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Owing to the ill-posed problem of image restoration, how to find an effective method to 

obtain image prior information is still challenging. The total generalized variational model 

has been successfully applied to image denoising and/or deblurring. However, the high-

order gradient of the image is described by using L1 norm in the traditional total generalized 

variational denoising and deblurring model, which can not effectively describe the local 

group sparse priors of the image gradient. As a result, the traditional total generalized 

variational model has some limitations in the ability to suppress the staircase artifacts. In 

order to solve this problem, one new model is proposed to restore images corrupted by 

Cauchy noise and/or blur in our paper, where the non-convex data fidelity term is combined 

with two regularization terms: group sparse representation prior and multi-directional total 

generalized variation. We use group sparse representation prior information to obtain the 

nonlocal self-similarity information of similar image block for preserving the details and 

texture features of the discontinuous or uneven region of the image. At the same time, the 

noise is fully removed in the uniform region, which improves the image visual quality. 

Moreover, the gradient information in multiple directions is calculated by the multi-

directional total generalized variation regularization term, which can better preserve the 

edge information of the image. The model is divided into several sub-problems by split 

Bregman iteration, and each sub-problem is solved efficiently. The experimental results 

show that this model is superior to other existing models both in terms of visual quality and 

some image quality evaluation. 
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1. INTRODUCTION

Image restoration aims to estimate the original clear image 

based on an observed image. Cauchy noise [1, 2] is a prevalent 

impulse noise with the characteristic of a thick tail, which is 

widely present in radar imaging, astronomical images, 

biomedical images, and wireless communication systems. 

Numerous studies have been conducted to remove Cauchy 

noise, particularly in the wavelet domain. Zhao et al. [3] 

employed the maximum a posteriori (MAP) estimation of 

double tree complex wavelet transform for image noise 

removal. Hill et al. [4] proposed a new method of single-

variable shrinkage in the DWT domain, using translation 

invariant wavelet decomposition for image denoising. Wu et 

al. [5] utilized a multi-level wavelet convolution neural 

network to train the denoiser, maintaining more detailed 

texture during the denoising process and better balancing the 

size of the receptive field with the computational load. 

Recently, variational models based on total variation 

regularization have been extensively employed for image 

denoising. Sciacchitano et al. [1] introduced a total variation 

model [6] for denoising Cauchy noise in images. Mei et al. [2] 

applied a specialized multiplier alternating direction method 

[7] to solve the nonconvex total variation minimization

problem. However, total variation is influenced by the 

staircase effect in smooth regions and cannot effectively 

recover the details and textures of an image, resulting in an 

oversmoothed image. To address the edge staircase effect, 

Yang et al. [8] incorporated higher-order total variation to 

reduce the staircase effect. Parrisoto et al. [9] introduced a 

high-order anisotropic total variation regularization term that 

retains and enhances the inherent anisotropy characteristics of 

an image, recovering the details and textures as much as 

possible. Shi et al. [10] proposed a nonlinear diffusion 

equation for denoising to better recover image detail features, 

including a diffusion coefficient based on gray scale to 

estimate noise amplitude and a gradient-based diffusion 

coefficient to control anisotropic diffusion in accordance with 

the local structure of an image. Liu and Gao [11] proposed a 

non-blind image deblurring method that combines multi-

directional fractional total variation with traditional total 

variation, addressing the staircase effect and texture loss issues 

of total variation while effectively preserving texture and edge 

information. 

For images containing not only flat regions but also inclined 

ones, the total generalized variation (TGV) model 

demonstrates strong denoising capabilities in single-image 

denoising. Bredies et al. [12] suggested using total generalized 
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variation as a penalty function for modeling images with edges 

and smooth changes, exhibiting excellent denoising 

performance in single-image denoising. Lv [13] proposed a 

multilook M for total generalized variation-based 

multiplicative noise removal to eliminate speckle noise from 

images. Shi et al. [14] introduced a total generalized variation 

method for reconstructing electrical impedance tomography 

(EIT), combining the first and second derivative terms as 

regularizers to address issues related to Tikhonov 

regularization's excessive smoothness in image reconstruction 

and the staircase effect in total variation regularization 

reconstruction. To improve the denoising effect, Zhong et al. 

[15] presented a high-order TGV regularization variational 

model based on the automatic selection of spatial adaptive 

regularization parameters according to local image 

characteristics. To better restore image texture in a certain 

direction, Kongskov et al. [16] proposed a texture direction 

estimation algorithm and a novel direction total generalized 

variation model (DTGV), which significantly improves 

texture preservation and noise removal. Li et al. [17] 

introduced a weighted model of second-order total generalized 

variation for Gaussian noise removal by incorporating an edge 

indicator function into the regularizer of the second-order total 

generalized variation model [12]. To enhance the intensity of 

the diffusion tensor and improve the image's visual quality, the 

method employs first and second derivatives. Since the 

Shearlet transform can sparsely represent an image and 

generate the best approximation [18], Lv [19] combined the 

Shearlet transform with a second-order total generalized 

variation regularization term, proposing a new recovery model 

for images corrupted with Cauchy noise. Liu [20] developed a 

hybrid regularization model for image denoising and 

deblurring by combining the advantages of total generalized 

variation with the wavelet method. Zhu et al. [21] presented a 

second-order TGV and wavelet framework-based hybrid 

regularization method, inheriting the benefits of wavelet 

framework regularization and second-order TGV. This model 

not only removes the staircase effect but also preserves sharp 

edges while maintaining strong sparse estimation capabilities 

for piecewise smooth functions. 

However, since the TGV model processes pixels 

independently, it disregards the similarity of processed images, 

resulting in weak robustness against high-amplitude noise. To 

address this issue, Zhang et al. [22] employed the nonlocal 

total generalized variation method for image repair and super-

resolution reconstruction. To exploit the sparse representation 

of image block information, Jung and Kang [23] proposed a 

nonlocal total generalized variation model based on sparse 

representation, which improves the denoising performance by 

considering image block similarity. Zhang et al. [24] proposed 

a nonlocal total generalized variation model based on local 

similarity, which takes into account the similarity of image 

patches in the local area and addresses the over-smoothness 

issue in flat regions. Chen et al. [25] introduced the sparsity 

based on overlapping group in TGV model, which can 

improve the denoising effect of TGV by using structural 

similarity, and the robustness of TGV to strong noise pollution 

by using the first and second-order gradient information of 

domain difference.  

Compared with the traditional method using local features, 

the recent variation method using nonlocal information of 

image has a great improvement of noise removal effect. Ding 

et al. [26] used the nonlocal self-similarity of natural images 

to treat a group of similar blocks as an approximate low rank 

matrix, and expressed the denoising problem of each group as 

a low rank matrix restoration problem. Laus et al. [27] used a 

nonlocal, completely unsupervised method to remove the 

Cauchy noise in the image. Kim et al. [28] used the weighted 

kernel norm as the regularization term, and used the similar 

blocks in the image to remove the additive Cauchy noise 

through nonlocal similarity. 

Although the nonlocal method makes use of the similarity 

among image blocks to improve the denoising effect, the low 

similarity or dissimilarity among image blocks limits the 

applicability of the method. In order to overcome these 

limitations and better consider the structure of the processed 

image, group or structured sparse representation has been 

widely studied in the field of image restoration in recent years 

[29, 30]. The methods based on group or structured sparse 

representation can capture the internal characteristics of image 

structure, enhance the inherent local sparsity and nonlocal self-

similarity of image, and improve the effect of image 

deblurring [30-32], image inpainting [33-35], and denoising 

[36]. 

Inspired by the fact that group sparse representation could 

further suppress the staircase effect of the traditional total 

generalized variational model and multidirectional total 

generalized variation can better protect the edge structure 

features of the image and further suppress false edges, we 

propose a new model to remove noise and/or blur in the image 

corrupted by Cauchy noise and/or blur. The model uses the 

prior knowledge of group sparse representation learned from 

dictionary and higher-order derivative based on nonlocal 

multi-directional total generalized variation. The prior of 

group sparse representation can effectively denoise the 

uniform region and preserve the texture and detail in formation 

of the image, while the nonlocal multi-directional total 

generalized variation based high-order derivative prior can 

denoise the smooth region and preserve the edge in formation 

of the image. In addition, an effective iterative algorithm is 

proposed to solve the model. 

In this study, a new nonlocal total generalized variation 

(NLTGV) model for Cauchy noise removal that combines the 

advantages of total generalized variation and nonlocal means 

is proposed. The model effectively removes Cauchy noise 

while preserving image details and textures. The main 

contributions of this study are as follows: 

(1) A novel NLTGV model is proposed for Cauchy noise 

removal. The model combines the strengths of the edge-

preserving total generalized variation and the nonlocal 

means, which considers the similarity of image patches, 

leading to improved denoising performance. 

(2) We propose an iterative algorithm for solving the NLTGV 

model, which effectively converges to the optimal 

solution while maintaining low computational complexity. 

(3) Experimental results show that the proposed NLTGV 

model outperforms several state-of-the-art denoising 

methods in terms of both visual quality and quantitative 

evaluation metrics, demonstrating the effectiveness of the 

proposed model in Cauchy noise removal and image 

detail preservation. 

The rest of this paper is organized as follows: Section 2 

describes the proposed NLTGV model and the corresponding 

optimization algorithm. Section 3 presents experimental 

results and comparisons with other denoising methods. Finally, 

Section 4 concludes the paper and discusses future work. 
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2. PRELIMINARIES 

 

This section briefly introduces the concepts of image 

restoration based on total variation, group sparse 

representation model, and total variation model based on 

overlapping group sparse for image restoration.  

 

2.1 Image restoration based on total variation 

 

The mathematical description of image restoration from an 

image contaminated with Cauchy noise is given by: 

 

y Hx ,= +  (1) 

 

where, x represents an unknown original clear image, y 

denotes an observed image corrupted by noise, H expresses the 

degradation or blur operator, and n stands for the Cauchy noise. 

In other words, η represents a random variable that follows the 

Cauchy distribution, and its probability density function is: 

 

( )( )22
P( ) ,




   
=

+ −
 

(2) 

 

where, γ>0 is a scale parameter that determines the noisy level, 

and δ ∈ ℝ  is a location parameter, which determines the 

peak's position and is usually set to zero. Since H is 

irreversible, recovering the clear image x from y is an ill-posed 

problem. 

The model for image restoration from an image 

contaminated with Cauchy noise includes a total variation 

regularization term [6] and a nonconvex data-fitting term 

derived from the probability density function in Eq. (2), as 

follows: 

 

( )( )22

x
min log Hx y ,1 TV(x).

2


 + −  +  (3) 

 

2.2 Group sparse representation model 

 

Traditional sparse representation considers an image block 

as a sparse representation unit. Assuming an image x ∈

ℝNwith size √𝑁 × √𝑁 is divided into m  image blocks 𝑥𝑖 ∈

ℝ𝑃(𝑖 = 1,2, ⋯ , 𝑚)  with √𝑃 × √𝑃  size in step s. Extracting 

image blocks from an image can be described by the following 

formula: 

i ix R (x),=  (4) 

 

where, Ri(⋅)represents the operator to extract the image block, 

and 𝑅𝑖
𝑇(⋅)represents the transpose operation of Ri(⋅) to return 

the image block to the original position of the image. For each 

image block 𝑥𝑖 and the given dictionary Di, image block xi can 

be sparsely represented by Di, as follows: 
 

i i ix =D ,  (5) 

 

where, αi is the sparse coding coefficient of xi under Di. The 

whole image recovered from the image blocks can be 

described by the following formula: 
 

i i

1 1
m m m m

T T T T

i i i i i i i

i 1 i 1 i 1 i 1

x= R R R (x )= R R R (D ).

− −

= = = =

   
   
   
     (6) 

Since the traditional sparse representation does not consider 

the similarity among image blocks, the group sparse 

representation model [29] was proposed, which takes the 

group consisting of image blocks as the unit of sparse 

representation. Following the study [37], the most similar h-1 

image blocks with image block xi are found in a search window, 

and the h image blocks constitute a matrix 𝑥𝐺𝑖
=

[𝑥𝐺𝑖,1, 𝑥𝐺𝑖,2, ⋯ , 𝑥𝐺𝑖,ℎ] ∈ ℝ𝑃×ℎ  by pulling each image block 

into a column. For each group 𝑥𝐺𝑖
(𝑖 = 1,2, ⋯ , 𝑛) and a given 

dictionary 𝐷𝐺𝑖
, group 𝑥𝐺𝑖

 consisting of image blocks can be 

sparsely represented by 𝐷𝐺𝑖
, as follows: 

 

i i iG G Gx =D ,  (7) 

 

where, 𝛼𝐺𝑖
 is the sparse coding coefficient of 𝑥𝐺𝑖

 under 𝐷𝐺𝑖
. 

The whole image recovered from all groups can be described 

by the following formula: 
 

i i i i

i i i i i

1
n n

T T

G G G G

i 1 i 1

1
n n

T T

G G G G G

i 1 i 1

x= R R R (x )

= R R R (D ),

−

= =

−

= =

 
 
 

 
 
 

 

 

 (8) 

 

where, 𝑅𝐺𝑖
(⋅) is the operator of extracting a group, and 𝑅𝐺𝑖

𝑇 (⋅) 

is the transpose operation of 𝑅𝐺𝑖
(⋅), which returns a group to 

the original position in the image. 𝑅𝐺𝑖
(⋅) and 𝑅𝐺𝑖

𝑇 (⋅) have the 

same meaning in the following equations unless stated 

otherwise. 

The image restoration model for restoring x from y based 

on group sparse representation [29, 38] is as follows: 
 

 

( )
G Gi i

i i i i i

2

2
a ,{D },x

n
2

G G G G G
0 2

i 1

min y x
2

D R (x) ,



  
=

−

+ + −
 (9) 

 

where, n represents the number of image block groups, 𝐷𝐺𝑖
 

denotes the dictionary, and 𝛼𝐺𝑖
 is the coefficient of sparse 

coding of image block group 𝑥𝐺𝑖
 under dictionary 𝐷𝐺𝑖

. 

 

2.3 Total variation model based on overlapping group 

sparse 

 

Liu et al. [39] defined the K×K -point group of vector x ∈

ℝN stacked by √𝑁 × √𝑁 matrix in columns: 

 
�̃�𝑖,𝑗,𝐾

= [

𝑥𝑖−𝑚1,𝑗−𝑚1
𝑥𝑖−𝑚1,𝑗−𝑚1+1 ⋯ 𝑥𝑖−𝑚1,𝑗+𝑚2

𝑥𝑖−𝑚1+1,𝑗−𝑚1
𝑥𝑖−𝑚1+1,𝑗−𝑚1+1 ⋯ 𝑥𝑖−𝑚1+1,𝑗+𝑚2

⋮ ⋮ ⋱ ⋮
𝑥𝑖+𝑚2,𝑗−𝑚1

𝑥𝑖+𝑚2,𝑗−𝑚1+1 ⋯ 𝑥𝑖+𝑚2,𝑗+𝑚2

]

∈ ℝ𝐾×𝐾 , 

(10) 

 

where, 𝑚1 = [
𝐾−1

2
] , 𝑚2 = [

𝐾

2
] , [K], 𝑥𝑖,𝑗,𝐾  is obtained by 

stacking �̃�𝑖,𝑗,𝐾 ∈ ℝ𝐾×𝐾  in column order, that is, 𝑥𝑖,𝑗,𝐾 =

�̃�𝑖,𝑗,𝐾(: ), the sparse regularization term based on overlapping 

group [39] is defined as: 
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N

i, j,K 2
i, j 1

(x) x .
=

=   (11) 

 

The size of the group in Eq. (11) is K×K. 

The overlapping group sparse total variation (OGS-TV) 

model [39] is defined as: 

 

1 2OGS TV(x) ( x) ( x), − =  +   (12) 

 

where, ∇1x and ∇2x represent the first-order gradients of x in 

the horizontal and vertical directions, respectively. 

 

 

3. THE PROPOSED ALGORITHM 

 

It is assumed that the Cauchy noise η in Eq. (1) follows the 

Cauchy distribution C(0, γ) with the location parameter set to 

δ=0. In order to restore the unknown original image x, the 

maximum a posteriori (MAP) estimation is commonly 

employed by maximizing the conditional posterior probability 

p(x|y). Based on the Bayesian principle 𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
and the application of negative logarithm operation, 

the MAP estimation x is obtained through the minimization of 

-log(p(y|x))-log(p(x)), which -log(p(y|x)) serves as a data-

fitting term, while -log(p(y|x)) also being utilized as a 

regularizer. It is further assumed that an observed image 𝑦 ∈

ℝ√𝑁×√𝑁  and its corresponding unknown original image 𝑥 ∈

ℝ√𝑁×√𝑁 are transformed into column vectors according to the 

matrix columns, indexed by 𝛢 = {1,2, ⋯ , √𝑁} ×

{1,2, ⋯ , √𝑁} . Given that image pixels are considered 

independent and identically distributed, there are 𝑝(𝑥) =
∏ 𝑝(𝑥𝑗)𝑗∈𝛢 . The relationship between δ=0 and p(y|x)=p(η) is 

established, resulting in 𝑝(𝑦𝑗|𝑥𝑗) =
𝛾

𝜋(𝛾2+((𝐻𝑥)𝑗−𝑦𝑗)
2

)
. By 

taking logarithms on both sides of this relationship, the 

following equation is derived: 

 

( )( )

( )( )

j j

j

2
2

jj
j

log(p(y | x)) log p y | x

log Hx y log log .  





− = −

 = + − + − 
 





 (13) 

 

As discussed in Section 2.2, the nonlocal self-similarity of 

the image is leveraged, and a more robust geometric structure 

is preserved through the prior knowledge of group sparse 

representation. Consequently, the data fidelity term is 

combined with group sparse representation in the model for 

Cauchy noise removal. In order to further preserve edge 

information in multiple directions of an image, the multi-

directional total generalized variation method introduces two 

additional diagonal directions, as depicted in Figure 1, in 

accordance with the traditional directional total generalized 

variation model. This allows for the detection of edge features 

in eight distinct directions during image restoration. In 

conjunction with overlapping group sparsity [39], the 

overlapping group sparse multidirectional total generalized 

variation (MDTGV) regularization term is defined as follows: 

 

( )

( )( )

j j4

16
1

w
j 1 0 j

j 1

x w

MDTGV(x) min ,
w




  =

=

  −
 

=  
+    

 




 (14) 

 

where, 𝛻1𝑥 and 𝛻2𝑥 are described in Section 2.3, 𝛻3𝑥 and 𝛻4𝑥 

represent the first-order gradients of x in the diagonal 45° and 

135° directions, respectively, and 𝜀(𝑤)𝑗 = 𝛻𝑗𝑤𝑗 +

∑
𝛻𝑖

2

4
𝑖=1 𝑎𝑛𝑑 𝑖≠𝑗 𝑤𝑗(𝑗 = {1,2,3,4}) denotes the second-order 

gradient operator. 

 

 
 

Figure 1. Eight domain space of pixels 

 

Building upon the overlapping group sparse 

multidirectional total generalized variation model, a method 

for eliminating Cauchy noise from an image is proposed as 

follows: 

 

( )( )

( ) ( )( )

22

x,w

4 16

1 j j 0 j
j 1 j 1

min log Hx y ,
2

1 x w w .




    
= =

 + −

 +  − +    
 (15) 

 

In summary, two types of priors are combined: group sparse 

representation priors (GSR) and overlapping group sparse 

multidirectional total generalized variation (MDTGV). Thus, 

a new model for denoising images contaminated with Cauchy 

noise and/or blur is proposed in this study: 

 

( )( )
( )

( )( )

i

i i i i i i i
G G Gi i i

j G jn 42 2
2

16
G G G G G G G 1

0 2{a },{D },{x },w
i 1 j 1 0 j

j 1

x w

min log Hx y ,  1 D x ,
2 [ w ]




    
  = =

=

  −
 

 + −  + + − + 
+ 

 

 
  (16) 

 

where, 𝑥 ∈ ℝ√𝑁×√𝑁 , 𝑦 ∈ ℝ√𝑁×√𝑁 , 𝐷𝐺𝑖
∈ ℝ𝑃×𝑘(𝑃 << 𝑘) , 

𝛼𝐺𝑖
∈ ℝ𝑘×ℎ, 𝑥𝐺𝑖

∈ ℝ𝑃×ℎ, and n represent the number of image 

block groups, as described in subsection 2.2. The 

regularization parameters λ1 and λ0 are utilized to balance the 

first-order difference and the second-order difference in 

multidirectional total generalized variation. 

 

3.1 Decomposition of model (16) 
 

The model (16) proposed in this study is non-convex due to 

data fidelity terms and the product of 𝐷𝐺𝑖
 and 𝛼𝐺𝑖

. Auxiliary 
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variables 𝑝 ∈ ℝ𝑁 , 𝑞𝑗 ∈ (ℝ𝑃ℎ)2(𝑗 = {1,2,3,4}) , 𝑟𝑗 ∈

(ℝPh)4(𝑗 = {1,2, ⋯ ,16})  and 𝑧 ∈ ℝ𝑁  are introduced, 

allowing the unconstrained model (16) to be rewritten as: 

 

( )( ) ( ) ( )
i i i i i

G G Gi i i

i i i

n 4 162 2
2

G G G G G 1 j 0 j
0 2{a },{D },{x },w,p,q,r,z

i 1 j 1 j 1

G G j j G j j j

min log z y ,  1 D p q r ,
2

s.t. z Hx ,p x ,q x w ,r (w) .


       



= = =

 
 + −  + + − + + 

 

 = = =  − =

  
 (17) 

 

By incorporating a penalty term into the constraint 

condition, the constrained model (17) is relaxed to the 

following unconstrained model: 

 

( )( ) ( ) ( )
4 162 2

2

1 0
0 2

1 1

4 16{ },{ },{ },w,p,q,r,z 2 2 221 1 2

22 2 2
1 1

log ,  1 +
2

min ,

-( ) + ( ) -
2 2 2 2

i i i i i

G G Gi i i

i i i

G G G G G j j
n

j j

a D x
i

j j G j j j G G

j j

z y D p q r

q x w r w p x z Hx


       

 


= =

=

= =

 
 + −  + + − + 

 
 

  +  − − + + −
  

 


 
 (18) 

where, β, ϒ1, ϒ2 and ξ are parameters greater than 0. In order 

to solve the model (18), an alternating minimization algorithm 

(AMA) [38] is employed, which minimizes one variable while 

keeping other variables fixed and iterates this process. When 

AMA is applied to model (18), the following subproblems 

arise: 

 

i i i i i i

G Gi i

2

G G G G G G
0 2a ,D

(a ,D ) argmin D p ,   + −  (19) 

 

i i i

2 2

G G G
2 2p

p argmin D p p-x ,
2


 − +  (20) 

 

( )
i

4 4
2

1
1 j j j G j

2q j 1 j 1

q argmin q + q -( x w ) ,
2

 
= =


  −   (21) 

 

( )
16 16

2
2

0 j j j 2
r j 1 j 1

r argmin r + r (w) ,
2

  
= =


 −   (22) 

 

( )( )i

i

2
2

G
z

2

G
2

z argmin log z y ,
2

 1 + z Hx ,
2






  + −

 −

 (23) 

 

i i i

Gi

i

4
2 2

1
G G j j G j2 2x j 1

2

G 2

x arg min p-x + q -( x w )
2 2

+ z Hx ,
2





=


  −

−


 (24) 

 

i

4
2

1
j j G j

2w j 1

16
2

2
j j 2

j 1

w argmin q -( x w )
2

+ r (w) .
2



=

=


  −


−




 (25) 

 

3.2 Solving (𝒂𝑮𝒊
, 𝑫𝑮𝒊

) sub-problems 

 

With p fixed, the subproblem (19) for (𝑎𝐺𝑖
, 𝐷𝐺𝑖

) is resolved. 

By fixing 𝐷𝐺𝑖
 and p, the minimization problem of 𝑎𝐺𝑖

 

becomes: 

i i i i
Gi

2

G G G G
0 2a

min D p .  + −  (26) 

 

The Orthogonal Matching Pursuit (OMP) algorithm [40] 

can be utilized to solve the subproblem (26). OMP, an iterative 

greedy algorithm, selects the most relevant column to the 

current residuals in 𝐷𝐺𝑖
 at each step. The OMP algorithm stops 

when the error ‖𝐷𝐺𝑖
𝛼𝐺𝑖

− 𝑝‖
2

2
 falls below θ2 (θ is a very small 

number). In order to obtain the dictionary 𝐷𝐺𝑖
, the KSVD 

algorithm [41] is employed to solve the subproblem (19). In 

fact, the sparse coding and dictionary are repeatedly updated J 

times within the KSVD algorithm. 

 

3.3 Solving p and z subproblems 

 

The subproblem of solving p in (20) is a least square 

problem. Assuming 𝐿 = 𝑚𝑖𝑛
𝑝

‖𝐷𝐺𝑖
𝛼𝐺𝑖

− 𝑝‖
2

2
+

𝛽

2
‖𝑝 − 𝑥𝐺𝑖

‖
2

2
, 

the partial derivatives of p for L is 
𝜕𝐿

𝜕𝑝
= 2(𝑝 − 𝐷𝐺𝑖

𝑎𝐺𝑖
) +

𝛽(𝑝 − 𝑥𝐺𝑖
), and letting 

𝜕𝐿

𝜕𝑝
= 0, the closed-form solution of the 

p subproblem in (20) is as follows: 

 

( ) ( )
i i i

1

G G Gp= 2I I 2D a x , 
−

+ +  (27) 

 

where, I represents the identity matrix, and I maintains the 

same meaning in subsequent formulas unless stated otherwise. 

When 8𝛾 ≥
𝜆

𝜉
, it can be demonstrated that the minimization 

problem (23) is strictly convex, and its minimum can be 

obtained by solving its Euler-Lagrange equation. Assuming 

𝐿 = 𝑚𝑖𝑛
𝑧

𝜆

2
< 𝑙𝑜𝑔 (𝛾2 + (𝑧 − 𝑦𝐺𝑖

)
2

) , 1 > +
𝜉

2
‖𝑧 − 𝐻𝑥𝐺𝑖

‖
2

2
, 

the partial derivatives of z for L is 
𝜕𝐿

𝜕𝑧
= 𝜆

𝑧−𝑦𝐺𝑖

𝛾2+(𝑧−𝑦𝐺𝑖
)2 + 𝜉(𝑧 −

𝐻𝑥𝐺𝑖
), and letting 𝐺(𝑧) =

𝜕𝐿

𝜕𝑧
= 0, the following equation can 

be deduced: 

 

i

i

i

G

G2 2

G

z y
G(z) (z Hx )=0.

(z y )
 



−
= + −

+ −
 (28) 

 

In order to solve Eq. (28), Newton's method is employed to 

obtain by iterating the following Eq. (29), which converges 
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after several iterations: 

 
t

t 1 t

' t

G(z )
z z .

G (z )

+ = −  (29) 

 

3.4 Solving q and r sub-problems 

 

A comprehensive analysis of this type of problem is 

provided in study [42]. The Majorization-Minimization (MM) 

algorithm [43, 44] aims to iteratively solve Eq. (30) in order to 

address the minimization problem of 𝑞𝑗 =

𝑎𝑟𝑔𝑚𝑖𝑛
𝑞𝑗

𝜆1𝜙(𝑞𝑗) +
ϒ1

2
‖𝑞𝑗 − (𝛻𝑗𝑥𝐺𝑖

− 𝑤𝑗)‖
2

2
: 

 

j

i

t 1 t 21
j j j 2

q

2
1

j j G j
2

q arg min || (q )q ||
2

+ q -( x w ) ,
2

j 1,2,3,4, t 0,1, ,

+ = 


 −

= =

 
(30) 

 

where, 𝛬(𝑞𝑗
𝑡)  is the diagonal matrix, [𝛬(𝑞𝑗

𝑡)]𝑙,𝑙 =

√∑ [∑ |𝑞𝑡1−𝑖1+𝑘1,𝑡2−𝑖2+𝑘2

(𝑗)
|

2
𝑛2
𝑘1,𝑘2=−𝑛1

]
𝑚2
𝑖1,𝑖2=−𝑚1

−
1

2
 are diagonal 

elements, with 𝑙 = (𝑡2 − 1)𝑃 + 𝑡1 , 𝑚1 = [
𝑃−1

2
] , 𝑚2 = [

𝑃

2
] , 

𝑛1 = [
ℎ−1

2
] , 𝑛2 = [

ℎ

2
] , 𝑡1 ∈ {1,2, ⋯ , 𝑃} , 𝑡2 ∈ {1,2, ⋯ , ℎ} , P 

and h as explained in Section 2.2. The symbol 

𝑞𝑡1−𝑖1+𝑘1,𝑡2−𝑖2+𝑘2

(𝑗)
 denotes the element values of the 𝑡1 − 𝑖1 +

𝑘1 th row and the 𝑡2 − 𝑖2 + 𝑘2 th column in the matrix qj. The 

problem (30) is a least square problem. Setting the partial 

derivative of qj to 0, the solution of qj is obtained: 

 

( ) ( )( ) ( )
i

1
T

t 1 t t

j 1 1 j j 1 j G jq I q q x w ,
−

+ =  +     −  (31) 

 

where, 𝑞𝑗
0 = 𝛻𝑗𝑥𝐺𝑖

− 𝑤𝑗 and j={1, 2, 3, 4}. 

Likewise, the solution of rj can be derived as follows: 

 

( ) ( )( )
1

T
t 1 t t

j 2 0 j j 2 jr I r r (w) , 
−

+ =  +     (32) 

 

where, 𝑟𝑗
0 = 𝜀(𝑤)𝑗 , 𝑗 = {1,2, ⋯ ,16}, 𝛬(𝑟𝑗

𝑡) and [𝛬(𝑟𝑗
𝑡)]𝑙,𝑙 =

√∑ [∑ |𝑟
𝑡1−𝑖1+𝑘1,𝑡2−𝑖2+𝑘2

(𝑗)
|

2
𝑛2
𝑘1,𝑘2=−𝑛1

]
𝑚2
𝑖1,𝑖2=−𝑚1

−
1

2
 are diagonal 

matrices and diagonal elements, respectively. The terms l, m1, 

m2, n1, n2, t1, t2 have the same meaning as in equation (30) 

above, and 𝑟𝑡1−𝑖1+𝑘1,𝑡2−𝑖2+𝑘2

(𝑗)
 represents the element value of 

the t1-i1+k1 th row and the t2-i2+k2 th column in the matrix rj. 

 

3.5 Solving 𝒙𝑮𝒊
 sub-problem 

 

𝑥𝐺𝑖
 sub-problem in (24) is a least square problem. 

Suppose 𝐿 = 𝑚𝑖𝑛
𝑥𝐺𝑖

𝛽

2
‖𝑝 − 𝑥𝐺𝑖

‖
2

2
+

ϒ1

2
∑ ‖𝑞𝑗 − (𝛻𝑗𝑥𝐺𝑖

−4
𝑗=1

𝑤𝑗)‖
2

2
+

𝜉

2
‖𝑧 − 𝐻𝑥𝐺𝑖

‖
2

2
,  the partial derivative 𝑥𝐺𝑖

 for L is 
𝜕𝐿

𝜕𝑥𝐺𝑖

= 𝛽(𝑥𝐺𝑖
− 𝑝) + ϒ1 ∑ 𝛻𝑗

𝑇(𝛻𝑗𝑥𝐺𝑖
− 𝑤𝑗 − 𝑞𝑗)4

𝑗=1 + 𝜉𝐻𝑇𝐻𝑥𝐺𝑖
−

𝜉𝐻𝑇𝑧 . Let 
𝜕𝐿

𝜕𝑥
= 0, the closed form solution of the 𝑥𝐺𝑖

 sub-

problem in (24) is as follows: 

 

i

1
4 4

T T T T

G 1 j j 1 j j j

j 1 j 1

x = I H H p (w q ) H z .   

−

= =

   
+    + +   + +   

   
   (33) 

 

3.6 Solving w1~w4 sub-problem 

 

Suppose 𝐿 = 𝑚𝑖𝑛
𝑤

ϒ1

2
∑ ‖𝑞𝑗 − (𝛻𝑗𝑥𝐺𝑖

− 𝑤𝑗)‖
2

24
𝑗=1 +

ϒ2

2
∑ ‖𝑟𝑗 −16

𝑗=1

𝜀(𝑤)𝑗‖
2

2
, the partial derivative w1 for L is 

𝜕𝐿

𝜕𝑤1
= ϒ1(𝑤1 −

𝛻1𝑥𝐺𝑖
+ 𝑞1) + ϒ2𝜀𝑇(𝜀(𝑤)1 − 𝑟1). Let 

𝜕𝐿

𝜕𝑤1
= 0 , we can deduce 

(ϒ1 + ϒ2𝛻1
𝑇𝛻1 +

ϒ2

2
𝛻2

𝑇𝛻2 +
ϒ2

2
𝛻3

𝑇𝛻3 +
ϒ2

2
𝛻4

𝑇𝛻4)𝑤1 = ϒ1(𝛻1𝑥𝐺𝑖
−

𝑞1) + ϒ2𝑟1 −
ϒ2

2
𝛻2

𝑇(𝛻1𝑤2 − 2𝑟5) −
ϒ2

2
𝛻3

𝑇(𝛻1𝑤3 − 2𝑟9) −
ϒ2

2
𝛻4

𝑇(𝛻1𝑤4 − 2𝑟13). The solution of w1 is as follows: 

 

i

T T T T 12 2 2
1 1 2 1 1 2 2 3 3 4 4

T T T2 2 2
1 1 G 1 2 1 2 1 2 5 3 1 3 9 4 1 4 13

w ( I )
2 2 2

[ ( x q ) r ( w 2r ) ( w 2r ) ( w 2r )].
2 2 2

−  
=  +    +   +   +  

  
  − +  −   − −   − −   −

 (34) 

 

Through the above method, w2~w4 can be solved similarly as follows: 
 

i

T T T T 12 2 2
2 1 1 1 2 2 2 3 3 4 4

T T T2 2 2
1 2 G 2 2 2 1 2 1 6 3 2 3 10 4 2 4 14

w ( I )
2 2 2

[ ( x q ) r ( w 2r ) ( w 2r ) ( w 2r )].
2 2 2

−  
=  +   +    +   +  

  
  − +  −   − −   − −   −

 (35) 

 

i

T T T T 12 2 2
3 1 1 1 2 2 2 3 3 4 4

T T T2 2 2
1 3 G 3 2 3 1 3 1 7 2 3 2 11 4 3 4 15

w ( I )
2 2 2

[ ( x q ) r ( w 2r ) ( w 2r ) ( w 2r )].
2 2 2

−  
=  +   +   +    +  

  
  − +  −   − −   − −   −

 (36) 
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i

T T T T 12 2 2
4 1 1 1 2 2 3 3 2 4 4

T T T2 2 2
1 4 G 4 2 4 1 4 1 8 2 4 2 12 3 4 3 16

w ( I )
2 2 2

[ ( x q ) r ( w 2r ) ( w 2r ) ( w 2r )].
2 2 2

−  
=  +   +   +   +   

  
  − +  −   − −   − −   −

 (37) 

 

Ultimately, to ensure that the solution of Eq. (18) converges 

to the solution of Eq. (17), and that the solution of Eq. (17) is 

consistent with the solution of Eq. (16), the value of the 

parameter β, ϒ1, ϒ2, ξ should be set to a very large value. 

However, setting the parameter values to very large values 

initially may lead to numerical stability issues (as discussed in 

Chapter 17 of study [45]). Therefore, following the idea of the 

NAMA method [46], the parameter values are set to small 

values at the beginning and are gradually increased during the 

iteration process, enabling the solution of the model to 

converge to Eq. (17). Algorithm 1 provides a summary of the 

entire algorithm for solving model (16). 
 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In this section, the experimental results obtained from the 

proposed model (16) are presented and compared with the SR 

+ TGV method [23] and the TGV method [19]. A total of 12 

natural images, as depicted in Figure 2, were tested, assuming 

that the pixel value range in clean images is [0, 255]. The 

dimensions of three images (FishingBoat, Skiing, and 

Elephant) are 481×321, while the remaining nine images have 

dimensions of 256×256. For this experiment, the degradation 

𝑦 = 𝐻𝑥 + 𝜂 = 𝐻𝑥 + 𝛾
𝜂1

𝜂2
 is employed to generate images 

with Cauchy noise, in which represents a Cauchy distribution, 

denotes the noise level, and η1, η2 are independent random 

variables following Gaussian distribution with a mean of 0 and 

a variance of 1, respectively. In the denoising case, is an 

identity operation, and is only contaminated with Cauchy 

noise. Thus, the degradation 𝑦 = 𝑥 + 𝜂 = 𝑥 + 𝛾
𝜂1

𝜂2
 is utilized 

to generate noisy images y. 

 

Algorithm 1: Algorithm for solving model (16) proposed in this paper 

Step 1. Input: Observed image y, degradation matrix H, parameters λ0, λ, μ, total number of image block groups n, image 

block size, number of image blocks per group, number of dictionary columns, number of inner-loop iterations, convergence 

threshold tol, growth rate 𝑟𝛽 , 𝑟ϒ1
, 𝑟ϒ2

, 𝑟𝜉  

Step 2: Initialization x=max(min(y,255),0)     D=DCT   i=1 

Step 3: while i<=n do  

Step 4: t=0 

Step 5: Initialization 𝛽, ϒ1, ϒ2, 𝜉 and 𝑥𝐺𝑖

𝑡 =R𝐺𝑖
(𝑥),y

𝐺𝑖
=R𝐺𝑖

(𝑦),D𝐺𝑖
=R𝐺𝑖

(𝐷), 𝑝=x𝐺𝑖

𝑡 ,w𝑗
𝑡 = 0(𝑗 ∈ {1,2,3,4}), 𝑞𝑗

𝑡 =

(𝛻𝑗𝑥𝐺𝑖

𝑡 − 𝑤𝑗
𝑡) (𝑗 ∈ {1,2,3,4}), 𝜀(𝑤𝑡)𝑗 = 𝛻𝑗𝑤𝑗

𝑡 + ∑
𝛻𝑖

2

4
𝑖=1 𝑎𝑛𝑑 𝑖≠𝑗 𝑤𝑗

𝑡(𝑗 ∈ {1,2,3,4}), 𝑟𝑗
𝑡 = 𝜀(𝑤𝑡)𝑗(𝑗 ∈ {1,2, ⋯ ,16}), 𝑧 = 𝐻𝑥𝐺𝑖

𝑡  

step 6: for t<=TI and  
||𝑥𝐺𝑖

𝑡 −𝑥𝐺𝑖
𝑡−1||2

||𝑥𝐺𝑖
𝑡 ||2

> 𝑡𝑜𝑙 

Step 7: t=t+1 

Step 8: Update 𝑎𝐺𝑖

𝑡  with OMP solving the solution of (26)  

Step 9: 𝑝𝑡 = (2𝐼 + 𝛽𝐼)−1(2𝐷𝐺𝑖
𝑎𝐺𝑖

𝑡 + 𝛽𝑥𝐺𝑖

𝑡−1) 

Step 10: Update 𝑧𝑡 by using Newton method to solve the solution of Eq. (28) 

Step 11: 𝑞𝑗
𝑡 = (ϒ1𝐼 + 𝜆1𝛬(𝑞𝑗

𝑡−1)
𝑇

𝛬(𝑞𝑗
𝑡−1))

−1

ϒ1(𝛻𝑗𝑥𝐺𝑖

𝑡−1 − 𝑤𝑗
𝑡−1) 

Step 12: 𝑟𝑗
𝑡 = (ϒ2𝐼 + 𝜆0𝛬(𝑟𝑗

𝑡−1)
𝑇

𝛬(𝑟𝑗
𝑡−1))

−1

ϒ2𝜀(𝑤𝑡−1)𝑗 

Step 13: Obtain 𝑥𝐺𝑖

𝑡  by using FFT to solve the solution of (33) 

Step 14: Obtain 𝑤𝑗
𝑡(𝑗 ∈ {1,2,3,4}) by using FFT to solve the solutions of Eqns. (34)-(37) 

Step 15: Update dictionary 𝐷𝐺𝑖
 with KSVD 

Step 16: 𝛽 = 𝛽 ⋅ 𝑟𝛽 , ϒ1 = ϒ1 ⋅ 𝑟ϒ1
, ϒ2 = ϒ2 ⋅ 𝑟ϒ2

, 𝜉 = 𝜉 ⋅ 𝑟𝜉  

Step 17: end for 

Step 18: i=i+1 

Step 19: end while 

Step 20: Output: restored image �̂� = (∑ 𝑅𝐺𝑖

𝑇 𝑅𝐺𝑖

𝑛
𝑖=1 )

−1
∑ 𝑅𝐺𝑖

𝑇 (𝑥𝐺𝑖
)𝑛

𝑖=1  

 

The PSNR and SSIM values are computed to evaluate the 

quality of the recovered images, with the calculation formula 

provided in (38). 

 

( )

( )( )

2

ˆ ˆx,x X x 2

10 2 2 2 2 2

ˆ ˆx x 1 x x 22

max 2Mean Mean 2 C
ˆPSNR(x,x) 10log ,  SSIM ,

Mean Mean C Cˆx x



 

  +
 = =
  + + + +− 

 (38) 

 

where, x, x̂ represent the original clean image and its 

corresponding recovered image, respectively. 𝑚𝑎𝑥𝑥,𝑥 denotes 

the largest pixel value in image x,x̂ , MeanX and 𝑀𝑒𝑎𝑛𝑥 

represent the mean value of x,x̂ , and 𝜎𝑥
2, 𝜎𝑥

2 represent the 
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variance of x, x̂, respectively, σ is the covariance of x,x̂, and 

C1, C2 are constants greater than 0. A higher PSNR value and 

an SSIM value closer to 1 indicate that the restored image is 

more similar to its corresponding original clean image. 

 

4.1 Parameter settings for the experiment 

 

For this experiment, the image block size is set to 4×4, while 

the group size is configured as 16×60. Each group contains 60 

image blocks, with 2 overlapping pixels between adjacent 

image blocks. A search window of 40×40 is employed, and the 

size of each dictionary is established as 16×256. Initial values 

for penalty parameters are given as (β, ϒ1, ϒ2, 

ξ)=(1,0.1,0.1,10), with growth rates assigned as 

(𝑟𝛽 , 𝑟ϒ1
, 𝑟ϒ2

, 𝑟𝜉) = (2%, 3%, 3%, 2%) . In the denoising 

scenario, the regularization parameters are set to 6 and 30, 

while for deblurring they are 0.2 and 1. Parameters λ and 𝜇𝐺𝑖
 

are adjusted according to the noise level. For example, when 

the noise level γ=0.02, λ∈{3, 3.5, 4, 4.5, 5, 5.5, 6} and 𝜇𝐺𝑖
=

6.25. If the noise level γ=0.04, λ∈{4, 4.5, 5, 5.5, 6, 6.5, 7} and 

𝜇𝐺𝑖
= 3.125. When the noise level γ=0.08, λ∈{5, 5.5, 6, 6.5, 

7, 7.5, 8} and 𝜇𝐺𝑖
= 1.5625. The initial value of x is set as 

max (min (y, 255), 0), following the approach of [2]. 

 

4.2 Image denoising results and analysis 

 

Initially, denoising results obtained by the TGV method, the 

SR+TGV method, and the proposed GSR+MDTGV method 

are compared in Figure 3 to Figure 8. The SR+TGV method 

combines the prior of sparse representation with TGV 

regularization, while the proposed GSR+MDTGV method 

incorporates the prior of group sparse representation with 

MDTGV regularization. Figure 3 displays denoised images 

produced by the three methods with a Cauchy noise level of 

γ=0.02. 

It is evident from the results that the SR+TGV method 

improves upon the TGV method by restoring more texture 

without the staircase effect. The SR+TGV method also 

includes the prior of sparse representation, which better 

preserves texture in the uniform region by fully denoising it. 

This demonstrates the advantage of the sparse prior based on 

image blocks. In contrast, the denoised results of 

GSR+MDTGV and SR+TGV appear similar, but the 

GSR+MDTGV method yields clearer texture details, as 

demonstrated in the locally zoomed areas of restored images 

in Figure 4. Additionally, the proposed GSR+MDTGV 

method introduces two diagonal gradients compared to 

SR+TGV, recovering more edge features such as the texture 

area of Lena's brim and the shadow part of FishingBoat's bow, 

resulting in higher PSNR values. As the noise level increases, 

these phenomena become more apparent. 

In Figure 5 and Figure 6, denoised results of the TGV, 

SR+TGV, and GSR+MDTGV methods are compared when 

the noise level is γ=0.04. The proposed GSR+MDTGV 

method retains more texture and detail, offering a more natural 

visual quality. This is attributed to the fact that GSR+MDTGV 

provides more information on similar image block structures 

than SR+TGV, as shown in the locally zoomed areas of 

restored images in Figure 6. For example, the texture area of 

white hair beneath the parrots, the details of the scarf texture 

area on Barbara's right shoulder, and the protruding bone 

texture in the starfish are more distinct, resulting in higher 

PSNR values. 

Lastly, in Figure 7 and Figure 8, denoised images obtained 

by the TGV, SR+TGV, and GSR+MDTGV methods are 

compared when the noise level is high (i.e., γ=0.04 or 0.08). It 

can be observed that the image backgrounds restored by the 

TGV and SR+TGV methods are rough. However, the 

proposed method ensures smoothness in the background and 

further enhances the visual quality of natural images. These 

experiments confirm the advantages of GSR+MDTGV 

regularization compared to other prior knowledge. 

Specifically, although the restored results using 

GSR+MDTGV and SR+TGV are visually similar, 

GSR+MDTGV better preserves texture and detail, providing 

more visually natural images and achieving higher PSNR 

values. 

 

 
 

Figure 2. Original clean images. Top to bottom (left to right): Girl, Barbara, FishingBoat(481×321), Starfish, Flower, 

Skiing(481×321), Parrot, Lena, Elephant(481×321), Leave, Butterfly, House 

864



 

 
 

Figure 3. Results of recovered images obtained by different methods for eliminating Cauchy noise. The number under each 

image is the PSNR (dB) value. First column: noisy images (γ = 0.02); second column: recovered images using the TGV method; 

third column: recovered images using the SR+TGV method; fourth column: recovered images using our GSR+MDTGV method 

 

Table 1. Denoised results when noise level γ = 0.02 
 

Model (a) TGV model (b) SR+TGV model  (c) Proposed model 

Image PSNR SSIM PSNR  SSIM  PSNR  SSIM  

Girl 28.29 0.9205 29.78 0.9405 31.65 0.9592 

Barbara 25.26 0.7702 28.38 0.8453 30.24 0.8912 

FishingBoat 28.67 0.7613 29.74 0.7920 31.98 0.8544 

Starfish 30.02 0.8458 31.08 0.8912 32.97 0.9132 

Flower 30.21 0.8588 32.18 0.9038 32.65 0.8987 

Skiing 29.82 0.9052 31.25 0.9232 33.60 0.9459 

Parrot 30.43 0.8502 32.01 0.8699 33.09 0.9012 

Lena 30.63 0.8823 31.16 0.8736 32.14 0.9088 

Elephant 29.69 0.7684 31.11 0.8237 33.29 0.8846 

Leave 27.98 0.9102 30.45 0.9417 31.78 0.9599 

Butterfly 28.27 0.8641 30.10 0.8862 32.42 0.9285 

House 30.48 0.9045 32.86 0.9204 32.29 0.9016 
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Figure 4. Local zoomed areas of recovered images in Figure 3. (a) original images, (b) recovered images using the TGV method, 

(c) recovered images using the SR+TGV method, and (d) recovered images using our GSR+MDTGV method 

 

Table 1 to Table 3 present the PSNR and SSIM values of 

the restored results obtained using the different methods. In 

most cases, the proposed model yields the highest values for 

both PSNR and SSIM. In general, the proposed model 

achieves superior denoising results based on these image 

quality measurements, which is closely related to the 

exceptional performance of the regularization model founded 

on group sparse representation prior and multi-directional total 

generalized variation. 

 

Table 2. Denoised results when noisy level γ =0.04 

 
Model (a) TGV model (b) SR+TGV model (c) Proposed model 

Image PSNR SSIM PSNR  SSIM  PSNR  SSIM  

Girl 27.41 0.7912 28.69 0.8978 30.43 0.9309 

Barbara 23.47 0.7318 27.60 0.8242 28.84 0.8588 

FishingBoat 27.42 0.7414 28.70 0.7709 29.97 0.8099 

Starfish 28.04 0.8383 29.25 0.8663 31.48 0.9089 

Flower 28.11 0.8088 29.78 0.8538 30.65 0.8487 

Skiing 28.69 0.8765 29.45 0.8956 30.23 0.9102 

Parrot 29.32 0.8389 30.11 0.8456 31.14 0.8584 

Lena 28.11 0.7988 28.90 0.8155 28.48 0.8065 

Elephant 29.57 0.7753 30.12 0.7980 30.91 0.8266 

Leave 26.72 0.8946 28.14 0.9158 30.60 0.9469 

Butterfly 27.19 0.8542 29.38 0.8864 31.58 0.9179 

House 28.77 0.7745 29.86 0.7834 30.99 0.8016 
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(a) Noisy image: 16.26 (b) TGV:23.47 (c) SR+TGV: 27.60 (d) GSR+MDTGV: 28.84 

    
(e) Noisy image: 16.24 (f) TGV:27.19 (g) SR+TGV: 29.38 (h) GSR+MDTGV: 31.14 

    
(i) Noisy image: 16.26 (j) TGV:26.72 (k) SR+TGV: 28.14 (l) GSR+MDTGV: 29.60 

    
(m) Noisy image: 16.24 (n) TGV:29.32 (o) SR+TGV: 30.11 (p) GSR+MDTGV: 31.14 

    
(q) Noisy image: 16.26 (r) TGV:28.04 (s) SR+TGV: 29.25 (t) GSR+MDTGV: 31.08 

 

Figure 5. Results of recovered images obtained by different methods for eliminating Cauchy noise. The number under each 

image is the PSNR (dB) value. First column: noisy images (γ = 0.04); second column: recovered images using the TGV 

method; third column: recovered images using the SR+TGV method; fourth column: recovered images using our 

GSR+MDTGV method 
 

Table 3. Denoised results when noisy level γ = 0.08 
 

Model (a) TGV model (b) SR+TGV model (c) Proposed model 

Image PSNR SSIM PSNR  SSIM  PSNR  SSIM  

Girl 25.59 0.5955 26.22 0.6611 28.96 0.7502 

Barbara 22.63 0.6932 26.57 0.7827 27.41 0.8113 

FishingBoat 26.62 0.7217 26.77 0.7258 27.10 0.7344 

Starfish 26.87 0.7312 27.84 0.7810 30.03 0.8492 

Flower 25.99 0.7569 27.56 0.7985 28.34 0.8126 

Skiing 26.36 0.8312 27.96 0.8589 29.16 0.8898 

Parrot 27.42 0.8087 29.11 0.8299 30.22 0.8490 

Lena 26.16 0.7550 26.56 0.7650 27.51 0.7862 

Elephant 27.78 0.6868 28.23 0.7115 28.49 0.7253 

Leave 24.84 0.8519 26.02 0.8865 28.58 0.9201 

Butterfly 25.82 0.8099 26.85 0.8278 27.07 0.8354 

House 27.09 0.5628 28.00 0.7565 28.90 0.6595 

867



 

 
 

Figure 6. Local zoomed areas of recovered images in Figure 5. (a) original images, (b) recovered images using the TGV method, 

(c) recovered images using the SR+TGV method, and (d) recovered images using our GSR+MDTGV method 

 

 
 

Figure 7. Comparison of denoising results when γ = 0.04 (Rows 1 and 3), γ = 0.08 (Rows 2 and 4) with different regularization 

terms (TGV, SR+TGV, GSR+MDTGV) and the same data fidelity term in (16). PSNR: (top) (a) 28.77, (b) 29.86, (c) 30.99; (row 

2) (a) 27.09, (b) 28.03, (c) 28.90; (row 3) (a) 28.11, (b) 29.78, (c) 30.65; (bottom) (a) 25.99, (b) 27.56, (c) 28.34 
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Figure 8. Local zoomed areas of the recovered house images when γ = 0.08 in Figure 7 

 

Table 4. Comparisons of the performance of SR+TGV and 

our GSR+MDTGV method on PSNR, SSIM, and Time (in 

minutes) when noisy level γ =0.08 

 

Image 
SR+TGV Ours 

PSNR SSIM Time PSNR SSIM Time 

Parrot 29.11 0.8299 0.78 30.22 0.8490 0.59 

Flower 27.56 0.7985 0.80 28.34 0.8126 0.61 

Lena 26.56 0.7650 0.99 27.51 0.7862 0.79 

Finally, a comparison is made between the PSNR, SSIM, 

and time (in minutes) values of the SR + TGV and GSR + 

MDTGV methods in Table 4. Three images corrupted by the 

Cauchy noise level γ = 0.08 are selected for testing. The results 

show that the GSR + MDTGV method achieves higher values 

of PSNR and SSIM and runs faster, indicating that the 

computing time for group sparse representation is less than 

that of global sparse representation. 

 

 
(a) Corrupted image: 18.85            (b) SR+TGV: 30.58             (c) GSR+MDTGV: 31.20 

 
(d) Corrupted image: 18.69            (e) SR+TGV: 29.30            (f) GSR+MDTGV: 30.06 

 
(g) Corrupted image: 18.32            (h) SR+TGV: 28.81            (i) GSR+MDTGV: 29.38 

 

Figure 9. Restored images from deblurring-denoising images contaminated with one Gaussian blur and Cauchy noise using the 

SR+TGV and our GSR+MDTGV methods 
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(a) Corrupted image: 18.78            (b) SR+TGV: 29.83            (c) GSR+MDTGV: 30.86 

 
(d) Corrupted image: 18.41            (e) SR+TGV: 26.62            (f) GSR+MDTGV: 29.36 

 
(g) Corrupted image: 18.21            (h) SR+TGV: 27.98            (i) GSR+MDTGV: 29.01 

 

Figure 10. Recovered images from deblurring-denoising images contaminated with one motion blur and Cauchy noise using the 

SR+TGV and our GSR+MDTGV methods 

 

Table 5. The values of PSNR (dB) and SSIM of deblurring-denoising results with noise level γ = 0.02 and different blurring 

kernels using the SR+TGV and GSR+MDTGV methods 

 
Corrupted Gaussian blur and Cauchy noise Motion blur and Cauchy noise 

Method SR+TGV Ours SR+TGV Ours 

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Girl 28.71 0.8968 29.79 0.9389 25.93 0.6320 26.34 0.6912 

Barbara 27.80 0.8339 28.87 0.8319 26.02 0.8149 27.79 0.8330 

FishingBoat 28.81 0.7958 29.38 0.8055 27.98 0.7743 29.01 0.7950 

Starfish 29.12 0.8834 31.03 0.8905 28.85 0.8598 29.05 0.8581 

Flower 30.25 0.8598 30.02 0.8499 27.69 0.8289 27.98 0.8395 

Skiing 29.75 0.9045 31.02 0.9098 27.32 0.8778 28.12 0.8891 

Parrot 29.30 0.8502 30.06 0.8421 26.62 0.8303 29.36 0.8269 

Lena 29.09 0.8197 30.01 0.8213 27.78 0.8059 27.32 0.8012 

Elephant 29.43 0.8082 31.09 0.8109 28.09 0.7769 28.72 0.7906 

Leave 28.47 0.9195 29.99 0.9275 27.38 0.9079 28.69 0.9208 

Butterfly 28.35 0.9208 29.25 0.9302 26.59 0.8997 27.80 0.9042 

House 30.58 0.8241 31.20 0.8216 29.83 0.8143 30.86 0.8247 

 

4.3 Image deblurring-denoising results and analysis 
 

In this section, the restoration of images contaminated with 

Cauchy noise and blur is considered. Two blur kernels are 

examined: a Gaussian blur kernel with a size of 8x8 and a 

standard deviation of 1, and a motion blur kernel with len = 9 

and theta = 50. Subsequently, Cauchy noise with a noise level 

γ = 0.02 is added to the blurred images. 

Three images are selected for testing, and the restored 

results of deblurring-denoising are displayed in Figure 9 and 

Figure 10. The values of PSNR and SSIM obtained using 

different methods in the two blur kernels and various noise 

levels are listed in Table 5 and Table 6. It is evident from 

Tables 5 and 6 that the proposed GSR + MDTGV method 

870



 

achieves relatively high values of PSNR and SSIM. The 

images in Figure 9 and Figure 10 reveal that the images 

restored using the SR + TGV and GSR + MDTGV methods 

are visually similar, but the GSR + MDTGV method 

consistently obtains higher PSNR values and clearer texture 

features. This is particularly apparent in the local zoomed area 

of the restored parrot image from Figure 11, such as the texture 

area of white hair under the parrots. As a result, the GSR + 

MDTGV method not only retains good texture features but 

also effectively removes blur and Cauchy noise. This is closely 

related to the outstanding performance of the regularization 

model based on group sparse representation prior and multi-

directional total generalized variation. 

 

Table 6. The values of PSNR (dB) and SSIM of deblurring-denoising results with noisy level γ = 0.04 and different blurring 

kernels using the SR+TGV and our GSR+MDTGV methods 

 
Corrupted Gaussian blur and Cauchy noise Motion blur and Cauchy noise 

Method SR+TGV Ours SR+TGV Ours 

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Girl 27.52 0.8038 28.89 0.8689 24.23 0.492 24.84 0.5862 

Barbara 27.20 0.8130 27.93 0.8053 25.12 0.7836 26.38 0.7930 

FishingBoat 27.82 0.7737 27.75 0.7655 26.50 0.7412 26.57 0.7350 

Starfish 28.04 0.8467 30.05 0.8692 27.23 0.8047 27.58 0.8261 

Flower 28.71 0.8247 28.58 0.8212 25.38 0.7763 25.83 0.7965 

Skiing 28.65 0.8831 29.54 0.8911 25.68 0.8456 25.90 0.8610 

Parrot 28.33 0.8369 29.10 0.8247 25.17 0.8103 27.93 0.8008 

Lena 27.56 0.7835 28.47 0.7804 25.48 0.7399 25.01 0.7516 

Elephant 28.47 0.7708 29.49 0.7578 26.32 0.7110 26.65 0.7208 

Leave 26.99 0.9011 28.92 0.9142 25.17 0.8803 27.09 0.9009 

Butterfly 27.27 0.8992 27.47 0.9013 24.97 0.8705 25.13 0.8576 

House 28.96 0.7695 30.07 0.7409 27.40 0.7036 29.17 0.7323 

 

 
 

Figure 11. Local zoomed areas of the recovered parrot images in Figure 9 and Figure 10. (a) Corrupted image, (b) recovered 

images using the SR+TGV method, (c) recovered images using the GSR+MDTGV method 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

In this study, a model fusing the prior knowledge of GSR 

and MDTGV is proposed to restore images contaminated with 

Cauchy noise and/or blur. The model is solved using a penalty 

method, variable splitting strategy, and alternating 

minimization scheme. The prior knowledge of GSR leverages 

the nonlocal self-similarity of images by considering the non-

zero coefficients appearing in the form of clustering in sparse 

representation signals. This approach takes into account the 

sparsity of the group structure, preserves more geometric 

structures, and requires less computation time than global 

sparse representation. MDTGV regularization can describe the 

edge information in 8 directions of the image and reconstruct 
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clearer detailed features, resulting in ideal visual results and 

better visual quality than TGV. Experimental results 

demonstrate that the proposed method outperforms 

comparison methods in terms of PSNR and SSIM values in 

most cases. It is important to note that in these methods, the 

Cauchy noise level and blur kernel are known; however, in real 

corrupted images, the Cauchy noise level and blur kernel may 

be unknown. 

To address this limitation, future work will focus on 

improving the GSR + MDTGV method to adapt to 

nonparametric blind super-resolution, where the noise level 

and blur kernel are unknown. Initially, methods will be 

employed to estimate the noise level and blur kernel size. 

Subsequently, given the estimated noise level and blur kernel, 

the SR method based on GSR+MDTGV will be used to super-

resolve the final high-resolution image. This extension of the 

proposed method has the potential to enhance its applicability 

in various real-world scenarios where the noise level and blur 

kernel are not readily available. 
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