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Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles 

in controlling prosthetic and upper limb orthotic devices, as well as in assessing 

electrical muscle activity for various biomedical engineering and rehabilitation 

applications. In this study, an advanced discrimination system is proposed for the 

identification of seven distinct shoulder girdle motions, aimed at improving prosthesis 

control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TD-

PSD) is employed to enhance motion recognition. Subsequently, the Spectral 

Regression (SR) method is utilized to reduce the dimensionality of the extracted 

features. A comparative analysis is conducted between the Linear Discriminant 

Analysis (LDA) classifier and a Deep Learning (DL) approach employing the Long 

Short-Term Memory (LSTM) classifier to evaluate the classification accuracy of the 

different motions. Experimental results demonstrate that the LSTM classifier 

outperforms the LDA-based approach in gesture recognition, thereby offering a more 

effective solution for prosthesis control. 
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1. INTRODUCTION

Human forearm loss severely restricts daily activities and 

interactions for people who have undergone upper limb 

amputations [1]. Myoelectric control can be used to restore the 

ability to interact with the real world [2, 3] by deriving control 

instructions for powered upper-limb prosthetics from 

electromyogram (EMG) data produced by human muscles. 

Using a pattern recognition framework, the obtained EMG 

signals are typically classified into one of many predefined 

sets of forearm movements [4]. Furthermore, due to the 

complexity of detecting phantom movement in the absence of 

a stump and biosensor-associated limitations such as sensor 

placement and difficulty using wearables, the design space for 

shoulder disarticulation prostheses is limited [5]. Additional 

insight on prosthesis sensors and control architectures can be 

found in survey papers by Nsugbe [6] and Fougner et al. [7]. 

Machine learning algorithms and approaches have been 

presented as a superior method to conventional methods for 

improving system performance in signal recognition and have 

been used to develop novel bioelectrical signal processing 

techniques and methods for motion pattern recognition [8]. 

However, for hand gesture and elbow motion pattern 

detection, these machine learning approaches typically 

employ multi-channel EMG signal processing and pattern 

recognition algorithms [9]. Parajuli et al. [10] addressed major 

challenges in contemporary artificial intelligence dynamics 

and concepts arising from the EMG-PR prosthetic control 

approach. Factors examined included changes in contractile 

muscle forces, subject movement, and electrode displacement 

to determine their effects on prosthesis design. Muscle 

contraction force and subject movement, for example, were 

found to detrimentally impact EMG-Pattern Recognition 

(PR)-enabled prosthetic performance, with error values of 

approximately 17.00% and 8.98%, respectively. The authors 

therefore focused their investigations on the most significant 

issues and best practices in intelligent prosthetics [10]. 

According to Moradi and Boostani, a feature set should have 

the highest possible class separability, be as robust as practical 

in a noisy environment, and be low in complexity [11]. This 

was achieved by developing an EMG-based controller using 

various temporal and spectral feature extraction techniques [4, 

12]. Hudgins et al. [4], among the first to examine time-

domain features in myoelectric control, demonstrated the 

usefulness of basic features such as mean absolute value, slope 

sign changes, zero crossings, mean absolute value slope, and 

waveform length. Additionally, techniques such as Root-Mean 

Square, Willison amplitude, Integral Absolute Value, log 

detectors, V-order, and Variance have been employed by 

many research groups [12, 13]. 

One benefit of using time-domain features is the simplicity 

of feature extraction. While features extracted using time-

domain methods have shown success and are suitable for real-

time control, there is still debate in the literature over whether 

pattern recognition results using these feature vectors provide 

high classification accuracies [13]. This stems from the fact 

that such approaches assume the EMG signal to be stationary 

despite its non-stationary nature [14]. As a result, researchers' 

attention turned to spectral moments and features derived from 

spectral parameters, as well as autoregressive models [15]. 

Examples of time-frequency representations include short-

time Fourier transforms, wavelet transforms, continuous 
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wavelet transforms, wavelet packet transforms, Wigner-Ville 

distributions, and Choi-Williams distributions [16, 17]. 

Pattern recognition (PR) is more robust to force fluctuations 

when employing the Time-Dependent Power Spectrum 

Descriptor (TD-PSD) with force magnitude-based training 

compared to most dimensionality reduction techniques [18]. 

Al-Timemy et al. presented a study to develop a technique 

with minimal error rates and faster response times than other 

test-based methods. EMG signals were collected from a group 

of amputees. The study found that TD-PSD could be a suitable 

alternative to feature extraction (FE) approaches in PR-based 

implementations [19]. 

Khushaba et al. [20] proposed a spatiotemporal descriptor 

for TSDs that accepted a set of EMG features gathered from 

various healthy and amputated limbs on high-density (HD) 

electrode grids to implement multiple degrees of freedom 

(finger and hand movements). Sharba et al. [21], on the other 

hand, used a set of widely used EMG sensors that monitor 

electrical signals associated with contractile muscle activity 

and other data acquisition methods. Accelerometers (Acc) 

were used to quantify skeletal movements resulting from 

movements of specific shoulder gestures as well as low-

frequency displacements resulting from anatomical 

contractions. 

Modern artificial intelligence techniques such as Deep 

Learning and unsupervised learning are applied in this field. 

Deep Learning can be thought of as artificial intelligence 

functions that are synergistic with human ways of thinking 

[22]. Recurrent neural networks (RNNs) are interconnected 

artificial networks that use sequentially or time-dependent data 

where the input to the current layer is the output of the previous 

layer. However, standard recurrent networks struggle with 

vanishing gradients caused by the steady decline of gradient 

backpropagation, making learning long data sequences 

difficult. 

Long Short-Term Memory (LSTM) units provide a solution 

to these problems. They solve this by storing long time input 

signal steps during firing time and are resilient to arbitrary data 

input [23]. Qiao and Li [24] presented a pattern recognition 

method for an EMG signal-based LSTM model with PCA 

dimensionality reduction. They compared it to well-known 

pattern recognition methods such as SVM and random forest 

algorithms. They found that the PCA-LSTM approach 

outperformed other algorithms in terms of recognition rate and 

efficiency. It solves the "curse of dimensionality" problem and 

improves EMG signal recognition rates, laying the foundation 

for practical implementation of the algorithm model. Dao [25] 

used transfer learning to build and test an LSTM network for 

skeletal muscle force predictions. Also, with the help of 

LSTM, Chen et al. [26] demonstrated how their continuous 

estimation model for upper limb joint angles increased 

estimation accuracy. 

A myoelectric prosthetic arm might be able to conduct a 

variety of shoulder motions while minimizing cognitive load 

if it has the ability to recognize shoulder motions and is 

combined with therapy-related neuro muscle programming. 

The following are the significant contribution of the study, 

which have been highlighted and summarized: 

1). by taking Time Dependent Power Spectrum Descriptors 

(TDP-SD) to extract features which Combines six features 

such as Roots square zero-ordered moments (�̅�𝟎), Root squared 

2nd-order moment ( �̅�2 ) and 4th-order moment ( �̅�4 )  

Sparseness  Irregularity Factor (IF)  Waveform Length Ratio 

(WL) to extract 48-dimensional feature vectors from each 

subject (amputee or healthy person). 

2). we explore the effects of LSTM and LDA classifiers on 

analysis of testing error. 

 

 

2. METHODOLOGY 

 

This work used a variety of approaches and strategies to 

extract features from bio-signals, reduce the dimensionality of 

extracted features, and estimate the motion class. Below is a 

brief description of these strategies and procedures. 

 

2.1 Timely-Depend Powers Spectrums Descriptor (TD-

PSDs) concept 

 

The EMG signal during a specific iteration could be 

described as a relationship of frequencies X[k] using Discrete-

Fourier-transformation (DFT) with the availability of the 

processed item of the EMGs input indicated as x[j], of j=1, 

2 ...N, N represents the length and a sampler frequencies (fs)Hz. 

The first step in the feature extraction procedure is to 

remember Parsval's theory, which asserts that the summation 

of the squares of a relationship and its transform is identical 

[19] . 

 

∑ |𝑥[𝑗]|2𝑁−1
𝑗=0 =

1

𝑁
∑ |𝑋[𝑘]𝑋∗[𝑘]|𝑁−1
𝑘=0 = ∑ 𝑝[𝑘]𝑁−1

𝑘=0   (1) 

 

where, in the equation above, p[k] stands for the phase 

excluded power spectrum. Using [k] multiplied by the X[k] 

conjugate and divided by N, the frequency index is 

determined, where p[k] denotes the phase-excluded power 

spectrograph, this indicates that X[k] has a conjugate, X*[k], 

that is divided by N, compounded by k, and frequency index. 

The Fourier transformation's entire definition of frequency is 

frequently recognized as being symmetrically based in terms 

of nullified frequencies; that is, it contains comparable parts 

extensive to both positive and negative frequencies [27]. This 

symmetry is absent throughout the range, considering both 

positively and negatively sampled signals. Admittance to 

spectrum powers in the time-space is yet restricted. As 

indicated by the idea of a single-minute m of the request n p[k] 

of power spectrum thickness, all unpredictable minutes are 

likewise zero by the recurrence dispersion model's measurable 

technique [19]. 

 

𝑚𝑛 = ∑ 𝑘𝑛𝑝[𝑘]𝑁−1
𝑘=0   (2) 

 

For non-zero values of n, the Fourier transform's time-

differentiation property is used, and when n is zero, Parseval's 

theorem in Eq. (1) is applied. The spectrum multiplied by k 

raised to the nth power equals the nth derivative of a function 

in the time domain denoted as ∆𝑛 designated as for discrete-

time signals, according to this condition [19]. 

 

𝐹[∆𝑛𝑥[𝑗]] = 𝑘𝑛𝑋[𝑘]  (3) 

 
To that end, the following features are defined in this work, 

as shown in Figure 1. 

The scheme in Figure 1 states that the specified six 

attributes are first retrieved from each EMG record x and then 

formed into a vector a= [a1... a6]. Then, a component vector a 

(as per EMG records) and a component vector b are obtained 

by subtracting an extra component vector b= [b1... b6] from a 
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logarithmically weighted variant log (x2) (from a nonlinear 

weighted rendition of the EMG record), each having six parts. 

The TD-PSD features used in this study are as follows: 

 

 
 

Figure 1. Block diagram for TD-PSD feature extraction 

process 

 

a) Root squared zero-order moment (�̅�𝟎): 

The following feature displays the overall power in the 

frequency domain, or just the force of muscle contraction. 

 

�̅�𝟎 = √∑ 𝑥[𝑗]2𝑁−1
𝑗=0   (4) 

 

To normalize the resultant zero-order moments, add up all 

of the zero-order moments from all channels. 

 

b) Second and fourth-order root squared moments: 

The second moment can be thought of as a power, but 

according to Hjorth [27], it is a modified spectrum k2p[k], 

which corresponds to a frequency function [19]. 

 

�̅�𝟐 = √∑ 𝑘2𝑃[𝑘]𝑁−1
𝑘=0  = √

1

𝑁
∑ (𝑘𝑋[𝑘])2𝑁−1
𝑘=0 =

√∑ (∆𝑥[𝑗])2𝑁−1
𝑗=0   

(5) 

 

A repetition of this procedure gives the moment. 

 

�̅�𝟒 = √∑ 𝑘4𝑝[𝑘]𝑁−1
𝑘=0 = √∑ (∆2𝑥[𝑗])2𝑁−1

𝑗=0   (6) 

 

In the current circumstance, requiring the second and fourth 

derivative values of the sign diminishes the overall signal 

energy; therefore, we utilize a power change to standardize the 

scope of m0, m2 and m4 to lessen the impact of commotion on 

all minutes based highlights, as in Eq. (7) [19]: 

 

𝒎𝟎 =
�̅�0
𝜆

𝜆

𝒎𝟐 =
�̅�2
𝜆

𝜆

𝒎𝟒 =
�̅�4
𝜆

𝜆 }
 
 

 
 

  (7) 

With a 0.1 empirical value. The first three variables' 

extracted features are then defined as [19]: 

 

𝒇𝟏 = log (𝑚0)
𝒇𝟐 = log (𝑚0 −𝑚2)

𝑓4 = log (𝑚0 −𝑚4)
}  (8) 

 

a) Sparseness:  

This property quantifies the amount of energy in a vector 

and is expressed as an equation with only a few elements (9) 

[19]: 

 

𝒇4 = log (
𝑚0

√𝑚0  −𝑚2  √𝑚0−𝑚4
)  (9) 

 

Due to differentiation, m2 and m4 both equaling 0 and 

log(m0/m0), are vectors with entire components with a 

sparseness measurement that equals zero in which both m2 and 

m4 equal zero as well as log(m0/m0). In contrast, it should be 

more than zero for the remainder of sparsity levels [18]. 

 

b) Irregularities Factors (IF):  

The ratio of vertical zeroed intersections to peak numbers is 

known as a measure. According to the study [28]  an arbitrary 

number of signals with upward zero-padded crossings (ZC) 

and multiple peaks (NP) could be entirely represented by their 

spectrum moments; the characteristic that corresponds to this 

is expressed as [19]: 

 

𝒇𝟓 =
𝑍𝐶

𝑁𝑃
= 

√
𝑚2
𝑚0

√
𝑚4
𝑚2

= √
𝑚2
2

𝑚0𝑚4
=

𝑚2

√𝑚0𝑚4
  (10) 

 

c) Waveform Length Ratio (WL): 

We express our WL features as the ratios of the first 

derivative's waveform lengths to the second derivative's 

waveform length. The waveform length attributes are defined 

as the sum of the absolutes signal derivative. 

 

𝒇𝟔 = log (
∑ |Δ𝑥|𝑁−1
𝑗=0

∑ |Δ2𝑥|𝑁−1
𝑗=0

)  (11) 

 

The waveform length characteristic was crucial for the 

EMG activity classification [29]. The suggested WL features, 

on the contrary, build on previous work to provide an 

amplitude-invariant feature. 

The last element, which are six recovered highlights for 

every EMG channel, are later separated in the direction of 

couple of vectors, as specified below: 

 

𝑓𝑖 =
−2𝑎𝑖𝑏𝑖

𝑎𝑖
2+𝑏𝑖

2  i = 1, 2, 3, 4, 5, 6 (12) 

 

The categorization process employs the attributes 

formulated by generated vectors f. These characteristics can be 

viewed as a form of EMG activity representation. In contrast 

to the famous sound spectral characteristics (a nonlinearly 

spectral of-a-spectral or, depending on implementation, the 

inversed Fast Fourier Transform(FFTs)of the logarithms of 

spectral [18]. 
 

2.2 Dimensionality reduction Spectral Regression (SR) 

method 
 

Dimensionality reduction has been a significant challenge 
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in several data processing domains, like pattern recognition, 

machine learning, data mining, and information retrieval; 

Algorithms for supervised machine learning perform worse 

when confronted with a large number of features that are not 

necessary to predict the desired outcome (i.e., prediction 

accuracy).Extracting a few valuable features is one of the 

essential subjects in knowledge discovery, machine learning, 

pattern recognition, and computer vision. Using 

dimensionality reduction techniques is a common approach to 

solving this problem [30]. Traditional manifold learning 

methods, like the locally linear embedding, Laplacian Eigen 

map, and Isomap, provide training sample embedding results. 

To overcome the problem of out- of-sample extension, SR 

establishes a model of regression that can prevent the Eigen-

decomposition of the dense matrices, which solves the 

difficulty of learning embedded functions [31]. The search for 

embedded functions that minimize fitness function in 

traditional spectral dimensionality reduction algorithms 

entails Eigen decomposition of the dense measures, having a 

high computational cost in time and memory. Instead of 

computing the density matrix of features, the SR algorithms 

employ the least-square approach to optimal projection 

direction, allowing them to learn significantly faster. To 

explore the structure of the underlying geometry and learn 

responses with given data, a G affinity graph with labeled and 

un labelled points was created. The embedding function is then 

realized using conventional regression using these 

responses[32]. 

 

2.3 Long Short-Term Memory (LSTM) concepts 

 

Long Short-Term Memory (LSTM) is one type of neural 

network belonging to the RNN family that more accurately 

models chronologically based sequence and longly-ranged 

relationships than traditional RNN nets [33]. LSTM networks 

are a type of RNN created in response to the failure of RNNs. 

RNN is a network that works on the current input while also 

considering the previous output (feedback) and temporarily 

storing it in memory (short-term memory)[34]. LSTM has 

been constructed in such a way that it eliminates the vanishing 

gradient problem while leaving the training model unchanged. 

Long temporal gaps are bridged in specific situations using 

LSTMs, which can also manage distributed representations, 

noise, and continual values. Additionally, no requirement to 

preserve a limited number of cases from the beginning with 

LSTMs, as in Hidden Markova Model (HMM). LSTMs offer 

input and output biases in addition to a number of other 

parameters like learning rates. Consequently, no accurate 

modification is needed. LSTM minimizes the intricacy of 

updating each weight to O (1), like Back Propagation Through 

Time (BPTT), which is an advantage [35]. 

 

2.3.1 Exploding and vanishing gradients problem 

The fundamental objective of the training process is to 

reduce the amount of losses regarding cost or error seen in the 

output. We calculate the gradient, or loss, for a given set of 

weights, make necessary adjustments and repeat until we have 

the best set of weights with the least amount of loss. The term 

"backtracking" refers to the process of going backwards [36]. 

Occasionally, the gradient is so small that it is nearly 

unnoticeable. It is worth noting that specific parts in 

subsequent levels influence the growth of layers. The gradient 

that is obtained will be even less if these parts are small (<1). 

The scaling effect is the name for this process. A tiny number 

between 0.1 and 0.001 produces a smaller value when the 

learning rate is multiplied by this gradient [37]. As a result, the 

weight changes are minor, and the output is nearly identical to 

previously. Similarly, if the gradients are very large due to 

high component values, the weights are changed to a value that 

is not ideal. The problem of bursting gradients is a term used 

to describe this situation. To eliminate this scaling impact, the 

neural network unit was re-built with a one-to-one scaling 

factor. Several gating units known as LSTM were then added 

to the cell [38].  

  

2.4 Linear Discriminate Analysis (LDA) method 

 

The goal of LDA is to create a new variable by combining 

the basic prediction methods. In order to do this, the 

predefined bunches in the new variables are enhanced to 

provide clearer distinctions between them. The objective is to 

join the forecast scores into a solitary composite variable 

named the discriminant scores. This is a data compression 

procedure that diminishes the p-layered indicators to one 

layered line. Each class should have a typical distribution of 

discriminant scores at the end of the cycle. The overlapping 

degree of the discriminants scores distribution could be 

utilised to evaluate the technique's effectiveness in practice. 

The following discriminant function is used to obtain 

discriminant scores [39]: 

 

𝑫 = 𝑤1𝑍1 + 𝑤2𝑍2 + 𝑤3𝑍3 +⋯𝑤𝑝𝑍𝑝 (13) 

 

As a result, discriminant scores are weighted using linear 

combinations of predictors. To maximize the variations in 

mean discriminant scores between classes, weights are 

calculated. In general, weights will be higher for predictors 

with large differences between class means, while weights will 

be lower for predictors with similar class means [40]. 

 

 

3. THE PROPOSED RECOGNITION SYSTEM 

 

The proposed work scheme for Recognition of different 

shoulder motions for Prosthesis Control by Time-Dependent 

Power Spectrum includes signals Pre-Processing (cross- 

validation, segmentation) stage, features extraction, 

dimensionality reduction  and classification stages. Cross-

validation of training and test data  followed by segmentation 

with an overlap window size  are utilized to pre-propose the 

provided signals  as shown in Figure 2. After that  features 

extraction using Time-Dependent Power Spectrum Descriptor 

(TD-PSD) by measuring six statistical functions for each 

extracted dimension are presented. Following the SR 

dimension reduction presentation  the LDA and LSTM 

classifiers are finally used to identify seven other shoulder 
girdle motions for prosthesis control. These steps are described 

in further detail in the subsections that follow: 

 

3.1 Input signal  

 

This section explains the basic concepts behind the details 

of data collection used by Sharba et al. [21]. For the 

classification of shoulder girdle motions, information was 

collected from four amputee subjects and six subjects with 

intact limbs, a set of seven movements was chosen: downward 

rotation, depression, upward rotation, elevation, protraction, 

retraction, and rest. five EMG channels were recorded in the 
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data. Furthermore, a 3-axis accelerometer sensor (ADXL335) 

was mounted on the top of the shoulder to give three 

accelerometers (Acc) channels. Similar to the EMG sensor, the 

data was captured using the USB 6009 acquisition system and 

transmitted at a rate of 1000 Hz per second. Its scale range was 

3g, its bandwidth ranged from 0.5 to 1600 Hz, and its power 

supply requirements were 1.8 to 3.6 V [21]. In the Figure 3(a) 

the locations of the recorded five channels of the EMG signal 

and three Acc channels are shown for an intact-limbed subject, 

and the same channels sites for the amputee subject are shown 

in Figure 3(b). 

 

 
 

Figure 2. The general design of the proposed work scheme 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Demonstrating a sample of the precise electrode 

placements for a person with intact limbs; (b) Shows an 

illustration of the precise electrode placement for the 

amputee subject's muscles 

3.2 Pre-processing for signal 

 

For the training and testing phases of machine learning  

sampling is crucial. An unbalanced data sampling can directly 

affect the results of training and testing. Consequently  the 

entire dataset should be represented by both the training and 

test sets of data. The success rate is primarily affected by how 

much training and testing is conducted. In the literature  

different training test ratios have been employed [41]. Cross-

validation with one trail left out was used in this study. The 

final individual trail was used to test the classifier and 

determined the classification error rate after seven trails for 

each fold were used to train the classifier. We used this 

procedure eight times in total to determine the average error 

rates over the eight runs. 

a) Cross- validation  

A machine-learning model's performance can be assessed 

and tested using the cross-validation (CV) technique (or 

accuracy). It requires setting aside a section of a dataset on 

which the model has not yet been trained. On this sample  the 

model is then evaluated to see how well it performs. However  

it is employed to avoid overfitting a model  particularly when 

there is a scarcity of data. It's also referred to as out-of-sample 

testing or rotation estimation  and it's most frequently utilized 

when the model's objective is prediction [27]. The standard 

method is as follows: 

1. Shuffle the dataset at random. 

2. Split up the data into a total of k groups 

3. for each unique group: 

- The group should be used as a holdout or test data set  

Moreover  the other groups should be used as Training Data 

sets. 

- On the training set  put together a model  and then test it 

on the test set. 

- The model is discarded  but the evaluation result is kept. 

4. Use the sample of model evaluation ratings to summarize 

the model's performance. 

It is crucial that every observation in the data sample is 

given a specific category and stays there throughout the 

process. This implies that each sample has an equal probability 

of being utilized in the hold-out set and that the model will be 

trained k times [42]. Cross-validation was applied  as shown 

in Figure 4.  

 

 
 

Figure 4. Examples of K-fold cross-validation dataset 

partitioning 

 
b) Segmentation 

The raw signals are gathered at sample rates of 1 kHz. 150 

ms for the windowing size and 50 ms for the windowing 

increment  data segmentation was also carried out using an 

overlapping segmentation approach. EMG signals from five 

channels are seen in Figure 5  and the three channels of the 

Acc. Signals are shown in Figure 6. 
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CH1 

 
CH2 

 
CH3 

 
CH4 

 
CH5 

 
 

 

Figure 5. Examples of EMG data (5 Channels) in the pre-

processing condition 

CH6 

 
CH7 

 
CH8 

 
 

Figure 6. Examples of 3-axis accelerometer sensor data (3 

channels) in pre-processing condition 

 

3.3 Time-Dependent Power Spectrum Descriptors (TD-

PSD) based features extraction 

 

Each channel's data is initially split into frames with a 

windowing size of 150 ms and an overlap of 50 ms to 

guarantee the durability of each frame. Six feature groups are 

then generated from the channels (i.e.  8-dimensions)  

including the Root squared zero-order moment (�̅�0 )  Root 

squared second (�̅�2) and fourth-order moments (�̅�4) (i.e.  16-

dimension with first and second derivative values)  Sparseness 

(8-dimension)  Irregularity Factor (i.e.  F1 with 8-dimension)  

Waveform Length Ratio (WL)  (i.e.  8-dimension). The 

extracted features have 48 total dimensions. 

 

 

4. DIMENSIONALITY REDUCTION USING 

SPECTRAL REGRESSION (SR) METHOD 

 

SR is the complex linear time with respect to the number of 

features and data samples. In addition to the data matrix, it 

only requires very little additional memory. As a result, scaling 

SR to large, high-dimensional data sets is simple. The benefits 

of using SR rather than just applying LDA directly are evident 
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from the computational complexity analysis [43]. 

Recently, spectral techniques have become a potent tool for 

manifold learning and dimensionality reduction. These 

techniques make the low dimensional structure of the high 

dimensional data visible by using the data found in the 

eigenvectors of a data affinity (item-item similarity) matrix 

[44]. This article introduces the spectral regression framework 

for dimension reduction (SR). The challenge presented by SR 

is how to learn the modulation function within a regression 

framework without dielectricizing dense matrices. 

Additionally, since regression is a fundamental building block, 

various regulator types can be easily incorporated into our 

crafting framework, making it more adaptable. There are three 

conditions in which SR can be done: supervised, unsupervised, 

and semi-supervised. It can effectively use labelled and 

unlabelled points to find the data's intrinsic characteristic 

structure [45]. 

The input parameters to this function are a data matrix 

(feature training, feature testing) A sample vector, or Struct 

value in Matlab, is contained in each row of data. Options for 

the fields include a column vector of label information for each 

data point (gnd), as well as how many dimensions there are 

(Reduced Dim) Reduced Dim=c-1 if (gnd) is given, where c 

represents the number of classes, and on the otherwise Default 

Reduced Dim equal thirty [46]. 

5. MOTION CLASSIFICATION METHODS

The accuracy and selection time of various classifier 

variants were examined for this study using two different 

classification methods, as detailed in the following subsections. 

A. Estimating class motion using LDA classifier

The LDA classification framework  which was applied in

this study  assumes gaussian distribution of the data. The 

discriminant function for the LDA is expressed by equation 

(18). 

B. Estimating class motion using LSTM classifier

The proposed LSTM model has N hidden layers and 192

cell units to categorize seven hand and wrist movements. A 

fully connected layer follows these layers. With a mini-batch 

size of 170  an Adam optimizer-learning rate of 0.001  a keep 

probability of 0.25  dropout regularization  and 30 iterations  

the LSTM model was trained and verified. Gradient clipping 

was implemented to enhance training by preventing gradient 

explosions during back propagation. 

6. EXPERIMENTAL RESULTS

6.1 Experimental setup 

Using the overlapping segmentation method  the data was 

first divided into 50 ms increments with a window size of 150 

ms. In addition  a proposed model  which has been trained over 

all the available data (10 subjects) using an 8-fold cross-

subject validation scheme. The remaining individual trails 

were used to test classifiers and calculate classification error 

rates. This procedure has been repeated eight times. After 

completing the eight runs  the average error rate for those eight 

trials was calculated. 

6.2 Performance evaluation 

The suggested model's performance is assessed in this study 

using the classification error ratio (CER), which is derived 

using Eq. (19): 

Err= (1-(sum (YPred==YTest). /numel 

(YTest)))*100 
(19) 

where, model predicted and YPred and YTest denote 

experimental feature testing, respectively. 

6.3 Testing error using based on LDA classifier 

TD-PSD-like features, including the square root of zero 

order moments, second and fourth square root moments, 

variance, irregularity factor (IF), and wavelength ratio (WL), 

were used in the first experiment. In addition, eight different 

values were tested for each fold (cross-validation). The 

average test error achieved for each SR (dimensionality 

reduction) is calculated based on the objective value using an 

LDA classifier, as shown in Figure 7. In the present 

experiments, the experiment was conducted on six subjects 

with healthy limbs with average classification error  from 

9.48% to 15.86%. 

Figure 7. Classification error for six healthy subjects with 

LDA classifier 

Figure 8. Classification error for four amputees with LDA 

classifier 

The second experiment is conducted using the group of 

features as TD-PSD. In addition; eight different values for 
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each fold (cross-validation) have been tested. The average test 

error achieved for each SR (dimensionality reduction) is 

calculated based on the objective value using an LDA 

classifier, as shown in Figure 8. In the present experiments, the 

experiment was conducted on four subjects with amputee 

subjects with average classification error  from 13.12% to 

20.39%. 

6.4 Testing error using based on LSTM classifier 

A feature set similar to TD-PSD was used in the third 

experiment, including the square roots of zero order moments, 

second and fourth square root moments, variance, irregularity 

factor (IF), and wavelength ratio (WL). In addition, eight 

different values were tested for each fold (cross-validation). 

The average test error achieved for each SR (dimensionality 

reduction) is calculated based on the objective value using an 

LSTM classifier, as shown in Figure 9. In the present 

experiments, the experiment was conducted on six subjects 

with healthy limbs with average classification error  from 

8.04% to 14.22%. 

Figure 9. Classification error for six intact subjects with 

LSTM classifier 

Figure 10. Classification error for four amputee subjects with 

LSTM classifier 

Again, the fourth experiment is conducted using the group 

of features as TD-PSD. In addition; eight different values for 

each fold (cross-validation) have been tested. The average test 

error achieved for each SR (dimensionality reduction) is 

calculated based on the objective value using an LDA 

classifier, as shown in Figure 10. In the present experiments, 

the experiment was conducted on four subjects with amputee 

subjects with average classification error from 11.82% to 

18.65%. 

The last experiment compared LSTM and LDA classifiers 

on the achieved testing error for models based on TD-PSD 

feature extraction with SR dimensionality reduction. Figure 11 

illustrates how the LSTM and LDA classifier types affect 

classification accuracy  as shown by the fact that using the 

LSTM classifier causes a reduction in the value of 

classification error. LDA classifier's average classification 

error is 14.47%  while LSTM classifier's average classification 

error is 12.52%. 

Figure 11. Classification error for 10 subjects with LSTM 

and LDA classifier 

7. DISCUSSION

The mean classification errors for 10 subjects with intact-

limbs of 11.24% and amputees of 14.43% dispalyed in Figure 

11, the results showed that the LSTM classifier outperformed 

the LDA classifier for the categorization of the seven classes 

of the shoulder girdle. The classification error for amputees 

was equal to 17.83% and was calculated as 12.23% for 

subjects with intact limbs. According to Figure 7, the second 

subject had lower mean classification errors than the other five 

subjects when employing EMG, an accelerometer, and an 

LDA classifier to classify six intact-limbed participants. 

Figure 8 demonstrates that the mean classification error of the 

fourth amputee subject is lower than that of the other three 

amputee subjects. Figure 9 and Figure 10 display, the mean 

classification errors for six subjects with intact limbs and four 

amputee subjects, respectively, using the LSTM classifier. 

Less classification applies to the subject with intact limbs 

(Subject 2) and the amputee (Amputee 1). 

The most accurate classification of shoulder girdle motions 

was determined in the final study in this paper. The outcomes 

for subjects with intact limbs and amputees are shown in 

Figure 11. Some intriguing findings came from looking at the 

LDA and LSTM classifiers. When using LSTM  the 

classification errors were reduced from 14.47% for LDA to 

12.52%  which is comparable to a usable PR system. 

8. CONCLUSIONS

This study examined seven different types of shoulder 
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girdle motions in high-level upper-limb amputees using 

accelerometer and EMG signals. These results will help 

researchers decide whether shoulder girdle motions are 

suitable for upper-limb amputees using PR systems as non-

invasive and natural control signals. The regions of interest 

help to concentrate Time-Dependent Power Spectrum 

Descriptors (TD-PSD) feature extraction with SR 

dimensionality reduction for EMG and accelerometer signal 

based conventional machine learning techniques such as LDA 

classifier and Deep Learning approaches such as LSTM with 

signal fusion to improve the efficiency of hand and wrist 

motion control. The experimental findings showed that the 

proposed Pattern Recognition system could identify seven 

shoulder girdle motions with a classification testing error of 

12.52% for six subjects with intact limbs and four amputees 

using SR dimensionality reduction with LSTM classifier and 

14.47% for the same feature extraction method and 

dimensionality reduction with LDA classifier. This reflects the 

nature of LSTM models that ability to capture long-term 

dependency and enhanced expansive power. In contrast  the 

LDA classifier works in less manner. However  as the number 

of features increases  the task becomes more complex. We 

recommend transferring the movements of the prosthetic hand 

to the shoulder girdle in order to control a prosthetic arm in the 

future and improve everyday life for those with severe upper-

limb amputees. 
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