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Early detection of Coronavirus Disease 2019 (COVID-19), an infectious disease caused by 

the SARS-CoV-2 virus, is crucial in minimizing the risk of mortality and limiting its spread, 

particularly among asymptomatic individuals. Computed tomography (CT) scans of the 

chest are commonly employed for diagnosing this condition, necessitating the development 

of segmentation techniques for analyzing these images effectively. However, segmenting 

COVID-19 CT images poses considerable challenges due to the indistinct boundaries 

between gray and white matter, as well as the homogeneous and ambiguous structures within 

the regions. To address these issues, we propose a hybrid approach that combines 

Undecimated Wavelet Transform (UWT), Fuzzy Clustering (FC), and Anisotropic 

Diffusion Filter (ADF). Our method involves utilizing UWT to denoise CT images in the 

frequency domain, followed by an advanced fuzzy clustering technique based on texture 

features and local gray value entropy for autonomous segmentation of CT images. The 

segmented images are then processed with ADF to eliminate uncertainty and noise. The 

performance of our proposed method was evaluated visually and through similarity 

measurements using an open-source dataset. A comparative analysis with alternative 

segmentation methods was conducted using multiple metrics, including Dice, Jaccard, 

Precision, Accuracy, Sensitivity, F-measure, MCC, and Specificity. Our results demonstrate 

that the proposed hybrid approach significantly enhances the detection of COVID-19 from 

CT images. 
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1. INTRODUCTION

COVID-19, a lethal pandemic caused by the novel 

coronavirus, has had a profound global impact [1-3]. The 

Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

remains a primary diagnostic method for detecting, tracking, 

and studying the virus. However, it necessitates time-

consuming procedures in highly controlled environments, 

with test results typically taking up to four hours [2]. 

Furthermore, the potential for false-negative RT-PCR results 

pose a significant public health risk. Medical radiology 

imaging has emerged as an ultra-rapid alternative for detecting 

suspected or asymptomatic cases of COVID-19, which can 

rapidly progress to viral pneumonia and manifest as severe 

lung disease. Studies have demonstrated that computed 

tomography (CT) scans are more sensitive than RT-PCR tests 

for detecting the infection [3]. Consequently, accurately 

identifying the region of infection can reduce the time 

radiologists spend analyzing test results. 

Segmentation of CT images is considered one of the most 

challenging processes due to the presence of heterogeneous 

elements, textures, and edges [4]. As a result, developing 

effective pattern recognition and computer vision solutions for 

CT images has proven difficult [5]. Various researchers have 

proposed diverse segmentation algorithms for CT images, 

primarily focusing on the gray value distribution of pixels 

within chest images depicting gray matter, white matter, and 

pneumonia infections [6]. Consequently, segmentation 

techniques can be broadly classified as clustering, fuzzy, or 

thresholding-based methods. 

Clustering algorithms have been widely used for medical 

image classification [7], with similarity and dissimilarity 

serving as the primary criteria for segmenting grayscale values. 

Clustering approaches can be divided into soft and hard 

clustering methods [8]. Fuzzy clustering (FC) is a soft 

clustering algorithm that assigns each pixel's gray value to a 

distinct cluster based on distance measurements [9]. 

Numerous thresholding techniques, such as Watershed [10], 

automatic selection [11], Otsu's global [12], adaptive [13], and 

iterative [14], have been employed for CT image segmentation. 

Recently, wavelet transform (WT) methods have gained 

popularity for medical image segmentation tasks [15]. Mohsen 

et al. [16] utilized principal component analysis, discrete 

wavelet transforms, and deep learning to detect tumors; 

however, their evaluations were limited to MRI brain image 

data. 

While deep learning approaches have demonstrated 

remarkable performance in image segmentation, they require 

extensive training with numerous images [17], presenting a 

challenge for applications with limited image resources. In this 

context, unsupervised methods, such as clustering, are 

preferable, as they do not require additional images for 
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training. 

Despite the numerous CT image segmentation techniques 

developed by image analysts and researchers, most are tailored 

to specific conditions. For instance, expert and belief systems 

require accurate visualization of CT images for making correct 

inferences in information fusion. Moreover, there is an urgent 

need for a method that is not only effective for various CT 

images but also expeditious enough to support clinicians in 

saving time and lives. 

In light of the aforementioned literature, we propose a CT 

image segmentation approach that combines undecimated 

wavelet fuzzy clustering and an anisotropic diffusion filter 

(ADF) to address the uncertainty, noise, low resolution, and 

imprecision in COVID-19 CT images. This work is motivated 

by the desire to improve the segmentation of CT images 

depicting COVID-19 infections and help limit disease 

progression. 

The main contributions of this work include: 

•Proposing an image segmentation model for COVID-19 

CT images using a hybrid approach combining 

Undecimated Wavelet Fuzzy Clustering and Anisotropic 

Diffusion for segmenting chest CT images of COVID-19 

infected individuals. 

•Testing the proposed model with a collection of COVID-

19 CT images sourced from various datasets. 

•Evaluating the performance of our model by comparing it 

with previous works using multiple performance metrics, 

including Dice, Jaccard, Precision, Accuracy, Sensitivity, 

F-measure, MCC, and Specificity. 

 

 

2. PREREQUISITES FOR THE SUGGESTED METHOD 

 

A hybrid Method for precisely segmenting CT images of 

COVID-19 was suggested. The method was created primarily 

to remove abnormalities, like blind noise from CT scans. In 

order to conserve energy, the initial step of the proposed 

technique was to remove noise by employing UWT. The 

resulting image is then improved for better vision. The image 

was then segmented using FCMC, and an ADF was utilized to 

detect COVID-19 more effectively. In this part, a full 

description of the suggested method is presented. Figure1 

depicts a block diagram of the suggested method for the 

automatic segmentation of CT images. 

 

 
 

Figure 1. Block diagram of the approach that was proposed 

 

 
 

Figure 2. One level analysis filter bank for 2D UWT 
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2.1 Undecimated wavelet 

 

Nason and Silverman [18] suggested the undecimated 

wavelet transform (UWT) to tackle the shift invariance and 

nonredundancy difficulties in the discrete wavelet transform 

[19, 20]. The initial signal is not decimated by UWT. Instead 

of down sampling the signal after applying low pass or high 

pass filters, it modifies the filters at each level by padding with 

zeros [21]. When compared to classical wavelets, the UWT 

sub signals from the analysis have the same size as the original 

signal. UWT is an excellent choice for our method because it 

provides for more precise understanding of the detail 

coefficients and corresponding approximation. UWT 

exhibited low-cost computing as well [22, 23]. As a result, we 

used UWT to resolve the energy consumption time series data, 

generate identifiable high frequency and low frequency 

components known as details and approximation, and then 

supply these components into the transformer. 

The undecimated wavelet transform approximation sub-

band depicts the time-series' overall trend, whilst the detail sub 

band reflects small series differences. The UWT separates 

high and low frequencies by breaking down the time series 

with a combination hierarchical of high pass and low pass 

wavelet filters. Figure 2 depicts the implementation of an 

analysis filter bank for a one level 2D UWT. This structure 

generates three detailed sub-images (HL, HL, HH) that 

correspond to three different directional orientations 

(Horizontal, Vertical, and Diagonal), as well as a lower 

resolution sub-image LL. On the LL channel, the filter bank 

structure can be iterated similarly to produce multi-level 

decomposition. 

Consider x to be an image of size NˣM. UWT level n 

decomposition equation is [24]: 

 

{
 
 
 
 

 
 
 
 𝑥𝑛+1(𝑎, 𝑏) =∑ ∑ 𝑔𝑗

𝑛𝑔𝑘
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𝑘𝑗
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𝑘𝑗

𝑥𝑛+1
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𝑘𝑗

 (1) 

 

where, a=1,2,…,N and b=1,2,…,M, 𝑔𝑗
𝑛 and 𝑔𝑘

𝑛  are low pass 

filters, ℎ𝑗
𝑛 and ℎ𝑘

𝑛  are high pass filters, 𝑥𝑛  and 𝑥𝑛+1 

respectively represent the low frequency sub-band at levels n 

and n+1. While, 𝑥𝑛+1
ℎ , 𝑥𝑛+1

𝑣  and 𝑥𝑛+1
𝑑 are represent the 

horizontal, vertical and diagonal detail coefficients, 

respectively, at level n+1. 

The IUWT formula may be calculated as follows [24]:  
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(2) 

 

With 𝑔̃𝑗
𝑛 and 𝑔̃𝑘

𝑛  represent the reconstruction of low pass 

filters, ℎ̃𝑗
𝑛 and ℎ̃𝑘

𝑛  represent the reconstruction of high pass 

filters, 𝑥̃𝑛 and 𝑥̃𝑛+1 respectively represent the reconstruction 

low frequency sub-band at levels n and n+1. 

𝑥̃𝑛+1
ℎ , 𝑥̃𝑛+1

𝑣  and 𝑥̃𝑛+1
𝑑 represent the reconstructed horizontal, 

vertical and diagonal detail coefficients, respectively. 

Applying a one dimensional undecimated wavelet 

transform to columns and rows of an image, followed by 

shrinkage (threshold) denoising of a signal of one dimensional, 

is the essence of image threshold denoising. When the wavelet 

coefficients' absolute value exceeds a particular shrinkage, the 

soft shrinkage function is equal to minus the shrinkage; 

otherwise, it is equal to 0. This is referred to as [20, 25]: 

 

{
𝑧 = 𝑠𝑜𝑓𝑡(𝜔) = 𝑠𝑔𝑛(𝜔)max (|𝜔| − 𝜆, 0), |𝜔| > 𝜆

𝑧 = 𝑠𝑜𝑓𝑡(𝜔) = 0, |𝜔| ≤ 𝜆
 (3) 

 

With 𝜔 and 𝑧 respectively represent the input and output 

wavelet coefficients, 𝜎  the noise level might be known or 

unknown. 

𝜆 is the selected Shrinkage value defined as: 

 

𝜆 = σ√2log (𝑁) 
 

where, N is the signal's size. 

 

2.2 Fuzzy C-means clustering 

 

To obtain segmented results, Fuzzy C-Means Clustering 

was used. The segmented images were then passed around an 

ADF to eliminate image-based uncertainties, yielding the 

eventual segmented area.  

In this research, CT images are been segmented using 

unsupervised Fuzzy C-Means. FCMC was carefully chosen 

because it is regarded as one of the most effective pixel-based 

methods [26]. FCM includes an iterative process in which the 

dissimilarity measure, in the form of Euclidean distance, is 

minimized by upgrading the cluster centers and membership 

values in accordance with the following formulas [27]: 
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The principal aim is to find the minimum value of the 

objective function: 

 

( ) ( )
= =

−=
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C
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1 1

2
,   (6) 

 

This iterative procedure is repeated until a user-defined 

termination criterion is met. 

 

2.3 Anisotropic diffusion filter 

 

Anisotropic diffusion (AD) and isotropic diffusion (ID) are 

the two diffusion techniques used in image filtering. ADF 

outperforms IDF as an image filtering technique, in terms of 

preserving image detail [28]. Both diffusion methods utilize 
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the averaging operation. Because IDF executes the averaging 

process over edge and corner areas, which obscures important 

information and disturbs the fine details, the averaging method 

distorts image information [29]. However, despite the fact that 

ADF uses the averaging operation here as well, it only does so 

on either side of an object, edge, or boundary, giving it an 

advantage over IDF. It does not obscure essential details, but 

rather smoothest the best data point by computing the gradient 

for supplied image space [28, 30], and this procedure is 

referred to as the "edge pausing function''. The form of it is as 

follows:  

 

( ) ( )( ) ( )( )tyxItyxIgdiv
t

tyxI
,,,,

,,
=




 (7) 

 

With t represents the time parameter, I(x, y, 0) is the original 

image, I(x, y, t) denotes the gradient of the image I(x, y) at 

time t, and (∙) represents the conductance model. 

The conductance (∙) is chosen so that the diffusion retains a 

null impact at the boundaries (ℎ→∞) and produces its highest 

value inside homogeneous zones (ℎ→0). Following is a model 

for this formulation: 

 

( ) ( ) ,0lim,1lim
0
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To put it another way, relatively small intensity gradient 

values may be able to obstruct conduction in the case when the 

value of the conductance function is less. In the latter scenario 

when the conduction function value is greater, it refuses the 

output values of contingent intensity gradients. The following 

equations represent the most used conductance functions:  
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With "k" stands for the value of the "gradient magnitude 

threshold parameter," charge of administering diffusion speed 

or velocity. Eq. (8) offers a suitable and relevant solution for 

dealing with issues with high edge contrast problem 

statements. In contrast, Eq. (9) is better suited to a larger range 

of problem statements. 

 

 

3. MATERIALS  

 

3.1 Dataset acquisition for CT 

 

In hospitals, COVID-19 pneumonia is typically diagnosed 

using a chest x-ray [31]. Because CT has better visibility than 

a chest x-ray, consequently, this research will focus on CT for 

its experimental investigation. 

This research examined the COVID-19 pneumonia image 

CT database [31] to test the performance of the proposed 

image segmentation method. This database is made up of 100 

CT and has a resolution of 512×512 pixels; additionally, all of 

the images that are currently available are linked to Ground-

Truth-Images (GTI). 

3.2 Quality metrics 

 

In this study, a variety of metrics, including Dice, Jaccard, 

Precision, Accuracy, Sensitivity, Fmeasure, MCC, and 

Spectivity, are used to measure the correct and/or incorrect 

segmentation of COVID-19 that is detected in CT images. 

This is done in order to evaluate the performance of the 

effectiveness of our technique with various techniques. In this 

section, we will discuss the evaluation metrics that were used 

in this study. 

The abbreviations for "True Positive", "True Negative" and 

"False Positive" are "TP","TN" and "FP" respectively. 

 

3.2.1 Dice criterion 

The Dice criterion [32] is a method that can be used to 

measure the accuracy of segmentation, and it is computed 

using the following formula: 
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 (10) 

 

3.2.2 Jaccard 

The Jaccard index (JAC) [32] is determined as the 

intersection among two sets divided by the union of both sets. 

This can be written as follows:  

 

FNFPTP

TP

SS

SS
JAC

tg

tg

++
=




=

11

11

 
(11) 

 

The Jaccard score has a value range of 0 to 1. When the 

Jaccard score is higher, the image segmentation comes out 

looking better. 

Mention that the Jaccard score is the most essential metric 

to evaluate the segmentation result performance in many of the 

works that have been published on the subject of medical 

image segmentation [32]. 

 

3.2.3 Accuracy 

Determines how effectively a binary segmentation 

technique can recognize or rule out a condition [33]:  

 

TNTPFNFP

TNTP
accuracy

+++

+
=  (12) 

 

3.2.4 Precision 

In actuality, the precision, also known as the Positive 

Predictive Rate (PPR), is the ratio of the accurate statistical 

results to those of the diagnostic tests, or, to put it another way, 

the real positive results: 

 

FPTP

TP
ecision

+
=Pr  (13) 

 

3.2.5 Sensitivity 

The sensitivity rate, also known as the true positive rate, 

indicates the proportion of lesions that are found: 

 

FNTP

TP
ysensitivit

+
=  (14) 

 

3.2.6 F-measure 

The F-measure [34] is a metric that is used quite frequently 
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to evaluate segmentation results. It is composed of the 

harmonic average of the performance measures for precision 

(13) and sensitivity (14), which are as follows:  

 

FPFNTP

TP
F

++
=

2

2  
(15) 

 

3.2.7 Matthews correlation coefficient 

In point of fact, the Matthews correlation coefficient (MCC) 

is a measurement that determines the correlation between both 

predicted and labels of ground truth [34].  

The MCC values can range from -1 to 1, with a value of -1 

indicating a completely disjoint prediction and a value of 1 

indicating an ideal prediction. 

 

( ) ( )( ) ( )FNTPFPTPFNTNFPTN

FPFNTPTN
MCC

++++

−
=

...

..  (16) 

 

3.2.8 Specitivity 

The term True Negative Rate (TNR) actually indicates the 

capacity of the segmentation technique to eliminate redundant 

regions or regions wherein plaques are not present: 

 

FPTN

TN
yspecificit

+
=  (17) 

 

 

4. EXPERIMENTAL RESULTS 

 

This section presents the experimental results that were 

obtained by contrasting the quantitative and visual 

effectiveness of the proposed approach to detection COVID-

19 against the other current techniques that have been 

satisfactorily applied to a variety of domains with good 

performance, including Inf-Net [35], U-Net [36], and U-Net++ 

[37]. In order to accomplish this object, the simulation 

experiment was conducted out on seven different medical 

images taken from database [31]. 

Quantitative Results: Statistical analysis was conducted 

applying eight metrics: Dice, Jaccard, Precision, Accuracy, 

Sensitivity, Fmeasure, MCC, and Specitivity. The quantitative 

outcomes are presented in Table 1. The values that were 

achieved using the proposed approach were highlighted in 

bold if they were superior to the values that were obtained 

through the other methods. When the values for Dice, Jaccard, 

Precision, Accuracy, Sensitivity, Fmeasure, MCC, and 

Spectivity are high, the larger the quantity of contrast 

information conveyed from the input images to the resultant 

segmented images. The proposed approach performs 

significantly better than Inf-Net, U-Net, and U-Net++ in terms 

of Dice, Jaccard, Precision, Accuracy, Sensitivity, Fmeasure, 

MCC, and Specitivity. In Table 1, the remaining seven 

COVID-19 images provided additional evidence that the 

proposed strategy is effective. Again, the findings 

demonstrated that the proposed method is effective in 

determining whether or not a patient has a lung infection based 

on different images. The proposed model is intended to serve 

as a diagnostic assistant, and it is anticipated that it will 

provide more information regarding the affected regions. In 

addition, we measure the amount of time it takes the proposed 

approach to run in comparison to the other techniques. The 

length of time each image is displayed for can be found in 

Table 1. Particularly in comparison to Inf-Net, U-Net, and U-

Net++, the proposed approach is noticeably quicker. In a 

comprehensive analysis, we can observe that the proposed 

approach performs the very best when compared to other 

techniques in both quantitative evaluations. 

 

 
 

Figure 3. Visual comparison of the findings of the segmentation of lung infections 
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Table 1. Comparison of the proposed approach with other segmentation approaches using seven COVID-19 images 

 
Images Metrics Inf-Net Semi-Inf-Net UNet UNet++ Proposed Method 

CT1 

Time (s) 184 174 190 200 16.8803 

Accuracy 0.9719 0.9749 0.9502 0.9516 0.9809 

Sensitivity 0.7506 0.7664 0.6226 0.7385 0.7653 

Fmeasure 0.8294 0.8472 0.6945 0.7743 0.8503 

Precision 0.9265 0.9470 0.7851 0.8138 0.9574 

MCC 0.8196 0.8392 0.6731 0.7540 0.8484 

Dice 0.8294 0.8472 0.6945 0.7743 0.8503 

Jaccard 0.7085 0.7349 0.5319 0.6318 0.7398 

Specitivity 0.9941 0.9957 0.9830 0.9831 0.9944 

CT2 

Time (s) 190 170 210 205 21.7729 

Accuracy 0.9802 0.9873 0.9585 0.8906 0.9883 

Sensitivity 0.7666 0.6777 0.6405 0.5282 0.9073 

Fmeasure 0.6464 0.7149 0.4212 0.2810 0.7401 

Precision 0.5588 0.7565 0.3137 0.1663 0.7773 

MCC 0.6450 0.7095 0.4300 0.3614 0.7307 

Dice 0.6464 0.7149 0.4212 0.2810 0.7401 

Jaccard 0.4776 0.5563 0.2668 0.1635 0.5822 

Specitivity 0.9854 0.9947 0.9662 0.8902 0.9960 

CT3 

Time (s) 150 167 201 199 18.6662 

Accuracy 0.9215 0.9345 0.8745 0.9385 0.9497 

Sensitivity 0.8313 0.8598 0.6578 0.6964 0.9002 

Fmeasure 0.8100 0.8410 0.6785 0.7365 0.8549 

Precision 0.7897 0.8229 0.7006 0.7815 0.8140 

MCC 0.7609 0.8001 0.6011 0.8177 0.8765 

Dice 0.8100 0.8410 0.6785 0.8549 0.8465 

Jaccard 0.6806 0.7256 0.5135 0.7466 0.7829 

Specitivity 0.9442 0.9533 0.9291 0.9481 0.9549 

CT4 

Time (s) 188 193 220 217 24.4575 

Accuracy 0.9591 0.9611 0.9332 0.9599 0.9710 

Sensitivity 0.6542 0.6389 0.5840 0.6869 0.6423 

Fmeasure 0.7389 0.7439 0.6074 0.7517 0.7577 

Precision 0.8487 0.8900 0.6326 0.8301 0.8546 

MCC 0.7242 0.7351 0.5715 0.7340 0.7486 

Dice 0.7389 0.7439 0.6074 0.7517 0.7577 

Jaccard 0.5859 0.5922 0.4361 0.6022 0.6867 

Specitivity 0.9887 0.9923 0.9671 0.9864 0.9961 

CT5 

Time (s) 182 185 230 219 23.8499 

Accuracy 0.9251 0.9313 0.8874 0.9328 0.9347 

Sensitivity 0.8455 0.8432 0.7623 0.8793 0.8852 

Fmeasure 0.8785 0.8871 0.8125 0.8239 0.8960 

Precision 0.9141 0.9358 0.8698 0.9134 0.9537 

MCC 0.8258 0.8403 0.7358 0.8488 0.8518 

Dice 0.8785 0.8871 0.8125 0. 6239 0. 8960 

Jaccard 0.7833 0.7971 0.6842 0. 4534 0. 8116 

Specitivity 0.9626 0.9728 0.9463 0.9607 0.9770 

CT6 

Time (s) 191 184 207 218 23.9660 

Accuracy 0.8875 0.8944 0.8575 0.8845 0.8885 

Sensitivity 0.8203 0.8288 0.8924 0.4526 0.9179 

Fmeasure 0.8401 0.8497 0.8186 0.5912 0.8547 

Precision 0.8609 0.8718 0.7560 0.7996 0.8820 

MCC 0.7540 0.7690 0.7091 0.4983 0.7685 

Dice 0.8401 0.8497 0.8186 0.5912 0.8547 

Jaccard 0.7243 0.7387 0.6929 0.4196 0.7462 

Specitivity 0.9253 0.9314 0.8378 0.8704 0.9557 

CT7 

Time (s) 184 178 217 226 19.8066 

Accuracy 0.9913 0.9929 0.9482 0.8668 0.9959 

Sensitivity 0.6369 0.7200 0.8930 0.8521 0.8945 

Fmeasure 0.5995 0.6730 0.2600 0.1153 0.6383 

Precision 0.5663 0.6316 0.1522 0.0619 0.6349 

MCC 0.5962 0.6708 0.3565 0.2079 0.6771 

Dice 0.5995 0.6730 0.2600 0.1153 0.7383 

Jaccard 0.4281 0.5071 0.1494 0.0612 0.5036 

Specitivity 0.9950 0.9957 0.9488 0.8669 0.9977 

Qualitative Results: The findings of the segmentation of 

the lung infection, which are illustrated in Figure 3, suggest 

that the proposed method works better than the methods used 

by the other researchers noticeably. In particular, they produce 

segmentation results which are near to the ground-truth and 

contain less mis-segmented tissue. U-Net and U-Net++, on the 
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other hand, present dissatisfying results, with a significant 

number of improperly segmented tissues. Although the results 

are improved by using Inf-Net, this method is still 

unpromising. The method that we proposed was much more 

effective than the other methods. It was better able to identify 

the pixels of the white and gray parts areas more obviously. 

Consequently, this technique imitates the process that actual 

clinicians use to segment lung infection areas from CT slices; 

as a result, it achieves a performance that is quite promising. 

We also provide the results of the CT images dataset [31] in 

Figure 4. As can be shown, the proposed hybrid technique 

constantly achieves the best results compared to all of the other 

techniques. The results of the experiments showed that the 

proposed technique was superior in terms of accurately 

obtaining lung infection segmentation from the original CT 

images. 

 

 

 

 

 
 

Figure 4. Visual comparison of the findings of the 

segmentation of lung infections of dataset 
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5. CONCLUSIONS 

 

Researchers working in the field of computer vision face a 

significant obstacle in the form of an accurate segmentation of 

CT scan images. As a result, the purpose of this work was to 

offer a hybrid approach for segmenting images of lung CT 

infections taken from patients diagnosed with COVID-19. the 

method combining UWT, fuzzy C-means clustering, and ADF 

successfully yielded segmented images of a high quality. 

UWT based FCMC was utilized to get pixels of the white and 

gray matter more obviously. Over and above, the ADF was 

utilized to eliminate the intrinsic ambiguities, impreciseness, 

uncertainties, and noise from the resulting segmented images. 

The proposed approach has considerable potential for use in 

analyzing COVID-19 diagnosis, such as quantifying infected 

areas and tracking longitudinal sickness change. It should be 

noted that the suggested approach can detect items with low 

intensity contrast between natural tissues and infections. This 

phenomenon frequently occurs in natural disguise objects. 

Even though earlier research has demonstrated that deep 

learning models [35] had good segmentation performance, the 

hybrid method that was presented still managed to outperform 

the models that were currently in use on the small dataset. In 

the future, we plan to apply the proposed method to segment 

other kinds of CT images by changeful the segmentation 

processes. 
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NOMENCLATURE 

 

gj
n , gk

n Low Pass Filters 

hj
n , hk

n High Pass Filters 

xn the low frequency sub-band at levels n 

xn+1 the low frequency sub-band at levels n+1 

xn+1
h  the horizontal detail coefficients at level 

n+1 

xn+1
v  the vertical detail coefficients, at level n+1 

xn+1
d  the diagonal detail coefficients, at level n+1 

g̃j
n , g̃k

n the reconstruction of low pass filters 

h̃j
n , h̃k

n the reconstruction of high pass filters 

x̃n 
the reconstruction low frequency sub-band 

at levels n 

x̃n+1 
the reconstruction low frequency sub-band 

at levels n+1 

x̃n+1
h  

the reconstructed horizontal, detail 

coefficients 

x̃n+1
v  the reconstructed vertical detail coefficients 

x̃n+1
d  

the reconstructed diagonal detail 

coefficients 

xi the ith data point 

vj the jth cluster center 

μij 
the degree of membership of the ith data 

point to the jth cluster 

 

Greek symbols 

 

ω the input wavelet coefficients 

z the output wavelet coefficients 

σ the noise level 
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λ the selected Shrinkage value 

N the signal's size 

c the number of clusters 

m 
is a fuzziness parameter that determines the 

degree of fuzziness in the clustering. 
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