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1. INTRODUCTION 

Within a semi-transparent medium, both conduction and 
radiation occur [1]. The first step is usually to deal with the 
radiative heat transfer itself [2] and then to investigate the 
coupled conductive-radiative heat transfer [3-6]. Many 
authors have investigated this topic in order to predict the 
coupled heat transfer within these media which are widely 
used in industry or aerospace such as float glasses or foams. 
As soon as the geometry is complex, no analytical solution 
could be found anymore and it is then necessary to perform 
numerical simulations based for instance on finite element 
methods [2-8] or even hybrid finite volume/finite element 
discretization method [9] and also with neural-finite 
difference method [10-11] with experimental validation [11]. 

Then meshless methods have emerged [12-16]: some are 
based on local Petrov-Galerkin approach [12] and usually the 
moving least squares approximation is used to construct the 
shape function. Others are based on the natural element 
method using natural neighbor (Sibson) interpolation or 
Laplace interpolation [13-15]. 

One can also notice that non Fourier conduction is 
analyzed in a differentially heated two dimensional cavity 
[17]. Recently Galerkin method is still used to solve the 
combined radiative and conductive heat transfer [18] whereas 
lattice Boltzmann is also considered with a finite volume 
method [19]. 

Mainly the case of two dimensional rectangular media is 
considered. Few studies deal with parallelogram media. The 
radiative heat transfer was investigated in a parallelogram 
shaped cavity [20] but there is no coupling with conduction. 
Then it is interesting to apply the method, already developed 
for a rectangular semitransparent medium [21-22], for a 
parallelogram semitransparent medium. 

After the mathematical formulation of the conductive 
radiative heat transfer, results of the simulations in terms of 
temperature fields are presented. 

2. PHYSICAL MODEL AND MATHEMATICAL 

FORMULATION 

2.1 Governing equations 

The coupled conductive and radiative heat transfer 
involves the heat balance equation and the radiative transfer 
equation which describe the coupled evolution of the 
temperature T and the intensity L within the semitransparent 
material.  

For a semi-transparent medium, the heat flux is then 
composed by a conductive component and a radiative 
component. The general formulation of the heat transfer 
equation is: 
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In the case of a solid medium, there is no convective 

transport. P represents all the source terms and all the 
volumic heat sink (other contribution than radiation).  

The conductive heat flux is given by the Fourier law: 
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The radiative heat flux density is expressed through the 

intensity: 
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The radiative contribution is taken into account via a 

source term: 
 

 r rP div                                                                     (4) 

 
That leads to the following equation (in the case of no 

internal sources P = 0): 
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The radiative heat flux can be evaluated via the intensity 

differential equation well known as the radiative transfer 
equation (RTE):  
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This equation represents the intensity variation due to an 

energy loss by absorption and an energy gain due to the 
media reemission (emission blackbody law that depends on 
the temperature of the media at the considered point). 
 

2.2 Expressions of the radiative quantities 

2.2.1 The divergence of the heat flux 
In the following sections the optical properties of the 

medium are assumed to be wavelength independent (gray 
medium) in order to simplify the writing. The extension to the 
case of a non grey medium raises no numerical difficulties. 

The radiative heat flux at a point with s the curvilinear 
abscissa is given by: 
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Thanks to Eq(6), the radiative heat flux divergence could 

be written as follow: 
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Finally, the radiative heat flux divergence is given by the 

following equation: 
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The blackbody intensity and the average intensity are 

expressed as a temperature function. As radiation is a transfer 
without any contact, the average intensity at a given point is a 
function of all the temperatures of the medium and of the 
frontiers. The intensity depends on the medium’s geometry. 
 
2.2.2 The radiative heat flux and the average intensity 

In the general case of three-dimensional problems, the 
expressions of the radiative heat flux and the average 
intensity are given by: 
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K represents the average absorption coefficient for a semi-
transparent medium with a surface A and with a volume V.  

The two vectors that is to say the radiative heat flux and 
the average intensity at a point M (x, y, z) of the volume V, 

spotted towards the reference point O and the radius vector r . 

A point M0 (x0, y0, z0) of the surface A is spotted towards 0r . 

The vectors 0r , r  et *r permit to locate the position of the 

surface and the volumes dA, dV et dV *. 
One can clearly see in the Eq(12) that there are two 

contributions to the radiative heat flux and the average 
intensity: a surface integral and a volume integral. 

3. NUMERICAL RESOLUTION AND RESULTS 

3.1 Numerical resolution 

The differential equation could be written: 
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with 
 

   2 44 , 4rdiv q Kn T x y KL                                       (14) 

 
The differential equation is nonlinear in temperature owing 

to the term with the divergence of the radiative heat flux. It 
could be solved for each time step with an iterative method. 
To initialize the procedure, the solution of the purely 
conductive problem could be used. It is more interesting and 
judicious to use the solution of the coupled problem after the 
linearization of the radiative component 
 

3.2 Validations 

First of all, simulations are made in test cases such as one 
dimensional slab in steady then transient state. The 
simulations agree with others results obtained by semi-
analytical methods or classical methods [22]. For instance in 
the Figure 1, the temperature fields are plotted in the case of 
the flash method (this method consists in measuring the 
temperature and especially the rear face transient temperature 
of a sample when its front face absorbs a heat pulse) 
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Figure 1. Temperature fields at different times 
 
Then the case of a two dimensional rectangular semi-

transparent medium is considered (see Figure 2). The 
emissivity of each wall is equal to one. The thermal 
conductivity of the medium is equal to 1 W.m-1. K-1. The 
coefficient of absorption is equal to 1 m-1. The temperature 
at the bottom is imposed at 1000 K. 

3.3 Simulations in the case of a parallelogram 

Numerical simulations are then performed in the two 
dimensional case of a parallelogram. The same value for the 
thermophysical parameters are considered. The results 
obtained are presented on the following figures. 

 

 
Figure 2. Temperature profile (angle 90°) 

 

 
Figure 3. Temperature profile (angle 75°) 

 

 
Figure 4. Temperature profile (angle 60°) 

 

 
Figure 5. Temperature profile (angle 45°) 

 

 
Figure 6. Temperature profile (angle 30°) 

 

 
Figure 7. Temperature profile (angle 15°) 
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Whatever the value of the angle, it is possible to obtain the 
temperature field whereas in other studies, authors 
encountered difficulties as soon as the angle is smaller than 
30°. 

 
 

5. CONCLUSIONS 

After a synthetic state of art and the main equations of the 
thermal behaviour of a semi-transparent medium, numerical 
simulations are carefully performed in order to solve the 
energy balance and the radiative transfer equation. The 
specificity of the approach proposed here consists in 
expressing the divergence term of the radiative heat flux that 
appears from the temperature. In that way, it remains only 
one differential equation to solve numerically. The aim is to 
obtain the temperature within a participating parallelogram 
shaped medium. The main difficulty could have occur for the 
mesh when the angle of the parallelogram becomes very 
sharp. Nevertheless, temperature fields could be obtained. 
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NOMENCLATURE 

 
A surface m2 
CP specific heat, J. Kg-1. K-1 
K absorption coefficient m-1 
L’ radiant intensity W/sr 
n refractive index 
P  source terms and volumetric heat sink 
q heat flux W 
r norm of the radius vector 
s curvilinear abscissa 
t time s 
T temperature K 
V volume m3 

  

Greek symbols 

 

 thermal diffusivity, m2. s-1 

 thermal conductivity, W.m-1. K-1 

 heat flux density, W.m-2 

 density  

 solid angle sr 

Subscripts 

 

 
c 

 
conduction 

r radiation 
0 relative to the blackbody 
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