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In radar applications, target range, velocity (Doppler), and angle are the three primary 

measurements employed. Estimating the number of targets and their directions of arrival 

(DOAs) on the antenna array can be achieved through various methods. Conventional 

techniques such as the correlation and Multiple Signal Classification (MUSIC) algorithms 

offer a straightforward approach for DOA estimation. However, these methods necessitate 

an exhaustive search of the entire spectrum and require numerous temporal snapshots to 

accurately identify the spatial spectrum peaks. To address this challenge, Particle Swarm 

Optimization (PSO)-correlation and PSO-MUSIC methods have been proposed. These 

PSO-based techniques provide a systematic approach to locate the spatial spectrum peak in 

both one-dimensional (1-D) and two-dimensional (2-D) scenarios. In order to determine the 

exact target position, the global best particle location is iteratively updated by these methods. 

The statistical performance of the 1-D and 2-D PSO-correlation and PSO-MUSIC 

algorithms demonstrates that these techniques exhibit higher accuracy in comparison to 

existing single-snapshot DOA estimation methods. The estimation performance of the 

proposed algorithms is analyzed and justified by employing the Cramér-Rao bound (CRB). 
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1. INTRODUCTION

Sensors, widely employed in modern technology, generate 

outputs for various applications, including remote sensing [1], 

biomedical engineering [2], communications [3], and radar 

systems [4]. In applications such as radar, sonar, and cellular 

communication, direction of arrival (DOA) estimation 

algorithms are commonly used to determine the directions of 

incoming targets. However, these algorithms often demand a 

significant number of antenna array samples (snapshots) to 

function effectively, thereby increasing the computational 

burden on the receiver. In real-time scenarios, obtaining 

multiple time snapshots or prior knowledge of the number of 

incoming signals is often infeasible, limiting the available 

samples for impinging target estimation at the receiver. 

Snapshots, referring to the number of time samples or 

measurements per sensor, are crucial for signal parameter 

estimation. In the context of DOA estimation, more snapshots 

provide increased information about signals arriving at the 

array, thus enhancing the accuracy and resolution of estimated 

directions [5]. However, practical limitations, such as signal 

duration and sensor sampling rate, often restrict the number of 

snapshots. Ideally, the number of snapshots should be at least 

equal to the number of sensors in the array for a well-posed 

DOA estimation. This paper proposes a novel approach to 

accurately estimate DOA even under single snapshot 

conditions, balancing snapshot numbers with computational 

complexity and signal-to-noise ratio considerations. 

Recent advancements in DOA estimation [5-7] suggest 

potential solutions for single or few snapshot DOA estimation 

in practical applications, such as wireless location systems and 

compressive sensing (CS) based framework DOA estimation. 

By integrating nature-inspired optimization techniques, such 

as Particle Swarm Optimization (PSO), with traditional DOA 

estimation algorithms [8, 9], the performance of DOA 

estimation can be improved under single snapshot conditions. 

Several studies have attempted to address the issue of 

degraded DOA estimation performance with single or few 

snapshots. In study [10], an improved Estimation of Signal 

Parameters via Rotational Invariance Techniques (ESPRIT) 

algorithm is proposed for determining the direction of 

incoming signals using a single temporal observation from a 

uniform linear array (ULA). For 2-dimensional DOA 

estimation [11], an algorithm is proposed that uses a single 

snapshot to construct three covariance matrices based on a 

dual parallel ULA. In study [12], a 2D-ZAP algorithm is 

proposed, which estimates DOA using l_1-norm with a single 

snapshot. Compressive sensing frameworks have also been 

employed for single snapshot DOA estimation [9]. In this 

paper, Particle Swarm Optimization (PSO) is combined with 

the MUSIC spectrum function for DOA estimation in low 

signal-to-noise ratio (SNR) environments [13, 14]. 

The present study addresses the degraded performance of 

conventional DOA estimation algorithms, such as correlation 

and MUSIC, under single snapshot conditions. The proposed 

PSO-Correlation and PSO-MUSIC algorithms combine these 

conventional methods with a PSO framework to improve 

spectral search and identify maximum values. As 

demonstrated in section 4, the statistical performance of the 

PSO-Correlation algorithm is significantly improved 

compared to existing DOA estimation algorithms. The 

Cramér-Rao bound (CRB) is employed to estimate unbiased 
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parameter variances with a lower bound, i.e., DOA. The 

performance of the array is influenced by various parameters, 

including the number of sensors (N), array geometry, number 

of sources (D), number of snapshots, signal-to-noise ratio 

(SNR), and others. 

 

 

2. PRELIMINARIES 

 

2.1 Signal model 

 

Signals emitted from the multiple sources in the far-field, 

will be detected by the sensor arrays as shown in Figure 1 

illustrate a fundamental model of array signal processing. 

 

 
 

Figure 1. Basic model for array signal processing 

 

The sensor array output is processed so that, we can infer 

source information such as the range, source directions, source 

powers, and velocity of sources. The sensors in Figure 1 are 

assumed to be on the x-axis, with the sources in the first or 

second quadrants of the xy-plane. The propagating wave-

fronts are represented by green curves. 

 

2.2 Signal model 1-D and 2-D 

 

Let us considered an M-sensor Uniform Linear Array (ULA) 

and 𝐷-signal sources impinging. Sensors located at positions 

[0, 𝑑, 2𝑑, … (𝑀 − 1)𝑑]  where 𝑑  is the distance between tw 

antennas. Then the received signal can be modeled as [8] Eq. 

(1).  

 

𝒙(𝒕) = ∑ 𝒂𝒊(𝜃)𝑺𝒊(𝑡) + 𝒏𝒊(𝑡)

𝑫

𝒊=𝟏

= 𝑨𝑺(𝑡) + 𝑵(𝑡) (1) 

 

where, 𝑡  is the time index, 𝑺(𝑡)  ∈  ℂ𝐷 x 1  is the incoming 

signal wave, 𝒏(𝑡)  ∈  ℂ𝑀 x 1  indicates the AWGN, and 𝑨 ∈
 ℂ𝑀 x 𝐷 is the manifold matrix of the array as shown in Eq. (2). 

 

𝑨(𝜃)

= [

1
𝑒−𝑗𝜑1

1
𝑒−𝑗𝜑2

⋯
1

𝑒−𝑗𝜑𝐷

⋮ ⋱ ⋮

𝑒−𝑗(𝑀−1)𝜑1 𝑒−𝑗(𝑀−1)𝜑2 ⋯ 𝑒−𝑗(𝑀−1)𝜑𝐷

] 
(2) 

 

For 𝑖𝑡ℎ source with angle 𝜃𝑖 is defined as 𝜑𝑖 =
2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃𝑖). 

where, 𝜆 is wave length, 𝜃𝑖 is the incident angle of 𝑖𝑡ℎ source, 

and 1 ≤ 𝑖 ≤ 𝐷. The product of the array factor (AF) and the 

single element response yields the antenna array response. For 

a 1-D uniform linear array (ULA), the array factor is given by 

Eq. (3), while for a 2-D uniform rectangular array (URA), the 

array factor is given by Eq. (4) [15]. 

 

𝐴𝐹 =
1

𝑀
(

𝑠𝑖𝑛 (
𝑀𝜑1

2
)

𝑠𝑖𝑛 (
𝜑1

2
)

) (3) 

 

𝐴𝐹 =  𝐴𝐹𝑥 x 𝐴𝐹𝑦 (4) 

 

where, 𝐴𝐹𝑥  is the array factor of the ULA in the x-axis 

direction and 𝐴𝐹𝑦 is the array factor of the ULA in the y-axis 

direction. 

 

𝐴𝐹𝑥 =
1

𝑁
(

𝑠𝑖𝑛(
𝑁𝜑𝑥

2
)

𝑠𝑖𝑛(
𝜑𝑥

2
)

) & 𝐴𝐹𝑦 =
1

𝑀
(

𝑠𝑖𝑛(
𝑀𝜑𝑦

2
)

𝑠𝑖𝑛(
𝜑𝑦

2
)

) (5) 

 

where, 

𝜑𝑥 =
2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃)cos (𝜙) and 𝜑𝑦 =

2𝜋

𝜆
𝑑𝑠𝑖𝑛(𝜃)sin (𝜙). 

 

2.3 Cramér-Rao bound 
 

The received observations from the antenna array 𝐱 (of the 

Eq. (1)) is a real valued random vector, having probability 

density function 𝑝(𝐱;  𝛂) , 𝛂 = [𝜃𝑖, 𝑅𝑒{𝐴𝑖(𝑘)},
𝐼𝑚{𝐴𝑖(𝑘)},  𝜎𝑛]𝑇  is real valued parameter vector where 1 ≤
𝑖 ≤ 𝐷, 1 ≤ 𝑘 ≤ 𝐾, where K represents number of snapshots, 

and 𝜎𝑛 is the noise power. Assume that the pdf 𝑝(𝐱;  𝛂) satisfy 

the regularity condition then the fisher information matrix 

(FIM) is defined as [15]: 
 

[I(α)]ij = −𝐸𝑥 [
𝜕2

𝜕[𝛼]𝑖𝜕[𝛼]𝑗

log(𝑝(𝐱;  𝛂))] (6) 

 

In the study [15], shown that the FIM is positive semi-

definite, which means the FIM is invertible and the CRB is 

defined as 

 

CRB(𝛂) = I−1(𝛂) (7) 

 

CRB offers a lower bound on the variances of unbiased 

estimates of the parameters. CRB offer insights into the 

dependency of the array performance with respect to various 

parameters such as number of sensors 𝑀 in the array, the array 

geometry, the number of sources 𝐷, the number of snapshots, 

and signal to noise ratio (SNR) more information on FIM and 

CRB can be found in study [16]. CRB for 𝜽 [17] is defined as 

 

𝐶𝑅𝐵(𝜽) =
𝜎𝑛

2
{∑ 𝑅𝑒[(𝑼𝐻𝚷𝐴

⊥𝑼) ⊙ �̂�𝑇]}

𝐾

𝑘=1

−1

 (8) 

 

𝐶𝑅𝐵𝐴𝑠𝑦𝑚𝑝𝑜𝑡𝑖𝑐(𝜽) =
𝜎𝑛

2
 {∑ 𝑅𝑒[(𝑼𝐻𝚷𝐴

⊥𝑼)  

𝐾

𝑘=1

⊙ (𝑷𝑨𝐻𝚺−𝟏𝑷)𝑇]}
−1

 

(9) 

 

where 

 

𝑨 = [𝒂(𝜃1) 𝒂(𝜃2) …  𝒂(𝜃𝐷)], (10) 
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𝑼 = [
𝜕𝒂(𝜃1))

𝜕𝜃1
 

𝜕𝒂(𝜃2))

𝜕𝜃2
… 

𝜕𝒂(𝜃𝐷))

𝜕𝜃𝐷
], (11) 

 

�̂� =
1

𝐾
∑ 𝑨𝑨𝐻𝐾

𝑘=1 , (12) 

 

𝚷𝐴
⊥ = 𝑰 − 𝑨(𝑨𝐻𝑨)−1𝑨𝐻, (13) 

 

and  

 

𝚺 = 𝑨𝑷𝑨𝐻 + 𝜎𝑛𝑰 (14) 

 

The importance of the CRB is that, covariance of the 

unbiased estimator is lower bounded by the CRB. 

 

2.4 Correlation algorithm 

 

There are several methods available in the literature for 

DOA estimation, the easiest way to determine the DOA is 

through correlation. The model is of 𝐷 signals incident on the 

array, corrupted by AWGN as shown in Eq. (1). We know that 

by the Cauchy-Schwarz inequality, as a function of 𝜃 , 

𝑨𝐻(𝜃)𝑨(𝜃𝑖)  has a maximum at 𝜃 = 𝜃𝑖 . The correlation 

method is given as Eq. (15). 

 

𝑃𝑐𝑜𝑟𝑟(𝜽) = 𝑨𝐻(𝜃)𝐱(𝑡) (15) 

 

𝑃𝑐𝑜𝑟𝑟(𝜃) is a non-adaptive estimate of the spectrum of the 

incoming data. The 𝐷 largest peaks of the 𝑃𝑐𝑜𝑟𝑟(𝜃) vs 𝜃, 𝜃 ∈
[−90𝑜  90𝑜] plot are the estimated DOA’s. 

 

2.5 MUSIC algorithm 

 

The MUSIC estimates of 𝜃𝑖 are obtained by picking the 𝐷 

values of 𝜃 for which 𝑃𝑀𝑈𝑆𝐼𝐶  is maximized. Maximization of 

𝑃𝑀𝑈𝑆𝐼𝐶  is usually done by evaluating it at the points of a fine 

grid using the Eq. (16). 

 

𝑃𝑀𝑈𝑆𝐼𝐶(�̂�) =
1

𝑨𝐻(𝜃)𝑼𝑛𝑼𝑛
𝐻𝑨(𝜃)

 (16) 

 

Procedure for the estimation of maximum using MUSIC 

algorithm is shown in the Figure 2.  

 

 
 

Figure 2. MUSIC algorithm methodology 

2.6 Particle Swarm Optimization 

 

PSO is optimization technique which is used to maximize 

or minimize a function in a feasible region, i.e., it is used to 

find global optimal solution in complex search space. It can 

also be used to solve multi-model function problems [18, 19]. 

PSO is a multi-agent parallel search technique which 

maintains a swarm of particles and each particle represents a 

potential solution in the swarm. All particles fly through a 

multi-dimensional search where each particle is adjusting its 

position according to its own experience and that of the 

neighbors. 

The mathematical model of motion of the particle in the 

PSO is shown in the Figure 3 and can be described as Eq. (17) 

and Eq. (18): 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖 + 𝑣𝑖(𝑡 + 1) (17) 

 

where, 𝑥𝑖(𝑡)  denote the position vector of particle 𝑖  in the 

multi-dimensional search space ℝ𝑛 at time stamp 𝑡. 

 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑟1𝑐1[𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)]
+ 𝑟2𝑐2[𝑔(𝑡) − 𝑥𝑖(𝑡)] 

(18) 

 

where, 𝑤𝑣𝑖(𝑡)  is called as inertia term, 𝑟1, 𝑟2  ∈ (0,1)  are 

uniformly distributed random numbers, 𝑐1 , 𝑐2  are called as 

acceleration coefficient. 

Eq. (8) is used to update the position of the particle and Eq. 

(9) is used for updating the velocity of the particle 𝑣𝑖(𝑡 + 1), 

i.e., Eq. (9) is sum of three vectors parallel to previous velocity, 

parallel to vector connecting x𝑖(𝑡) to 𝑝𝑖(𝑡) and vector parallel 

to vector connecting x𝑖(𝑡)  to 𝑔𝑖(𝑡) . These two equations 

completely describe the mathematical model of PSO. Two 

equations are two simple rules which are obeyed by all the 

particles of the swarm. 

 

 
 

Figure 3. Velocity and position update for a particle in a 

two-dimensional search space 

 

 

3. METHODOLOGY 

 

With the latest advancements in DOA estimation, further 

solutions may be possible based on a single snapshot or a few 

snapshots. Using a single snapshot, it is possible to improve 

the performance of the DOA estimation by combining nature 

inspired optimization techniques like PSO with traditional 

DOA estimation algorithms as shown in the Figure 4 for the 

DOA estimation. 
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By using the Pcorr and PMUSIC Eqns. (15) and (16) 

respectively, as the cost function for PSO in DOA estimation, 

the goal is to find the set of DOA’s that maximizes the amount 

of energy captured by the array. In the literature [1, 14] these 

approaches have been proved to be the most effective in 

finding the accurate DOA estimation in the presence of noise 

and other sources of uncertainty. 

This can be formulated as an optimization problem as: 

 

argmax
𝜃𝜖[−90𝑜,90𝑜]

𝑃𝑀𝑈𝑆𝐼𝐶(𝜽) (19) 

 

Particle Swarm Optimization is a population-based 

optimization technique that searches for the optimal solution 

by iteratively updating the position Eq. (17) and velocity Eq. 

(18) of a swarm of particles. In the case of DOA estimation, 

the particles represent candidate solutions for the set of DOAs, 

and the objective function or cost function is the MUSIC 

spectrum function. For PSO-CORRELATION the objective 

function in Eq. (19) is replaced with correlation spectrum 

function which is in Eq. (15). 

 

 
 

Figure 4. System model for PSO-Based estimation 

 

Here we took the problem of degraded performance of the 

conventional DOA estimation algorithms when only single 

snapshot is considered. To be precise we have chosen 

fundamental beamforming method of DOA estimation 

correlation and high-resolution noise subspace-based method 

MUSIC. We have combined the correlation and MUSIC 

algorithm with PSO, that form an PSO-Correlation algorithm 

and PSO-MUSIC algorithm to improve the spectral search for 

maximum and it can also be seen in section 4 that statistical 

performance of the proposed techniques is much improved 

over the conventional DOA estimation algorithms. 

 

 

4. SIMULATION AND RESULTS 

 

This section covers the simulations for the 1-D and 2-D 

PSO-correlation and PSO-MUSIC algorithms in MATLAB. 

Statistical performance metrics mean square error and root-

mean square error (RMSE) are used to calibrate these 

algorithms. Here the expressions for 1-D and 2-D RMSE are 

Eqns. (20) and (21) respectively. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀𝐶𝑅𝑈𝑁 x 𝐷
∑ ∑(�̂�𝑗,𝑝 − 𝜃𝑝)

𝐷

𝑝=1

2𝑀𝐶𝑅𝑈𝑁

𝑗=1

 (20) 

𝑅𝑀𝑆𝐸 = √
1

𝑀𝐶𝑅𝑈𝑁 x 𝐷
∑ ∑ {

(�̂�𝑗,𝑝 − 𝜃𝑝)
2

+(�̂�𝑗,𝑝 − 𝜙𝑝)
2}

𝐷

𝑝=1

𝑀𝐶𝑅𝑈𝑁

𝑗=1

 (21) 

 

where, MCRUN is the number of independent runs, D is the 

number sources, �̂�𝑗,𝑝 is the estimate value 𝑗𝑡ℎ MCRUN, 𝜃𝑝 is 

the true incoming bearing angle, and �̂�𝑗,𝑝 is the estimate value 

𝑗𝑡ℎ MCRUN, 𝜙𝑝 is the true elevation angle of the source. 

Initially, we analyzed an incoming signal with a frequency 

of 2 GHz impinging with a bearing angle of 40o on a uniform 

linear array with antenna elements M=8, 𝑑 =
𝜆

2
 is the distance 

between antenna elements, and K is the number of snapshots 

considered for the simulation. The simulated results were 

obtained by considering MCRUN=1000 independent Monte 

Carlo (MCRUN) runs, and the performance of 1-D correlation 

and 1-D MUSIC algorithms is evaluated at each SNR using 

the RMSE. 

 

 
 

Figure 5(a). Performance analysis of 1-D correlation by 

varying snapshots 

 

Figure 5(a) and 5(b) represents the performance of the 1-D 

correlation and 1-D MUSIC algorithms, the graphs 

demonstrate the performance of these algorithms by varying 

the number of snapshots K 

 

 
 

Figure 5(b). Performance analysis of 1-D MUSIC by varying 

snapshots 
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These methods exhibit high RMSE with a single or a 

smaller number of temporal snapshots, and as the number of 

temporal snapshots increases, RMSE decreases. It means that 

these algorithms require a greater number of time snapshots to 

work properly when signal to noise ratios is less, i.e., ≤ −5𝑑𝐵. 

These algorithms are combined with Particle Swarm 

Optimization by considering the spectrum scan as the cost 

function. 

Figure 6(a) and 6(b) represents the performance of the PSO-

Correlation and PSO-MUSIC for 1-D and 2-D respectively. 

The performance of the proposed techniques along with 

traditional methods, is shown in the Figure 6(a) and 6(b). It 

can be observed that, the proposed methods outperform the 

standard methods like correlation, MUSIC, root-MUSIC, and 

MVDR in 1-D case and also in 2-D compared with traditional 

correlation and MUSIC, when only a single snapshot is 

available for DOA estimation and the SNR is very low. 

 

 
 

Figure 6(a). Performance analysis of 1-D PSO-Correlation 

and PSO-MUSIC with single snapshot K=1 

 

 
 

Figure 6(b). Performance analysis of 2-D PSO-Correlation 

and PSO-MUSIC with single snapshot K=1 

 

 
 

Figure 7(a). Performance analysis of the proposed methods 

1-D PSO-correlation by varying snapshots 

 

 
 

Figure 7(b). Performance analysis of the proposed methods 

1-D PSO-MUSIC by varying snapshots 

 

Then the efficiency of the suggested techniques PSO-

correlation and PSO-MUSIC is determined with the snapshots 

K. The performance of these algorithms is evaluated by 

increasing the number of snapshots to K=1, K=25, and 

K=1000, as illustrated in the Figures 7(a) and 7(b). The RMSE 

of the proposed techniques decreases significantly as the 

number of snapshots increases in comparison to traditional 

methods correlation and MUSIC Figure 5(a) and 5(b). 

Figure 8(a) and 8(b) compares the CRB for DOA estimation 

of correlation, PSO-correlation and MUSIC, PSO-MUSIC 

respectively. The CRB expression for 𝜃𝑖 as a function of SNR 

with single snapshot. It can be observed from the graph 8(a) 

and 8(b) that the expression is inversely proportional to the 

SNR and the proposed techniques exact more information of 

the parameter then the existing techniques with single 

snapshot. Figure 9 compares the performance of proposed 

techniques with 1000 snapshots.  
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Figure 8(a). Performance of the proposed method PSO-

CORRELATION with single snapshot for single source. The 

array configuration is ULA with M=8. Power source located 

at 40o with varying SNR 

 

 
 

Figure 8(b). Performance of the proposed method PSO-

MUSIC with single snapshot for single source. The array 

configuration is ULA with M=8. Power source located at 40o 

with varying SNR 

 

 
 

Figure 9. Performance analysis of the proposed methods 1-D 

PSO-MUSIC and PSO-Correlation with snapshots K=1000 

5. CONCLUSION 

 

In this paper, we have presented the efficiency of the 

proposed PSO-correlation and PSO-MUSIC methods for 1-D 

and 2-D DOA estimation using a single snapshot. Through 

extensive simulations and analysis, we have demonstrated that 

our proposed algorithms outperform traditional DOA 

estimation techniques in terms of accuracy, as indicated by the 

lower RMSE values obtained. 

By leveraging the PSO technique, our methods provide a 

systematic approach to locate the spatial spectrum peak, 

leading to improved estimation precision. The iterative 

updating of the global best particle location in both 1-D and 2-

D scenarios enables the determination of target positions with 

higher accuracy. Furthermore, we have employed the CRB to 

analyze and explain the estimation performance of our 

proposed algorithms, which further validates their 

effectiveness. 

Although our proposed PSO-correlation algorithm has 

demonstrated superior performance in single-snapshot DOA 

estimation, there are several potential avenues for further 

research and exploration. Some future directions for extending 

this work are: 

(i) Investigating the algorithm's ability to accurately 

estimate DOAs when faced with multiple 

simultaneously impinging signals 

(ii) Extending the study to environments with 

significant multi-path propagation can provide 

insights into the robustness and reliability of our 

proposed methods. 

 

In conclusion, the results presented in this paper 

demonstrate the effectiveness of the proposed PSO-correlation 

and PSO-MUSIC methods for single-snapshot DOA 

estimation in both 1-D and 2-D scenarios. The promising 

performance and the identified future research directions 

contribute to the advancement of DOA estimation techniques 

and open up possibilities for further improving the accuracy 

and applicability of such methods in practical radar systems. 
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