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Additive Manufacturing (AM), a technique leveraging 3D modeling data to fabricate 

objects through layer-by-layer material deposition, has seen a surge in adoption across 

industries. This has, in turn, spurred rapid advancements in design, process, and 

manufacturing technologies integral to AM. Simultaneously, Machine Learning (ML), a 

subset of artificial intelligence centered on enabling self-improvement in computer 

programs, has carved its niche in this burgeoning field. This review provides an in-depth 

exploration of recent advancements in the application of ML within the AM framework. 

Specifically, the focus is placed on regression, classification, and clustering tasks integral 

to anomaly identification and parameter optimization in AM processes. A comparative 

analysis of the efficacy of various ML algorithms in executing these tasks forms the crux 

of this review. In light of these developments, the paper seeks to underscore the potential 

of ML as a viable tool in augmenting the capabilities of AM, thereby offering insights that 

could guide future research and development efforts in this interdisciplinary domain. 
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1. INTRODUCTION

Additive Manufacturing (AM), a term that encapsulates 

processes employing successive layers of material to construct 

three-dimensional structures, has the potential to utilize a 

myriad of materials, ranging from plastics and metals to 

concrete, and potentially, human tissues in future applications. 

Predominantly, AM technologies integrate the use of 

computers, 3D modeling software such as Computer Aided 

Design (CAD), machine equipment, and layering materials. 

AM refers to a spectrum of manufacturing methodologies that 

leverage direct material joining to generate components from 

3D modeling data [1]. 

When juxtaposed with traditional manufacturing techniques, 

AM confers several distinct advantages including the capacity 

for mass-customization of parts and augmentation of part 

complexity at macro, meso, and micro scales [1]. Following 

the creation of a CAD sketch, AM machinery interprets data 

from the CAD file, depositing successive layers of liquid, 

powder, sheet material, or other substances to construct a 3D 

object layer by layer. 

The umbrella of AM technology encompasses numerous 

subsets including 3D printing, rapid prototyping, direct digital 

manufacturing (DDM), layered manufacturing, and additive 

fabrication. The applications of AM are vast and continuously 

expanding. Rapid prototyping, an early variant of AM, 

primarily focused on preproduction visualization models, 

typically utilizing discrete planar layers, although non-planar 

processes are also feasible [2]. 

Currently, AM is employed to manufacture end-use items 

such as airplane components, dental restorations, medical 

implants, vehicles, and even fashion products. Despite the 

industry's progressive growth and development, achieving 

consistency in component quality and process reliability in 

AM remains a complex challenge [3]. The primary reason for 

this lies in the concurrent formation of the shape and material 

properties of a part during the AM process. To realize AM 

parts, a sophisticated multi-stage process encompassing five 

primary steps—designing, process planning, construction, 

post-processing, and testing and validation—is necessary. The 

interactions between design, material, and process are intricate 

[4], necessitating meticulous and precise execution of each 

step to fabricate a qualified part. 

The method of layering, which fundamentally changes a 

part with a design for additive manufacturing (DfAM), is the 

simplest and most efficient method for AM fabrication. 

Despite the apparent simplicity of adding layers, AM 

technology has a broad spectrum of applications to fulfill 

diverse objectives, including serving as a tool for design 

visualization and a means to produce highly customized goods 

for both consumers and professionals. 

AM is also employed to manufacture industrial tools, a 

variety of production parts, and even human organs such as 

cartilage, bones, and tissues. Organizations like Contour 

Crafting are working towards creating structures for human 

habitation and functionality. MIT supports a plethora of 

programs fostering a wide range of innovative AM 

applications, from multi-structure concrete to machines 

capable of constructing machines. 

Some consider AM as a complementary technique to 

subtractive manufacturing (the removal of material, such as 

through drilling), and to a lesser extent, forming (like forging). 

Ingénierie des Systèmes d’Information 
Vol. 28, No. 3, June, 2023, pp. 535-544 

Journal homepage: http://iieta.org/journals/isi 

535

https://orcid.org/0000-0002-1604-3924
https://orcid.org/0000-0002-9217-8476
https://orcid.org/0000-0003-1743-4668
https://orcid.org/0000-0002-9680-5510
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280301&domain=pdf


 

Regardless, AM holds the potential to revolutionize current 

manufacturing techniques, enabling professionals and 

everyday consumers to develop, modify, and/or repair goods. 

Whether the process is simple or complex, AM 

fundamentally involves the addition of layer upon layer, 

whether in plastic, metal, concrete, or, potentially, human 

tissue. Medical applications of AM are driven by an array of 

factors, with improved biocompatibility and patient outcomes 

being a common theme [5]. Additionally, mass customization 

and light weighting are prevalent reasons for the utilization of 

AM in consumer goods [5]. 

Despite the advancements in Additive Manufacturing (AM), 

traditional AM software methods still exhibit certain 

limitations, particularly when operating within specific 

domains. Machine Learning (ML), a subset of artificial 

intelligence dedicated to refining software capabilities, can be 

instrumental in addressing these specific areas of concern 

within traditional AM. 

One such area is Design Optimization. AM presents unique 

design challenges that diverge from those encountered in 

traditional manufacturing methods [3]. AI can augment 

designs for AM by identifying regions where material can be 

added or removed, enhancing the strength and performance of 

the final product. 

Process Optimization also faces issues of time and resource 

complexity in traditional AM. The AM process can be slow 

and costly, especially for large-scale production. ML can 

enhance the process by analyzing data from sensors and 

cameras to pinpoint potential areas of improvement in the 

manufacturing process, such as waste reduction, efficiency 

improvement, and speed augmentation. 

Quality Control [4] is another significant challenge, with 

AM potentially leading to defects and inconsistencies in the 

final product. These can be difficult to detect. However, ML 

can bolster quality control by analyzing images and sensor 

data to identify defects and potential areas of improvement in 

real-time. 

Finally, Material Selection in traditional AM can be a 

stumbling block to speed, time, and quality [5]. AM 

necessitates specific materials that are compatible with the 

printing process. ML can facilitate the identification of the best 

materials for specific applications based on their properties 

and characteristics. 

Machine Learning techniques can be categorized into 

supervised, unsupervised, semi-supervised, or reinforcement 

learning [6]. Shinde and Shah [7] identified five crucial 

application domains for ML: computer vision, prediction, 

semantic search, everyday language interaction, and outlook. 

Three of these domains - computer vision, prediction, and 

information retrieval - are employed in AM. 

Recent advancements in graphics hardware have expedited 

the optimization of ML algorithms on large training sets, 

enabling more comprehensive research into these domains [8]. 

Thanks to these advancements, ML methods can now be 

applied in AM scenarios. However, the improvement of 

current AM processes requires operators and designers 

possessing expertise in manufacturing, process, and design [9]. 

For AM to succeed, the design, process, and production need 

to become significantly more complex [6]. 

Mass customization of design necessitates a firm 

understanding of the relationships between the variables being 

modified and the part specifications. As part complexity 

increases, designing optimal part topologies becomes more 

challenging, whether it's for performance or weight reduction. 

Addressing these challenges often requires substantial time 

and/or computational trade-offs. Yet, ML can help alleviate 

these issues within their specific problem domains. 

This review paper delves into the latest applications of 

Machine Learning (ML) in Additive Manufacturing (AM), 

focusing on regression, classification, and clustering tasks. It 

explores how ML can be leveraged to detect anomalies and 

optimize parameters in AM. The paper also compares the 

performance of various ML algorithms in executing these AM 

tasks to evaluate their effectiveness. It concludes by 

suggesting several potentially fruitful research directions for 

future studies, underscoring the potential of ML to streamline 

traditional AM processes, leading to cost savings, improved 

quality control, faster production times, and enhanced material 

selection. 

Through the application of ML algorithms to tackle the 

complex challenges of AM, researchers and manufacturers can 

create advanced, safer, and more durable medical implants that 

meet the rising demands for these critical products. This paper 

serves as a valuable resource for researchers and 

manufacturers aiming to harness machine learning to advance 

additive manufacturing. 

 

 

2. ADDITIVE MANUFACTURING 

 

This section provides an understanding of the current state 

of AM and the barriers to adoption by outlining the main AM 

processes and use cases. Several distinct AM methods are 

currently available. ASTM categorizes them into seven types 

[10]. 

1. Binder jetting is the selective deposition of a liquid 

bonding agent or adhesive onto powdered materials to bind 

them together. 

2. By melting the materials as they are deposited, DED: 

concentrated thermal energy (such as a laser, electron beam, 

or plasma arc) can fuse the materials. 

3. Material extrusion is the selective dispensing of material 

onto a substrate through an aperture or nozzle. 

4. Material jetting is the selective deposition of material 

droplets. 

5. Powder bed fusion (PBF) uses thermal energy to fuse 

certain powder bed regions.  

6. Sheet lamination: Material sheets are bonded one layer at 

a time to make a portion. 

7. Vat photopolymerization: a vat of liquid photopolymer is 

selectively cured by light-activated polymerisation. 

 

2.1 Areas of applications of additive manufacturing 

 

Additive manufacturing has proven to be an effective 

technology, its adoption has been proven to really function 

effectively in three key areas of which includes. 

 

2.1.1 Enables cost effective manufacturing of more complex 

geometries and shapes 

Traditional manufacturing techniques are capable of 

preserving some complicated shapes and geometries, but they 

fall short of what AM techniques can accomplish. The three 

main uses of the complex geometry feature in AM are part 

consolidation, performance optimization, and creating 

lightweight designs for portable devices. With the use of 

latticization or topology optimization (TO), AM technology 

can produce features that are lightweight. Topological 
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optimization removes material from the design that contributes 

the least to an objective function, such as stiffness, by 

analyzing a piece of the AM based on this function. 

This capability makes it possible to produce parts with 

higher precision, lighter weights, and more complicated part 

shape. A unit cell is spread across the internal volume of a part 

during latticisation. The construction of auxetic structures for 

implants is an excellent example. This can be done to reduce 

mass, but it can also be utilized to produce bespoke material 

qualities or enhance biofunctionality [11]. The production of 

hydraulic manifolds frequently makes advantage of the 

complex geometry feature. Traditional designs could use plugs 

and through holes that have been drilled out to produce the 

required interior channels. 

Unfavorable energy and pressure losses and pieces with 

disproportionately high masses are the results of the study [12]. 

Pressure losses have been minimized by up to 29.6% and part 

mass has been lowered by up to 91% by redesigning manifolds 

for AM without the restrictions of straight, orthogonally 

intersecting channels [13]. Yet, the designer's skill is 

commonly a crucial factor in determining which aspects need 

to be modified and how to progress with that development. 

 

2.1.2 Mass customization 

This feature is widely seen in consumer items, packaging, 

and the medical and dentistry industries [1]. It is typically 

utilized when limited production volumes of devices 

containing valuable components are needed. Because it is 

economical for people to build for a specific purpose, 

customization is crucial in additive manufacturing (AM). The 

fabrication of orthopedic devices, hearing aids, soft tissue 

implants, and other medical equipment are examples of this 

type of application in the medical field [14, 15]. While 

conformal shapes can be usually created into components 

through scanning, planning process of the part's mesostructure 

depends on designer skill and computational complexity tools, 

providing a problem for mass tailored parts because of the 

absence of tools for this operation, according to Liu et al. [16]. 

 

2.1.3 Supply chain disintermediation 

One of the key components of AM is on-site part 

manufacturing, which enables lean and agile manufacturing. 

This allows for the rapid production of spare parts in situations 

where demand is erratic. Hernandez Jr [14] discovered that 

additive manufacturing can greatly reduce supply chain 

interruption for productions anywhere, whereas Liu et al. [16] 

discovered that additive manufacturing can improve supply 

chain efficiency for spare parts in aerospace. This technique 

will lessen the impact of any remote location's supply chain 

disruption on essential gadgets. This is particularly 

advantageous for military and medical purposes. If part 

consistency and geometrical accuracy are improved, the 

manufacture of AM parts can be made to be more repeatable, 

which may increase these benefits. 

 

 

3. MACHINE LEARNING 

 

The purpose of this section is to show the potential of ML 

when applied to the limits of AM by describing the various 

forms of ML and outlining frequent use cases relevant to AM. 

Designing and studying automated systems that can spot 

patterns in data is known as machine learning. ML models can 

be used for performance improvement, defect detection, 

categorization, regression, forecasting, and regression [9]. The 

most crucial factor affecting the performance of the ML model 

is the data utilized to train it. The quality of ML models is 

strongly influenced by the training data used to develop them. 

Supervised learning and unsupervised learning are the two 

categories that machine learning techniques fall under the 

study [17]. The high-level classification offered by supervised 

and unsupervised models can be used to further categorize 

various machine learning methodologies. Two popular 

machine learning (ML) models for classification and 

regression are SVMs and neural networks (NNs). An SVM 

model is used to locate hyperplanes that divide data into 

various classifications. A network of nodes, sometimes known 

as "neurons," connected by weighted edges makes up a neural 

network (NN), a particular kind of computer model. Because 

they can automatically identify the parts in raw data needed 

for precise prediction, NNs are incredibly powerful. 

These AM decision making applications develop a lifecycle 

activity process plan using aggregated ML Data In-Situ 

process monitoring and control post-process validation and 

testing and validation post-process. Observation and 

regulation design suggestions optimization of topology 

tolerancing manufacturability evaluation. Prediction of 

process reaction material choice prediction of performance 

and property behavior improved process. Detection of 

anomalies/defects [18]. Detection of Failures Monitoring the 

condition of machines Control in real time Detecting physical 

cyberattacks Identification of process end points Real-time 

control Metrology of the surface Detection and classification 

of flaws Material Powder particle size distribution 

Composition of the powder The technique of atomization 

Design variables Orientation of wall thickness Angle of 

overhang Parameters of the process Laser energy Scanner 

speed spacing between hatches Logs from machines 

Signatures in the Process Thermal information (melt pool 

depth, width, temperature) Video and optical images [19]. 

Sound waves Parts Company Microstructure Surface 

dimensional analysis Dimensional Tensile Tolerancing and 

Dimensioning (GD&T) the degree of toughness (X-CT). 

Hardness product's resistance to fatigue corrosion 

measurement of uncertainty meets the demands of the design 

procedure and outcomes. For many AM issues where it may 

be challenging to discover features in the input data, ASME 

optimization makes NNs a very good choice [20]. For example, 

deep learning neural networks are very beneficial for 

exceedingly difficult tasks like image and audio processing 

[21]. Several hierarchical layers of processing nodes are used 

by deep learning systems to identify ever more complicated 

features in input data. Deep learning models called 

convolutional neural networks (CNNs) are particularly 

beneficial for processing picture data. A CNN is composed of 

specialized processing layers that operate on matrices that 

represent the image pixels [18]. Edges, textures, and other 

intricate elements that CNNs extract from images are then 

utilized to categorize the image, such as bad or good layer in 

an AM process. 

 

3.1 Supervised learning 

 

Algorithms for supervised learning fit hypotheses to labeled 

training datasets with known outcomes. The unlabeled cases' 

labels can then be predicted using the trained algorithm. There 

are two categories of supervised learning: Classification and 

regression. Regression questions have quantitative labels, like 
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determining the age of a cat based on a picture, whereas 

classification problems have qualitative labels, like whether or 

not an image is of a cat [17]. With huge datasets, neural 

networks (NNs) are a common supervised learning approach. 

These algorithms use layers of interconnected neurons to 

simulate the brain, as seen in Figure 1. The output space that 

NNs commonly map onto has a range of dimensions. The use 

of NNs makes it possible to compute-efficiently infer non-

linear decision boundaries. Additionally, there are more 

specialized NNs for particular application fields. 

Convolutional layers are used, for instance, by convolutional 

neural networks (CNNs) to find characteristics that might be 

present across the input space. The most typical applications 

for CNNs are in computer vision jobs where comparable 

characteristics, like vertical lines, might exist anywhere in the 

input area.

Figure 1. The relationship between the additive manufacturing technique, structure, and property 

3.1.1 Support vector machines (SVM) 

SVMs, which were created initially for classification 

issues, are utilized in supervised learning tasks and may 

additionally be applied to regression. In order to determine 

the connections among information in a space with more 

dimensions and generate a hyperplane decision border 

between classes, they optimize margins. The hyperplane that 

fits the data the best is employed when doing regression 

operations [16]. SVMs perform well with high-dimensional 

data, however they are susceptible to overfitting the training 

data when there are many more features than occurrences. 

Yao et al. [18] further explain that. This is usually avoided 

by carefully choosing a proper kernel function. Support 

vector machines (SVMs) are a type of machine learning 

algorithm that is particularly well-suited to high-

dimensional data. SVMs work by finding the 

optimal boundary, or "hyperplane," that separates data 

into different categories. The goal of SVMs is to 

maximize the margin, or distance, between the hyperplane 

and the nearest data points from each category. 

However, SVMs can be susceptible to overfitting when 

there are many more features than occurrences, also known 

as the "curse of dimensionality." In other words, when the 

number of features or variables is much larger than the 

number of data points, SVMs may fit the training data too 

closely, resulting in poor performance on new, unseen data. 

To avoid overfitting, SVMs use a technique called "kernel 

functions." Kernel functions map input data into a higher-

dimensional feature space, where it may be easier to find a 

linear boundary that separates the data. By carefully selecting 

a kernel function that is appropriate for the data being 

analyzed, SVMs can improve their performance and avoid 

overfitting. SVMs are a powerful machine learning algorithm 

that can be particularly effective with high-dimensional data, 

but proper selection of kernel functions is crucial to avoid 

overfitting and ensure accurate results. 

3.2 Unsupervised learning 

Unsupervised learning issues arise when attempting to 

identify patterns in unlabeled data. These issues are 

frequently more difficult to evaluate because there is no 

classification to compare them to. Clustering and association 

rules are the two unsupervised learning techniques that are 

most often used. Algorithms for unsupervised learning are 

divided into many categories. Data segmentation algorithms, 

commonly referred to as clustering algorithms, separate 

information into categories. The arrangement of the data in 

each cluster makes them more interconnected than the data 

in any other cluster [17]. Market basket analysis, another 

name for association rule analysis, looks for prototype values 

for a feature set with a high probability density at such values. 

Utilizing a reward signal, reinforcement learning seeks to 

maximize an agent's interaction with its environment [6]. 

While supervised learning extrapolates its results from a set 

of known events, reinforcement learning does not employ 

known training settings for the reward signal [6]. Although it 

maximizes the reward signal rather than looking for latent 

structure in the data, reinforcement learning varies from 

unsupervised learning [6]. Another unsupervised learning 

method is principal component analysis (PCA), which 

transforms a dataset of possibly linked variables into a 

principal component set of values via an orthogonal 

transformation. 

When an image is the input data type, a dataset's feature 

count may be rather high. To avoid overcomplicating the task, 

PCA is widely employed as a data pre-processing tool in AM 

to decrease the number of features and hence simplify the 

data. By breaking down the melt pool characteristics into 

more manageable features using PCA, Khanzadeh et al. [22] 

were able to identify nine primary components that together 

account for roughly 99.52% of the data variation. Yang et al. 

[19] provides additional evidence of how to apply PCA to
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extract geometric characteristics in stereolithography for 

mask image projection. The PCA uses 33 image-retrieved 

input features in an application that uses in situ pictures as 

input data [23] to raise SVM accuracy from 89.6% to 90.1%. 

In their 17-feature instance [24], PCA may negatively affect 

the performance of the connected model because too many 

features and too much information is lost. This illustrates 

how PCA may impair [25] SVM performance. In general, 

PCA is a great substitute for normalization for handling 

image-based issues.  

Usman et al. [24] and Dimitrakopoulou-Strauss et al. [25] 

further show that even though PCA is a technique used to 

reduce the number of features in a dataset while retaining as 

much information as possible. The resulting reduced dataset 

can improve the performance of machine learning models, 

including support vector machines (SVMs). 

However, it is possible for PCA to negatively affect the 

performance of a connected model, such as an SVM. This is 

because PCA involves discarding some of the original 

information in the dataset, and if too much information is lost, 

the model may not be able to accurately capture the 

underlying patterns in the data. Additionally, if the reduced 

dataset has too few features, the SVM may not be able to find 

an appropriate boundary that separates the data into different 

categories. 

Therefore, while PCA can be a useful tool for improving 

the performance of machine learning models, it is important 

to carefully consider the amount of information that is being 

discarded and the impact this may have on the performance 

of connected models such as SVMs. In some cases, retaining 

a larger number of features may be necessary to ensure 

optimal performance. 

4. APPLICATION OF ML ALGORITHMS TO AM

A technique for manipulating data is machine learning. 

The many data kinds that can be used and looked at in the 

process structure properties (PSP) relation chain are shown 

in Figure 1. The words "processing parameter" and 

"processing resultant data" are used in the widely used PSP 

relationships to distinguish between relevant data prior to and 

following the procedure. Processing factors, such as extruder 

temperature in material extrusion (ME), laser power in laser 

powder bed fusion (LPBF), printing speed, and layer 

thickness, have a substantial influence on the structure of the 

printed objects and hence rule their performance as well as 

quality. 

Additionally, the intended shape affects the printed 

object's geometric deviation and printing costs. There are 

many more relationships between the data than just these. 

ML models trained on datasets containing at least two types 

of related variables in the PSP relation chain will therefore be 

able to infer using this data. Many ML models are 

constructed in this way. The relationship between the 

additive manufacturing technique, structure, and property is 

shown in Figure 1. 

4.1 Finding errors, predicting quality, and closed-loop 

control 

ML models trained on datasets containing at least two 

types of related variables in the PSP relation chain and it will 

therefore be able to infer using this data. Many ML models 

are constructed in this way. 

1) Labeling these data as defective (or not) based on

experimental findings or human expertise is a typical use of 

ML classification models. The labeled data are then used to 

train supervised learning models in real-time for defect 

detection and quality prediction. 

2) Cluster the anomalous data using unsupervised learning

models, then perform cluster analysis without labeling to find 

errors. 

3) Fine-tune the processing parameters in real-time by

training the ML regression models with data from some real-

time configurable processing parameters. Voltage's level 

control in the MJ process is an example of the third technique 

[26]. 

Their process control framework, which is broken down 

into three main parts, is shown in Figure 2. The droplet is first 

photographed dynamically with a charge-coupled device 

(CCD) camera. In order to train a neural network (NN) ML

model, four droplet properties-satellite, ligament, volume,

and speed are retrieved from the pictures and merged with the

current voltage. Third, to control the activity of the droplet

jetting, the trained machine learning model determines the

suitable voltage level and sends it to the voltage adjustment

system.

Figure 2. AM control framework when NN is applied 

4.2 Control of geometric deviation 

The two most frequent flaws in AM parts are low 

geometric precision and poor surface integrity [27]. Because 

of these geometric imperfections, AM cannot be used in a 

number of industries, including aerospace and medicine [28]. 

In this situation, ML models might detect a geometric issue, 

measure the geometric deviation, and make 

recommendations for resolving the problem. In order to 

provide a framework for compensating for geometric error in 

the L-PBF process, for instance, Francis and Bian [29] used 

a convolutional neural network (CNN) ML model. The 

trained ML model is fed backwards into the CAD model to 

compensate for imperfections. The distortion is produced by 

the trained ML model using the thermal history and a few 

processing parameters as input. As a result, the adjusted CAD 

model will produce parts with much higher geometric 

accuracy. 

4.3 Processing parameters optimization and property 

prediction 

The quality of a part created utilizing a particular set of 

processing parameters won't be known to designers until the 

part is printed. The design process is therefore expensive, 

time-consuming, and uncertain. For instance, some 

prototypes must be created and tested to verify part quality. 

In this situation, a direct correlation between processing 
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variables and part quality would be optimal. Simulations and 

experiments can be used to establish this link, but it is 

impractical to use these two methods to identify the most 

effective processing parameters when there are numerous 

input features. On the other hand, machine learning models 

can be utilized as replacement models to support process 

optimization. One of the epistemic uncertainties in 

uncertainty quantification (UQ) is the uncertainty of the ML 

model [30]. This technique was recently applied by Meng et 

al. [31] to produce process design maps for 316L and 17-4 

PH stainless steels [31]. According to their conclusions, the 

keyhole mode specifications should be modified to take the 

individual metal composition and powder layer thickness into 

account. The process map enables designers to forecast 

property with accuracy and streamline processes. 

4.4 Budget prediction/estimation 

Figure 3. The budget ML prediction charts and flow cycles 

Printing expenses and lead times play a significant role in 

the information that manufacturers, customers, and other 

supply chain participants share. Although its volume can be 

generally calculated by the proposed shape, a more precise 

and effective method is still needed for cost calculation. A 

cost estimating application was recently published by Chan 

et al. [32]. The suggested cost estimation approach is shown 

in Figure 3. 

1) A client submits a manufacturing task with a 3D model;

2) Clustering analysis is utilized to build the input vector

for cost prediction based on comparable jobs, which is 

subsequently incorporated into the trained ML models. 

3) The 3D model will be used as input into simulation

models to calculate expenses, which, if the customer so 

chooses or the training dataset for ML models is small, will 

also serve as training data for ML models. 

4) To determine the ultimate expected cost, the ML and

simulation projections are integrated. 

5) The final prognosis is disclosed to the client.

5. SOME SELECTED ML ALGORITHMS AND HOW

THEY APPLY TO AM

In the previous section, we examined a number of current 

ML to AM applications. In Table 1, these applications are 

divided into various ML task groups. This is crucial to 

consider while choosing ML models for a few reasons: (1) 

Even for the same applications, different ML models may be 

used depending on the type of data. For example, defect 

detection can be accomplished using both supervised 

learning and unsupervised learning. Data gathering is a 

crucial component of using ML in the AM industry. For an 

ML model to produce reliable predictions, there must be 

enough data. With more input features, the amount of training 

data needed grows rapidly as well. However, gathering and 

classifying data frequently entails high experimental, 

computational, and/or personnel expenditures. Therefore, the 

size of an ML assignment should be carefully assessed, 

taking into consideration the amount of accessible data and 

the cost of getting them, before deploying an ML model. The 

various ML algorithms are dissected in this part, along with 

their capabilities, advantages, and disadvantages in various 

additive manufacturing contexts.

Table 1. Some selected ML algorithms and how they apply to AM 

Model applications Models Inputs parameters Outputs References 

Geometric deviations 

control 
Gaussian process Shape parameters Shape deviation [33] 

Parameter optimization for 

processes 
Gaussian process Scan speed and laser power Melt pools [34] 

Parameter optimization for 

processes 
Gaussian process Scan speed and laser power Porosity [34] 

Process parameters 

optimization 
Decision trees Scan speed and laser power Melt pool depth [35] 

Trace geometry prediction Neural Networks 
Powder feeding rate, scan speed 

and laser power 

Deposited trace cross-

section geometrical 

parameter 
[36] 

Property prediction 

Random forest (RF), support 

vector regression, and recurrent 

neural networks 

Layer thickness, material property, 

printing speed, extruder 

temperature 

Tensile strength [37] 

Property prediction 

support vector regression (SVR), 

RF, RT ridge regression, 

AdaBoost, neural networks 

About one hundred and eight input 

features including printing speed, 

extruder temperature as well as 

layer thickness 

Surface smoothness and 

roughness 
[38] 

5.1 Regression applications in AM 

This might be of the logistic or linear form. In jobs 

involving regression, the result of each input is a parameter, 

such as the porosity, efficiency, melt pool depth, mechanical 

quality, and so forth of printed products. The AM algorithm 

first learns from the training dataset the relevance between 

the input and output parameters in order to draw conclusions 
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from a new input to its output. The two main uses of ML 

regression models will be processing parameter optimization 

and property prediction. According to the section, the 

fundamental purpose of ML regression models in the AM 

domain is to produce process maps. The targets in geometric 

deviation control and cost estimations may also be ML 

regression model applications since they are all parameters. 

The regression application to AM has yielded great results 

using artificial neural networks (ANNs), which are 

computational systems made up of massively parallel 

interconnected networks of simple (often adaptive) parts and 

their hierarchical architecture. Biological brain systems serve 

as the inspiration for ANNs, which are computing systems 

composed of massively parallel interconnected networks of 

straightforward (often customizable) components and their 

hierarchical hierarchies. Artificial neural networks rather 

than actual brain systems are referred to as "neural networks" 

or "NN" in this study. One or more input layers, one or more 

hidden layers, and one or more output layers make up a neural 

network. Numerous neurons make up each layer. According 

to the weight of each neuron, information is passed from one 

layer to the next. If neurons propagate continuously, a neural 

network is said to be recurrent; otherwise, it is said to be 

feedforward. When a new observation is added to the NN 

while training, the learning rule optimizes the weight of each 

neuron [39]. The backpropagation (BP) algorithm [40], 

which adjusts the weights based on gradient descent, is the 

most often used learning rule for NN. However, because of 

the BP algorithm's powerful learning capability, NN 

commonly experiences overfitting. This problem can be 

resolved by using either an early halting strategy or 

regularization [41]. Caiazzo and Caggiano [36] employed 30 

training data and BP-NN to predict trace geometry with an 

RMSE of roughly 5%. The performance of BP-NN with 5 to 

10 hidden neurons was examined by Wang et al. [42], who 

found that the number of hidden neurons boosts prediction 

accuracy. Recurrent NN was utilized in the ME process by 

Zhang et al. [37] to predict the tensile strength of 14 printed 

products with an RMSE of less than 2%. The result was the 

NN shown in Figure 4. It was revealed that in the work of 

Zhang et al. [37], new input feature combinations propagate 

forward to estimate tensile strength after training (top). 

During training (bottom), the NN propagates the results of 

each input combination backward to alter the relevance of 

each input feature. They found that recurrent NN 

outperformed random forest and support vector regression 

methods in this application. Overall, NN performed well in 

regression tasks; however, some hyperparameters required to 

be adjusted, such as the number of hidden neurons and layers 

[43-45]. 

Figure 4. The recurrent NN was utilized in the ME process to predict the tensile strength of 14 printed products with an RMSE of 

less than 2% [37] 

5.2 Classification applications in AM 

The quality of a part can be distinguished in the additive 

manufacturing (AM) area using a variety of classes with 

varied criteria, such as defect and non-defect, good or bad 

quality, quality grade assessment on a scale of 1 to 10, and so 

forth. An ML model can identify new input in the future if it 

is trained on certain classification examples using various 

input settings. As a result, there are three ways that ML 

classification models can be applied in the field of AM: 

1) It can forecast defects and help with defect detection in 

real time using in-situ data like pictures and AE; 2) It can 

predict part quality at various processing parameters; and 3) 

It can support quality assessment utilizing printed part 

geometry data. ML classification models can also manage 

geometric deviation because it may be expressed in a variety 

of ways, including translation and rotation. In binary tasks, 

the performance of ML algorithms is typically measured 

using measures such as precision, recall, or F1 score, as well 

as accuracy in multiclass problems. Table 2 highlights recent 

AM categorization applications and ML models. Decision 

trees, support vector machines, and convolutional neural 

networks are popular machine learning (ML) techniques for 

classification tasks (CNN). 

Table 2. Shows the ML model applications on additive manufacturing, by previous researchers 

Model Applications Models Input Parameters Outputs References 

Design feature 

recommendation 

Support vector machines (SVM), 

dendrogram 
Target components 

Recommended AM 

feature 
[18] 

Defect detection 
Regions of interest of spatters, plume 

and melt pool 

Regions of interest of spatters, 

plume and melt pool 

Classes, one two or 

three 
[37] 

Defect detection Bag of words and CNN Insitu images Defect types [46] 

Defect detection Support vector machines(SVM) Spectral intensity graph Is it a defect or not? [37] 

Geometric deviation 

control 
Convolutional neural network (CNN) Voxel grid 

Detect deformation 

type 
[47] 
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One typical ML method for categorizing jobs is decision 

trees [44]. Compared to NN, decision trees are simpler to 

understand. To find errors and assess quality, Khanzadeh et al. 

[22] and Samie et al. [45] employed a variety of ML models,

including DT. DT outperforms other classifiers in both articles

with distinction. DT is a straightforward method that can

tackle classification tasks in the area of AM. It is advised that

you use this model as a baseline for evaluating the

performance of other models, even though it might not be the

best model. Although a support vector machine may handle

multiclass issues, its intended use is for binary classification

issues [44]. Due to the fact that each input-output pair in the

training set consists of a high dimensional input vector that

includes all input features and a target category as an output,

SVM divides the two groups when handling binary problems

using a hyperplane in high dimensional space.

As shown in Table 2, SVM is a popular classifier in AM 

applications. SVM outperforms other algorithms when 

compared to different classifiers [22]. SVM is great at dealing 

with inputs that are just parameters or classes, but it may also 

be used to address image-based problems [45]. Figure 5 [22] 

illustrates a technique for locating flaws in Ti-6Al-4V during 

the L-PBF process using pictures as input. 

Each thermal image that has been classified as porous or not 

has some geometric properties that are retrieved and utilized 

to train machine learning models. SVM was utilized [41] to 

find flaws in in situ photographs. In their article, CNN 

outperforms SVM (92.8% accuracy) while SVM outperforms 

CNN (92.8% accuracy) in this three-group classification test. 

SVM was used by Ye et al. [47] to detect defects in AE, which, 

like pictures, needs a feature extraction process. In this binary 

classification task, SVM (98.01% accuracy) surpassed the 

deep belief network (95.87%). With CT image layers as input, 

Gobert et al. [23] used SVM for defect detection, and their 

improved SVM model has an F1 score of 0.62. SVM is a great 

option overall for classification issues. 

Figure 5. The steps involved in using Ti-6Al4V in the L-PBF 

process, from thermal imaging as the input to porosity 

predictions as the output [22] 

6. CONCLUSIONS

This review article examines the supervised and 

unsupervised learning tasks for the most recent ML 

applications in the area of AM. The associated applications as 

well as a few well-known approaches are explained for each 

unique sort of work, such as regression, classification, 

clustering, and PCA, and the potency of a few well-known 

algorithms is evaluated. 

In AM design, ML has been used to speed up tools, 

investigate novel materials, pinpoint correlations between 

properties and structures, and support inexperienced designers. 

The capabilities of TO acceleration and material exploration 

need to be expanded in order to work with larger design spaces 

or finer spatial resolutions. Functional lattice design may 

benefit from property-structure interactions, however current 

implementations lack appropriate transitional areas and may 

be too low for particular businesses. Additionally, there are not 

enough case studies to support the continued use of these 

methods. While functional lattice design systems and design 

feature recommenders both need more case studies to be 

adopted, the former needs curation to stay relevant while the 

latter needs more case studies to be generated. In the AM 

process, process parameter optimization takes up the majority 

of work. These are successful at optimizing process variables 

for a single quality indicator or a number of them. Despite this, 

these optimisers are machine-specific, and no research that 

make an effort to create more universal models have been 

found. 

7. RECOMMENDATIONS 

Although ML has been developing for a while, it uses in the 

area of AM are now gaining expansion. Among these are tools 

for forecasting attributes, finding flaws, minimizing geometric 

deviations, and improving processing parameters. ML models 

must first comprehend the relationship between the processing 

parameters and the property utilizing existing data in order to 

make recommendations for enhancing these processing 

parameters [48]. ML models can forecast geometric deviation 

based on the desired geometry after training and provide 

solutions to correct for geometric errors. Third, machine 

learning models are effective at handling real-time defect 

identification, acoustic emission during printing, and in-situ 

images. However, the processing parameter-process-

microstructure-property map could only be utilized to retrieve 

a subset of the data, which has only been used in part. 

Accordingly, the main topics of research in this emerging 

discipline will be to look into more ML applications, make use 

of more data collection methods, and develop better 

algorithms. 

Second, current research has identified active learning as 

supervised learning's crucial yet lacking functionality. 

Labeling the outcome of each input data point often costs more 

in the AM field in terms of time, money, and effort because it 

requires doing an experiment or a simulation at each input 

setting to make this discovery. Active learning is a method that 

can help with this problem. It is common practice in the most 

recent literature to first collect enough input-output pairs and 

then use them to train ML models without further seeking or 

categorizing new data. However, active learning enables ML 

models to execute interactive labeling queries for fresh data 

during training to enhance performance. ML models may 

therefore work effectively with less data points. Therefore, 

active learning is strongly advised if a dataset to train the ML 

model has not yet been acquired. 
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