average framerate with and without

multi-threading for one minute. The first row compares the

framerate when nothing is drawn on the camera, and the

second row compares the framerate when a hand is displayed

on the camera. In this case, there was no significant difference

in the average framerate; however, the framerate was more

stable when multi-threading was used.

Table 2. Average performance between with and without

multi-threading for 1 minute (Unit: FPS)

Case No multi-threading Multi-threading

Nothing on Camera 27.8 27.68

Hand on Camera 17.96 18.13

3.3.2 Graphic User Interface (GUI) library

To further optimize performance, PyWin32 instead of

PyAutoGUI was used. There are PyAutoGUI [28] and

PyWin32 [29] libraries available for controlling the GUI.

PyAutoGUI is a cross-platform library that enables mouse and

keyboard control for automating interactions. This library

provides functions for moving the cursor and clicking, sending

keystrokes, finding a recognized image on screen, and locating

an application's window. Beyond simple keyboard and mouse

usage, complex tasks can be accomplished by implementing

macros using these functions.

PyWin32 is a library that allows utilizing Win32 API [30]

functions in Python. Win32 API is a C language-based set of

functions supporting UI control, Windows console

administration, storage data access, graphics, network, and

security in Windows. However, as the name suggests, it can

only be used in Windows.

Table 3 compares the average framerate according to the

libraries used to move the cursor for one minute. Since both

libraries operate only when hands are recognized, there is no

speed difference, as shown in the first row of Table 3. When

using PyWin32, the average performance was about three

times higher than when using PyAutoGUI. Real-time usage

was challenging when using PyAutoGUI.

Table 3. Average performance between PyAutoGUI and

PyWin32 for 1 minute (Unit: FPS)

Case PyAutoGUI PyWin32

Nothing on Camera 28.22 27.66

Hand on Camera 6.32 17.97

4. CONCLUSIONS

In this paper, developing a hand gesture-based interface

using a regular webcam and AI was discussed, as this can

enhance user immersion in the VR/AR field, serve as assistive

control, or simplify human-computer interaction. Additionally,

our hand gesture-based interface can be applied to games,

rehabilitation, and sign language. Apart from the

aforementioned advantages, the proposed method is cost-

effective because it only requires a widely available camera.

This research successfully recognized three gestures to control

cursor movement with 95.4% accuracy. During

implementation, performance optimization was necessary, so

suitable libraries was investigated and found that PyWin32

outperformed PyAutoGUI.

However, this research has a limitation in that the number

of recognizable gestures is limited. In the future, we plan to

develop an improved model to increase the number of gestures

and further implement continuous gesture classification on VR

devices.

ACKNOWLEDGEMENT

This research was funded by a 2022 Research Grant (2022-

A000-0048) from Sangmyung University. Seok-Kyoo Kim

and SeongKi Kim are the corresponding authors. All of the

implementations are available at

https://github.com/torauma06/hand-gesture-mouse. To

increase the understandability of all the results presented in

this paper, we have created a video and uploaded it to

https://www.youtube.com/watch?v=OjzplypSBpA.

REFERENCES

[1] Virtuix. Omni One-The Future of Gaming.

https://omni.virtuix.com/, accessed on Dec. 20, 2022.

[2] bHaptics. Most Advanced Full Body Haptic Suit.

https://www.bhaptics.com/tactsuit/tactsuit-x40, accessed

on Jan. 9, 2022.

[3] Meta. Hand Tracking Privacy Notice. https://www.met

a.com/help/quest/articles/accounts/privacy-information-

and-settings/hand-tracking-privacy-notice/, accessed on

Jan. 11, 2023.

[4] Meta. Getting Started with Hand Tracking on Meta Quest

Headsets. https://www.meta.com/help/quest/articles/hea

dsets-and-accessories/controllers-and-hand-

tracking/hand-tracking-quest-2/, accessed on Dec. 23,

2022.

[5] Ubisoft. Just Dance 2023 Edition. https://www.ubisof

t.com/en-us/game/just-dance/2023, accessed on Jan. 23,

2023.

[6] Fandom. Just Dance series.

https://justdance.fandom.com/wiki/Just_Dance_(series),

accessed on Jan. 19, 2023.

[7] Zhou, H., Hu, H. (2008). Human motion tracking for

rehabilitation—A survey. Biomedical Signal Processing

and Control, 3(1): 1-18.

https://doi.org/10.1016/j.bspc.2007.09.001

[8] Apple. Apple Fitness+. https://www.apple.com/apple-

fitness-plus/, accessed on Jan. 20, 2023.

[9] GitHub. Hand_Asl_Recognition.

https://github.com/cortictechnology/hand_asl_recogniti

on, accessed on Jan. 26, 2023.

[10] Beom Jun, J.O., Seong Ki, K.I.M., Seok-Kyoo, K.I.M.

(2022) A study on hand gesture classification for mobile

game. Korean Society For Computer Game, 35(3): 1-7.

https://doi.org/10.21493/kscg.2016.29.2.1

[11] MANUS. MANUS-Finger & Full-body Tracking for

Mocap and VR. https://www.manus-meta.com/,

accessed on Dec. 23, 2022.

[12] HTC Corporation. VIVE | VIVE Tracker.

https://www.vive.com/kr/accessory/vive-tracker/,

accessed on Dec. 23, 2022.

[13] SlimeVR. SlimeVR Docs. https://docs.slimevr.dev/,

637

accessed on Dec. 24, 2022.

[14] Microsoft. Azure Kinect DK-Develop AI Models |

Microsoft Azure. https://azure.microsoft.com/en-

us/products/kinect-dk/#overview, accessed on Dec. 23,

2022.

[15] Ultraleap. Digital Worlds That Feel Human-Ultraleap.

https://www.ultraleap.com/, accessed on Dec. 23, 2022.

[16] Ultraleap. How Hand Tracking Works.

https://www.ultraleap.com/company/news/blog/how-

hand-trackin g-works/, accessed on Dec. 27, 2022.

[17] Microsoft. Azure Kinect DK Depth Camera | Microsoft

Learn. https://learn.microsoft.com/en-us/azure/kinect-dk

/depth-camera, accessed on Dec. 24, 2022.

[18] Lun, R., Zhao, W. (2015). A survey of applications and

human motion recognition with Microsoft Kinect.

International Journal of Pattern Recognition and

Artificial Intelligence, 29(05): 1555008.

https://doi.org/10.1142/S0218001415550083

[19] Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D.,

Sridhar, S., Casas, D., Theobalt, C. (2018). Ganerated

hands for real-time 3d hand tracking from monocular rgb.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 49-59.

[20] GitHub. bread1984/GeoConGAN: This Project

Implement The 3D Hand Joint Detection Algorithm

GeoConGAN.

https://github.com/breadbread1984/GeoConGAN,

accessed on Dec. 23, 2022.

[21] Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A.,

Sung, G., Chang, C.L., Grundmann, M. (2020).

MediaPipe hands: On-device real-time hand tracking.

arXiv Preprint arXiv: 2006.10214.

https://doi.org/10.48550/arXiv.2006.10214

[22] Sung, G., Sokal, K., Uboweja, E., Bazarevsky, V.,

Baccash, J., Bazavan, E.G., Chang, C.L., Grundmann, M.

(2021). On-device real-time hand gesture recognition.

arXiv Preprint arXiv: 2111.00038.

https://doi.org/10.48550/arXiv.2111.00038

[23] Grishchenko, I., Bazarevsky, V., Zanfir, A., Bazavan,

E.G., Zanfir, M., Yee, R., Raveendran, K., Zhdanovich,

M., Grundmann, M., Sminchisescu, C. (2022).

BlazePose ghum holistic: real-time 3D human landmarks

and pose estimation. arXiv Preprint arXiv: 2206.11678.

https://doi.org/10.48550/arXiv.2206.11678

[24] GitHub. GHUM & GHUML. https://github.com/google-

research/google-research/tree/master/ghum, accessed on

Jan. 12, 2023.

[25] Gadekallu, T.R., Alazab, M., Kaluri, R., Maddikunta,

P.K.R., Bhattacharya, S., Lakshmanna, K. (2021). Hand

gesture classification using a novel CNN-crow search

algorithm. Complex & Intelligent Systems, 7: 1855-1868.
https://doi.org/10.1007/s40747-021-00324-x

[26] ManoMotion. ManoMotion. https://www.manomotio

n.com/, accessed on Dec. 25, 2022.

[27] GitHub. Hand Gesture Mouse.

https://github.com/toraum a06/hand-gesture-mouse,

accessed on Jan. 12, 2023.

[28] Sweigart, A. PyAutoGUI’s Documentation.

https://pyautogui.readthedocs.io/en/latest/, accessed on

Jan. 1, 2023.

[29] GitHub. Pywin32. https://github.com/mhammond/pywin

32, accessed on Jan. 2, 2023.

[30] Microsoft. Win32 Apps. https://learn.microsoft.com/en-

us/windows/win32/apiindex/windows-api-list, accessed

on Jan. 2, 2023.

638

