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Interaction with virtual objects is crucial for presence in Virtual Reality (VR) and 

Augmented Reality (AR) applications. However, controllers are still predominantly used 

for operations in virtual spaces. Hand gestures offer a more intuitive approach than 

keyboards and mice for interactions in these environments. In previous research, hand 

motion classification was implemented using only simple heuristics. This study introduces 

a User Interface (UI) employing MediaPipe and artificial intelligence to utilize hand 

gestures as an input device. Unlike the previous research, which could only identify one 

gesture, the current implementation successfully classifies three gestures with 95.4% 

accuracy: pointer, pick, and fist. Efforts were made to optimize the process, including the 

examination of multi-threading and PyWin32. While multi-threading did not yield 

significant improvements, the use of PyWin32 resulted in approximately three times higher 

Frames Per Second (FPS) compared to the absence of PyWin32. Further gestures can 

potentially be added to enhance the system's capabilities. This line of research has potential 

applications in diverse fields such as gaming, simulation, rehabilitation, and smart home 

technology. 
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1. INTRODUCTION

Virtual Reality (VR) is an artificial environment rendered 

by a computer, while Augmented Reality (AR) superimposes 

virtual objects over physical ones. With the emergence of 

these technologies, users are required to interact with virtual 

objects. However, early implementations offered limited 

interaction methods, allowing users to merely observe objects 

without engaging with them. As technology advanced, various 

equipment for interaction between virtual and physical objects 

have been developed. For example, VR treadmills [1] can 

simulate walking in virtual spaces, and haptic suits [2] can 

deliver sensations from the virtual environment. Nevertheless, 

controllers remain a common choice due to cost and space 

constraints, reducing presence and immersion in VR and AR 

experiences. 

Meta Quest 2 has adopted hand tracking technology [3]. 

When the hand tracking option is enabled, users can interact 

without controllers, utilizing three gestures [4]: "point and 

pinch," "pinch and scroll," and "palm pinch." As these gestures 

are limited in number, they are suitable only for simple games 

or activities. 

Just Dance serves as an example [5, 6]. This game has been 

released on various platforms, with playing methods differing 

across devices. While controllers such as smartphones or 

Nintendo Switch Joy-Cons are typically used, body gestures 

were employed on the Kinect and Xbox platforms, providing 

users with a more natural interaction method. Interacting 

through body gestures in games or VR/AR content frees users 

from cost and space issues and can prevent accidents caused 

by detached controllers, which are usually mitigated by wrist 

straps. 

In this study, a hand gesture-based user interface is 

implemented as part of hand gesture classification. As hand 

gestures resemble body language, the user interface is more 

intuitive than using a mouse. This interaction method offers 

extensive applicability, including hands-on games, 

rehabilitation [7], fitness programs like Apple Fitness+ [8], 

and sign language [9]. Furthermore, it can be employed in 

automobile control and smart home applications. 

Previous research [10] classified hand movements using 

angles between vectors, obtained through point coordinates. 

However, this method necessitated numerous angle 

constraints for accurate motion estimation. In contrast, the 

current study employs artificial intelligence (AI) to facilitate 

the addition of more gestures. Nevertheless, this approach only 

operates on Windows and has not yet been applied to the 

ultimate goal: VR devices. 

The contributions of this study include: (1) proposing a 

basic method for classifying hand gestures, which tracks hands 

through MediaPipe and utilizes a pre-trained model for gesture 

classification; (2) implementing a user interface for controller-

free operation; and (3) suggesting an optimization method for 

the implementation. 

The remainder of this study is organized as follows: Section 

2 presents related work and commercial products 

exemplifying hand tracking and gesture classification 

solutions. Section 3 details the realization of the proposed 

system. Section 4 concludes the study. 
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2. RELATED WORK 

 

This section describes existing methods and current 

research for using hands as the user interface. 

 

2.1 Existing methods 

 

Meta released the Meta Quest 2 in 2020, which supported a 

hand tracking option. Three supported gestures are illustrated 

in Figure 1. Although there are only a few movements, they 

are comprised of three intuitive actions for the user. First, 

"point and pinch" is an action to select something. Essentially, 

the cursor moves along the hand. The user points to their 

desired choice and pinches it. Second, "pinch and scroll" is an 

action to scroll. If the user moves their hand while maintaining 

the pinching posture, it scrolls in that direction. Third, "palm 

pinch" is an action to return to the Meta Home menu. When 

the user looks at their palm, holds their index finger and thumb 

until the gauge is full, and then releases it, the Meta Home 

menu can be accessed. 

 

 
(a)                              (b)                             (c) 

 

Figure 1. Three gestures supported by Meta Quest 2 [4] (a) point and pinch; (b) pinch and scroll; (c) palm pinch 

 

2.2 Methods for hand tracking 

 

In general, methods for tracking hands can be categorized 

into three approaches: attaching sensors to hands, using 

cameras with special functions, and utilizing machine learning 

with a normal camera. 

 

2.2.1 Sensors attached directly to the hand 

The first approach involves attaching sensors directly to the 

hands. This method has been developed since the early stages 

of hand tracking. As it only requires attaching hardware to the 

player's body, it is the easiest to implement and the most 

accurate method. It is actively used in motion captured films, 

and professional products such as MANUS metagloves [11] 

can be found. HTC's VIVE tracker [12] is a popular 

commercially available product. Additionally, SlimeVR [13] 

is an open-source project. In the case of such trackers, full 

tracking is possible by attaching them to the entire body. 

In this approach, users directly attach sensors to their bodies. 

Generally, sensors include gyroscopes and accelerometers, 

which calculate and track necessary information such as angle, 

acceleration, and gravity. 

 

2.2.2 Using a specific camera 

The second method utilizes cameras with special functions, 

such as depth sensors. This method has been actively studied, 

and commercially available products use specific sensors. 

Examples include Kinect [14] and Leap Motion [15, 16], 

which employ a depth camera and an infrared (IR) camera, 

respectively. Microsoft's Azure Kinect implements the 

Amplitude Modulated Continuous Wave Time-of-Flight 

(AMCW ToF) principle and can measure up to millimeters [17, 

18]. 

Using Azure Kinect as an example, the device employs both 

an RGB camera and a depth camera for recording. Kinect's 

depth cameras can measure Z coordinates through depth 

measurements and IR images. Thus, when combined with 

pixel information from an RGB camera, the depth of a specific 

pixel can be obtained, allowing for accurate depth tracking 

(See Figure 2). 

 

 
 

Figure 2. (Left) Depth map obtained by Azure Kinect (Right) Image obtained by IR camera [14] 

 

2.2.3 Using artificial intelligence 

The third method involves using machine learning with a 

regular camera. The most significant advantage of this method 

is its compatibility with standard cameras. Mueller et al. [19] 

demonstrate 3D hand pose tracking via GeoConGAN [20] and 

RegNet [21]. Another hand tracking solution is MediaPipe 
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[22], which utilizes machine learning and is an open-source 

platform that supports various platforms. Recent studies aim 

to create a virtual hand based on information beyond tracking. 

Grishchenko et al. [23] employ an improved model that 

combines existing BlazePose and MediaPipe to track not only 

the full body but also detailed hand movements, enabling the 

creation of a virtual body using GHUM [24]. 

The third method has cost advantages since it operates with 

a standard camera. Additionally, this method can be used if 

screen input can be received, regardless of camera 

performance. 

 

2.3 Classification 

 

Gesture classification allows for accurate motion 

determination. A previous study [10] examined how to use 

hand gestures in mobile games. A simple heuristic was 

developed to recognize the hand shape as a gun. Several 

attempts were made at coordinates and angles to recognize the 

exact gun shape. However, using artificial intelligence for this 

purpose could facilitate adding new movements. 

Hand classification is typically conducted with images 

alone, without tracking. Even when action classification is 

considered, it tends to rely solely on RGB data from images or 

videos. For example, Gadekallu et al. [25] classify using a 

CNN-crow search algorithm, but only with images. However, 

the study in question first tracks and then classifies actions 

based on this information. As a one-dimensional array is used 

for the classification process, it is faster than when using 

images. 

 

 

3. IMPLEMENTATION AND RESULTS 

 

In the previous study [10], an action was classified through 

a simple heuristic by using ManoMotion [26] on Unity. This 

research aims to devise a method that could use hand gestures 

as a user interface. This section describes the implementation 

and results of the proposed approach, as well as performance 

optimization. To implement the method, Ryzen 4800h and 

GTX 1660Ti hardware were used, along with Python, 

Google’s MediaPipe, and Windows for hand tracking software. 

 

3.1 Gesture classification model 

 

This subsection discusses hand tracking prior to the gesture 

classification of hands, as hand tracking is utilized. While it is 

feasible to classify solely based on images without extracting 

information about the hands, the input image size must be 

consistent for the model. Thus, it is necessary to make the 

image identical only by cropping the hand. However, the 

method presented in this paper does not necessitate a process 

for adjusting the image size. 

After processing with MediaPipe, hand coordinates are 

obtained. Figure 3 displays the relevant landmarks. Using the 

landmarks in Figure 3, gestures shown in Figure 4 were 

recognized. Figure 4 depicts the hand gestures utilized for 

controlling a cursor in this research. In Figure 4, the pointer 

gesture moves the mouse cursor. The green dot in Figure 4(a). 

corresponds to point 8 in the landmarks shown in Figure 3. The 

cursor moves along this point. The pick gesture in Figure 4(b). 

performs a drag, while the clenched gesture in Figure 4(c). 

executes a click. 

Figure 5 presents the architecture of the classification model. 

MediaPipe generates coordinates for each landmark as an 

output. The classification model receives a one-dimensional 

array containing coordinates obtained through MediaPipe as 

input [27]. The training process is similar. Ultimately, the 

model classifies four gestures in Figure 4: Open hand, fist, 

pointer, and pick. Table 1 lists the parameters used by the 

model. 

 

 
 

Figure 3. Hand landmarks tracked by MediaPipe 

 

 
 

Figure 4. Images of gestures for controlling a cursor (a) a pointer gesture to move a cursor; (b) a pick gesture to drag; (c) a fist 

gesture to click; (d) an open hand gesture 
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Figure 5. Suggested architecture of the classification model 

 

Table 1. The parameters of the model 

 
Parameter Description 

Optimizer Adam optimizer 

Loss function sparse_categorical_crossentropy 

Number of epochs 1000 

Batch size 128 

Number of dropout 2 

Number of dense layer 3 

Activation function 

at intermediate layer 
Relu 

Activation function 

at output layer 
Softmax 

 

3.2 Implementation and results 

 

The method outlined in Subsection 3.1 was implemented on 

Windows using Python and MediaPipe. The following steps 

were executed: 

1. Capture an image from the webcam. 

2. Pass the image through the MediaPipe classifier. 

Various information about the hand is obtained after 

processing. 

3. The AI-based classifier model identifies the current 

gesture among predetermined hand gestures. 

4. Control the mouse according to the results from Step 

2. 

5. Repeat Steps 1-3. 

Coordinates of hand landmarks are acquired through Steps 

1 and 2. These coordinates were used to capture and store hand 

gestures for future use. A classifier is created when the model 

is trained with collected coordinates by capturing dozens of 

samples. 

Subsequently, the landmark coordinates are input into the 

AI-based classifier in Step 3, and the corresponding gesture is 

classified. Each gesture is assigned functions to perform in 

Step 4. 

Figure 6 demonstrates the implementation results. In Figure 

6(a), the pointer gesture allows the cursor to move across the 

desktop, following the green dot on the fingertip. In Figure 

6(b), the pick gesture successfully performs dragging, as if 

holding and lifting. The fist gesture in Figure 6(c) executes a 

click. The open hand gesture in Figure 6(d) can be utilized as 

a resting action for the hand. 

Figure 7 displays the confusion matrix of the proposed 

model. The vertical axis represents actual values, and the 

horizontal axis represents predicted values. The numbers 

indicate the open hand in Figure 3(d), fist in Figure 3(c), 

pointer in Figure 3(a), and pick gesture in Figure 3(b) in order 

from zero. When row numbers and column numbers are the 

same in the matrix, it indicates the number of correct 

predictions made by the model. By dividing the sum of these 

values by the total, the accuracy can be calculated. As a result, 

the proposed model achieves 95.4% accuracy 

((403+326+339+86)/1210x100). 

 

 
 

Figure 6. Running implementation (a) a pointer gesture; (b) a 

pick gesture performing drag; (c) a fist gesture executing a 

click; (d) an open hand gesture (Details can be watched at the 

https://www.youtube.com/watch?v=OjzplypSBpA) 

 

 
 

Figure 7. Confusion matrix of suggested model 

 

3.3 Performance optimization 

 

In Sub-sections 3.1 and 3.2, the AI-based method for using 

hand gestures and provided examples of developed gestures 

were described. However, the method could be challenging to 

use if its performance is significantly decreased. To address 

this issue, research on performance improvement was 

conducted, which is detailed in this subsection. 
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3.3.1 Multi-threading 

To optimize performance, multi-threading was employed. 

As most recent CPUs support multi-threading, this approach 

has been adopted. Table 1 presents a comparison of FPS when 

multi-threading is used and when it is not used. 

Table 2 compares the average framerate with and without 

multi-threading for one minute. The first row compares the 

framerate when nothing is drawn on the camera, and the 

second row compares the framerate when a hand is displayed 

on the camera. In this case, there was no significant difference 

in the average framerate; however, the framerate was more 

stable when multi-threading was used. 

 

Table 2. Average performance between with and without 

multi-threading for 1 minute (Unit: FPS) 

 
Case No multi-threading Multi-threading 

Nothing on Camera 27.8 27.68 

Hand on Camera 17.96 18.13 

 

3.3.2 Graphic User Interface (GUI) library 

To further optimize performance, PyWin32 instead of 

PyAutoGUI was used. There are PyAutoGUI [28] and 

PyWin32 [29] libraries available for controlling the GUI. 

PyAutoGUI is a cross-platform library that enables mouse and 

keyboard control for automating interactions. This library 

provides functions for moving the cursor and clicking, sending 

keystrokes, finding a recognized image on screen, and locating 

an application's window. Beyond simple keyboard and mouse 

usage, complex tasks can be accomplished by implementing 

macros using these functions. 

PyWin32 is a library that allows utilizing Win32 API [30] 

functions in Python. Win32 API is a C language-based set of 

functions supporting UI control, Windows console 

administration, storage data access, graphics, network, and 

security in Windows. However, as the name suggests, it can 

only be used in Windows. 

Table 3 compares the average framerate according to the 

libraries used to move the cursor for one minute. Since both 

libraries operate only when hands are recognized, there is no 

speed difference, as shown in the first row of Table 3. When 

using PyWin32, the average performance was about three 

times higher than when using PyAutoGUI. Real-time usage 

was challenging when using PyAutoGUI. 

 

Table 3. Average performance between PyAutoGUI and 

PyWin32 for 1 minute (Unit: FPS) 

 
Case PyAutoGUI PyWin32 

Nothing on Camera 28.22 27.66 

Hand on Camera 6.32 17.97 

 

 

4. CONCLUSIONS 

 

In this paper, developing a hand gesture-based interface 

using a regular webcam and AI was discussed, as this can 

enhance user immersion in the VR/AR field, serve as assistive 

control, or simplify human-computer interaction. Additionally, 

our hand gesture-based interface can be applied to games, 

rehabilitation, and sign language. Apart from the 

aforementioned advantages, the proposed method is cost-

effective because it only requires a widely available camera. 

This research successfully recognized three gestures to control 

cursor movement with 95.4% accuracy. During 

implementation, performance optimization was necessary, so 

suitable libraries was investigated and found that PyWin32 

outperformed PyAutoGUI. 

However, this research has a limitation in that the number 

of recognizable gestures is limited. In the future, we plan to 

develop an improved model to increase the number of gestures 

and further implement continuous gesture classification on VR 

devices. 
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