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Electromyogram (EMG) signals are very important in recognizing hand and finger 

movements and controlling prosthesis movements. In recent years, EMG signals have 

become popular in designing and controlling human-machine interactions and rehabilitation 

equipment such as robotic prostheses. This study aims to develop an innovative model based 

on EMG signal in the classification of basic hand grip movements that can improve 

prosthetic hand movements for individuals who have lost some limbs for various reasons. 

The proposed approach consists of Time Domain Descriptors (TDD), convolutional neural 

network (CNN), Long short-term memory (LSTM) techniques, Selection Minimum 

Redundancy Maximum Relationship (MRMR), and Support Vector Machine (SVM). First, 

it is applied to TDD, CNN, and LSTM models to extract features from EMG signals. It is 

then applied as input to MRMR to select the most effective features from the obtained 

features. Finally, SVM is applied to classify different hand grip movements. The 

effectiveness of the proposed model was evaluated with the EMG hand gestures dataset in 

the publicly available UCI repository. In experimental studies, a 95.63% accuracy rate was 

achieved in the first two of the five subjects and 100% accuracy in the remaining three 

subjects. As a result, it achieved an average specificity of 99.66% and an accuracy of 98.34% 

for five subjects. In addition, the experimental results of the proposed hybrid model show 

that when compared to the most advanced methods using the same dataset, the model 

achieves a higher classification rate and produces superior results compared to several 

previous studies. Therefore, this study reveals that it can be used as a low-cost control unit 

that can accurately classify hand grips from EMG signals with high accuracy. 
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1. INTRODUCTION

People worldwide lose some of their limbs due to burns, 

diseases such as diabetes, and work and traffic accidents. A 

study conducted in France in 2013 stated that approximately 

60% of these cases caused damage to the arm region [1]. This 

seriously restricts people's daily activities and significantly 

reduces their quality of life. These problems are increasingly 

interesting in upper extremity rehabilitation devices with 

recurrent and capable of performing daily activities of 

individuals and providing auxiliary power [2].  

Electromyography (EMG) is an electrophysiology 

procedure used to evaluate and diagnose the functions of 

muscle and nerve cells. EMG, which provides detailed data on 

the state and functioning of skeletal muscles, is the signal 

generated during the contraction of skeletal muscles. EMG 

provides the acquisition of bio-electrical signals of Motor Unit 

Action Potentials (MUAPs) [2]. EMG is divided into two 

according to the reception of bio-electrical signals. Surface 

EMG (sEMG) is generally preferred in subjects with limb loss 

and is taken with electrodes placed above the skin, while 

invasive EMG is used for movement restrictions in human 

bodies and is taken with needle electrodes placed in the 

muscles [3]. The location of the electrodes used to record 

muscle activities may have more data than a motor unit, as the 

muscle fibers of the motor units in different muscle parts are 

interconnected. In this respect, it is very important for 

researchers to record the correct information of the EMG 

signal to recognize finger movements individually and in 

combination to control robotic and artificial organs. Because 

the human hand enables it to perform a wide variety of tasks, 

including precise control and rough actions. We use our hands 

to hold objects, pull, push, perform delicate tasks such as 

typing, and make gestures during communication. These 

actions are provided by precisely controlled muscles and 

sensors sensitive to muscle lengths and epidermal sensors such 

as touch, temperature, and pressure [4]. Therefore, since 

sEMG signals reveal human muscle activities and distinguish 

wrist, hand, and finger movements, they have been effectively 

used recently to control state-of-the-art prostheses and design 

skeletal prosthetic hands [4-8]. 

In the literature, statistical algorithms, wavelet transform, 

empirical mode decomposition (EMD), artificial intelligence-

based feature extraction, and classifier methods are generally 

preferred to classify basic hand grasp movements. Lee et al. 

[9] proposed a machine learning-based model to classify hand

and finger movements. EMG signals from the hand and finger

motions of ten volunteers were employed in their

investigation. Using an artificial neural network (ANN) and

support vector machine (SVM), they were able to classify the

EMG signals measured from three channels with an accuracy

of 94% and 87.40%, respectively. Bhattachargee et al. [10]

used Fourier and statistical features such as Root Mean Square

(RMS), std, Variance, and Median to classify finger
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movements with EMG signals. The obtained features reached 

98.50% accuracy by applying them to the supervised learning-

based Gradient Boosting (GB) classification algorithm. 

Fang et al. [11] proposed a 2D EMG map to examine the 

relationship between hand movements and multichannel 

sEMG signals. For this purpose, they developed a special 16-

channel electrode to collect sEMG signals on the forearm and 

used differential root mean square (DRMS) values as a feature, 

which references the relationship between adjacent EMG 

channels from sEMG signals from these multichannel 

electrodes. In distinguishing the four-hand movements, 

DRMS outperformed the traditional root mean square (RMS) 

approach with K-means and fuzzy C-means by 29.0% and 

36.8%, respectively. Nishad et al. [12] developed the wavelet 

transform-based filter bank method to decompose the cross-

covariance of sEMG signals to classify basic hand movements. 

They sequenced the features extracted with Kraskov entropy 

from the sEMG signals obtained from five subjects. They 

achieved 98.55% classification accuracy with these features, 

which were then applied to the k-nearest neighbor (k-NN) 

classifier. 

Sapsanis et al. [13] used an EMD approach to classify 

baseline hand movement from EMG signals. This approach 

extracts different features in EMG signals' time and frequency 

domain. Then, the features were reduced by principal 

component analysis and applied to a linear classifier for 

classification. Subaşı et al. [14] proposed a model for 

prosthetic hand control based on wavelet packet transform 

(WPT) from sEMG signals and multi-scale principal 

component analysis (MSPCA). They used the statistical values 

of the subbands of the sEMG signals as features. To provide 

better classification performance, the first reduced the feature 

vector size with MSPCA and then applied decision trees as 

input for the classification. They achieved 98.33% 

classification accuracy in experimental studies. 

Khusaba et al. [15] used two EMG electrodes placed on the 

forearm to improve control of the prosthetic fingers. He used 

EMG signals from these two electrodes and individual and 

combined finger movements that included ten different hand 

movements. Miften et al. [16] proposed a method for 

recognizing hand movements using EMG signals, including 

logarithmic spectrogram-based graph signal (LSGS), 

AdaBoost k-means (AB-k-means), and feature selection. In 

the study, effective feature selection was made by extracting 

features from EMG signals with the LSGS model. Then, the 

selected EMG features were classified into the AB-k-model. 

Aslan et al. [17] performed feature extraction using 

Distribution Entropy (DisEn) and Normal Cumulative 

Distribution Function (NCDF) methods to detect hand 

movements from EMG signals. Then these features used 

classifiers such as SVM and extreme learning machine (ELM) 

to classify hand gestures. In experimental studies, it 

distinguished hand movements with 98% accuracy 

performance. Rabin et al. [18] obtained frequency and time 

characteristics from EMG signals by short-time Fourier 

transform (STFT). Their studies have reduced the size of the 

extracted features by two-dimensional reduction methods. 

Then, they analyzed the effect of size reduction techniques on 

classification performance. The experimental studies found 

that the diffusion map outperformed the principal component 

analysis method. Feature extraction was performed using the 

Correlation-Similarity Analysis (F-DFA) to classify the EMG 

signals and RMS methods with non-overlapping windows to 

measure statistical similarity. The extracted features were 

classified by machine learning methods such as decision trees 

and k-NN [19, 20]. On the other hand, Tuncer et al. [21] 

developed a new model for prosthetic hand control based on 

the discrete wavelet transform and the triplet model. They used 

a two-level feature selection method to select the most 

effective features obtained from this model and a k-NN 

classifier to classify the selected features.  

As seen in the literature, many methods have been 

developed for detecting hand grasp movements from EMG 

signals and creating prosthetic hands. Except for a few recent 

studies, techniques such as wavelet transform, EMD, and 

principal component analysis for feature reduction have been 

preferred. Although significant achievements are achieved in 

current studies, there are disadvantages, such as the high 

number of features. Therefore, these methods are not preferred 

in real-time applications. 

This study is that when the works in the literature are 

examined, as far as we know, the features obtained from the 

use of LSTM, CNN, and TDD approaches together as an 

attribute in the classification of hand grip movements have not 

been found. Because new and efficient feature extraction is 

adopted, which can process stationary and nonlinear 

biomedical signals. In this respect, the proposed hybrid model 

will significantly contribute to designing an effective and low-

cost prosthetic hand that can support individuals with partial 

or complete hand loss using a combined LSTM, CNN, and 

TDD approach. The main contributions of this article are 

summarized as follows: 

 

➢ This study proposes a new framework with TDD and 

deep learning-based framework to analyze EMG 

signals and also remove EMG properties that can 

recognize hand comparatives.  

➢ The study focuses on the design of the Minimal-

Radiancy-Maximal-Relevance selection to select the 

most effective features.  

➢ The study has preferred SVM to classify the most 

effective feature of different handicrafts.  

➢ Finally, the study also evaluates the performance of 

the proposed model by comparing it with state-of-

the-art methodologies.  

 

The rest of the paper is organized as follows. The Section 2, 

the dataset and the proposed methodology are described. 

Section 3 discusses the experimental setup, the experimental 

results, and our findings. Section 4 presents the results and 

future work. 

 

 

2. METHODOLOGY 

 

The main purpose of this study is to present a model that 

can automatically distinguish hand grip movements from 

EMG signals for people with partial or complete hand loss. 

The model, the general framework given in Figure 1, consists 

of three stages. In the first stage, TDD, CNN, and LSTM 

models are extracted features from EMG signals. Then, with 

the MRMR feature selection approach, the most effective 

features were selected among these features. Finally, SVM is 

used to classify hand grip movements from these most 

effective features. 
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Figure 1. General framework of proposed model 

 

 
 

Figure 2. Six hand grip movements and the EMG signals of each electrode for these movements 
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2.1 EMG dataset 

 

We used the EMG hand grasps signals dataset from the UC 

Irvine Machine Learning Repository, freely available for study 

[22]. It used two EMG channels to record EMG data. EMG 

signals in the dataset were collected from five healthy subjects 

two males and three females, aged 20 to 22. Flexor Carpi 

Ulnaris and Extensor Carpi Radialis, Longus, and Brevis 

surface electrodes attached to each subject's hands with elastic 

bands on the two forearm surfaces were used to record 

information about muscle activities. 

Figure 2 shows six hand grasp movements and the EMG 

signals of each electrode of this hand grasp. The national 

instrument LabVIEW was used to sample the EMG signals at 

500 Hz. Then, a Butterworth bandpass filter with low and high 

cutoff values of 15 Hz and 500 Hz was used to de-noise from 

the EMG signals. Also, a Notch filter was used at 50 Hz to 

eliminate line noises. Each subject was asked to perform each 

hand grasp movement for 6 seconds with the free force: 

Cylindrical (CY), Hook (HO), Lateral (LA), Palmar (PA), Tip 

(TI) and Spherical (SP). Each subject repeated these six hand 

grasp movements 30 times with the free speed, totaling 180 

times. There are EMG signals of 900 hand grasps in total in 

the dataset. Besides, one healthy subject (male, 22-year-old) 

conducted the six grasps 100 times each for 3 consecutive days. 

The measured time is 5 sec. 

 

2.2 CNN 

 

In recent years, Convolutional Neural Networks (CNN) is a 

typical deep learning method widely applied in fields such as 

image processing, pattern recognition, speech recognition, and 

medical engineering [23-27]. The biggest advantage of CNN 

structures is that there is no need for manual feature selection. 

CNN structures can be designed as one-dimensional (1D), 

two-dimensional (2D), or three-dimensional (3D) [28]. 1D-

CNN structures are used in serial data processing, 2D-CNN in 

image and text recognition, and 3D-CNN in video and medical 

image recognition [24]. CNN generally consists of input, 

convolution, pooling, fully connected, and output layers. 

The input layer can process multidimensional data in 

standardized forms. Standardized input data increases the 

efficiency of CNN by helping to improve learning 

performance. 

The convolution layer is an important layer for CNN and 

uses the convolution operation denoted by “∗” instead of 

general matrix multiplication. The learnable parameters of this 

layer consist of a set of learnable filters known as kernels. This 

layer creates a data matrix that scrolls through all the input data 

and multiplies it with the core data to extract some features of 

that data. In short, the convolution layer performs feature 

extraction. The neurons in this layer are called filters; they take 

the input data and turn it into output feature maps [29, 30]. 

Mathematically, the filter shifts from left to right until it 

reaches the maximum width of the image. Then the filter starts 

from the leftmost value of the next row. The process continues 

until all input data is complete. As a result, the output of each 

convolution layer is the convolution result of multiple input 

properties, and its mathematical relation is defined as follows 

[31]: 

 

𝑦𝑖
𝑙+1(𝑗) = 𝐾𝑖

𝑙 ∗ 𝑥𝑙(𝑗) + 𝑏𝑖
𝑙 (1) 

 

where, 𝐾𝑖
𝑙 describe the weight of the ith filter kernel at layer l, 

𝑥𝑙(𝑗) describe the jth local region at layer l, 𝑏𝑖
𝑙  describe the 

bias of the ith filter kernel layer l, and 𝑦𝑖
𝑙+1(𝑗) describe the 

input of the jth neuron in frame I of layer l+1. 

After the convolution operations, it is applied to the 

activation function to enable the network to obtain a nonlinear 

expression of the input signal to make the learned features 

more divisible. In this step, Rectified Linear Unit (RELU) is 

generally used in the activation process to accelerate the CNN. 

The property of this function is that the derivative of the 

function is always one as long as the input value is greater than 

0. Thus, the gradient explosion and gradient vanishing 

problems are also solved. In general, RELU can be defined as 

follows [32]: 

 

𝑎𝑖
𝑙+1(𝑗) = 𝑓 (𝑦𝑖

𝑙+1(𝑗)) = max{0, 𝑦𝑖
𝑙+1(𝑗)} (2) 

 

The pooling layer is used to reduce the parameters of the 

neural network. With this layer, data is down sampled, 

reducing the width and height of a large matrix, reducing 

computational cost, and preventing overfitting. While average 

and maximum pooling can be used in this process, maximum 

pooling is more commonly used in practice. The maximum 

pooling formula is as follows [32]: 

 

𝑝𝑖
𝑙+1(𝑗) = max

(𝑗−1)𝑊+1≤𝑡≤𝑗𝑊
{𝑞𝑖

𝑙(𝑡)} (3) 

 

where, (𝑡 ∈ [(1 − 𝑗)𝑊 + 1, 𝑗𝑊] represent the width pooling 

and 𝑝𝑖
𝑙+1(𝑗), represent the value of the neuron at layer l+1, and 

𝑞𝑖
𝑙(𝑡) represent the value tth neuron in the ith feature at layer 

l. 

The fully connected layer connects the neurons of the 

previous and subsequent layers. It usually transforms the 

output of the last pooling layer into a one-dimensional 

flattened matrix that also functions as the input of the fully 

connected layer. Also, this layer can integrate differentiated 

local information into the convolution or pooling layer. Fully 

connected layer general formula [32]: 

 

𝑧𝑙+1(𝑗) = 𝑓 (∑∑𝑊𝑖𝑡𝑗
𝑙 𝑎𝑖

𝑙

𝑛

𝑡=1

(𝑡)

𝑚

𝑖=1

+ 𝑏𝑗
𝑙)  (4) 

 

where, f represents the RELU function, and zl+1(j) represents 

the activation value of the layer l+1. The output layer is known 

as the layer where classification labels are created. In this layer, 

a softmax classifier is generally based on logistic regression 

and has linear classifier features with a multi-class 

classification format. 

 

 
 

Figure 3. Details on the designed CNN architecture 

 

The 1D-CNN architecture designed for this study is shown 

in Figure 3. The proposed 1D-CNN has five Convolution 

(Conv) layers with filter sizes of 1×1, 2×2, 4×4, 2×2 and 1×1 

respectively. Also, the two release layers have a release rate of 

0.051 and 0.1, respectively. fully connected layers contain 100 

and 6 neurons, respectively. 
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2.3 LSTM 

 

LSTM, whose general structure is given in Figure 4, is a 

special Recurrent Neural Network (RNA) model developed by 

Hochreiter and Schmidhuberm [32]. 

 

 
 

Figure 4. The architecture of the LSTM cell 

 

LSTM structurally has a memory cell and gate mechanism 

to solve the gradient burst and gradient disappearance 

problems that mainly occur in RNA models [31-34]. Thanks 

to the memory cell's structure, it provides long-term recall of 

information [35]. The update gate determines this memory cell 

(gt), input gate (it), forget gate (ft), and output gate (ot) 

mechanisms [34], and this process is performed by the six 

equations given below [31]. 

 

𝑔𝑡 = 𝑡𝑎𝑛ℎ𝜎(𝑊𝑔𝑥𝑡 +𝑊𝑔ℎ𝑡−1 + 𝑏𝑔) (5) 

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) (6) 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) (7) 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +𝑊𝑜ℎ𝑡−1 + 𝑏𝑜) (8) 

 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡 (9) 

 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (10) 

 

where, tanh(·) is the hyperbolic tangent function, W refers to 

the weights matrix, σ(·) refers to the sigmoid function, ct refers 

to the memory cell, ht refers to the output of the LSTM, and b 

refers to the bias vector. The 1D-LSTM architecture designed 

for this study is shown in Figure 5. The proposed 1D-LSTM 

contains two fully connected (fc) layers of 100 and 6 neurons, 

respectively, along with two dropout layers with a 0.5 dropout 

rate. Softmax and Class layers are also present. 

 

 
 

Figure 5. Details on the designed LSTM architecture 

 

2.4 Time-domain descriptors 

 

Time-Domain Descriptors (TDD), whose block diagram is 

given in Figure 6, are one method used to classify hand 

movements from EMG signals [36]. This algorithm can be 

represented as a function of X[k] Discrete Fourier transform 

(DFT) frequency, using the DFT first from the EMG signal 

defined as X(j) with j=1, 2, …, N, N length, and fs sampling 

frequency. The basis of TDD method is based on Parseval's 

theorem, whose principal derivatives state that the sum of the 

squares of the function is equal to the sum of the squares of its 

transformation. 

 

 
 

Figure 6. Block diagram of the time-domain descriptors [36] 
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∑ |𝑥[𝑗]|2
𝑁−1

𝑗=0
=
1

𝑁
∑ |𝑋[𝑘]𝑋∗[𝑘]|

𝑁−1

𝑗=0

=∑ 𝑃[𝑘]
𝑁−1

𝑗=0
 

(11) 

 

where, P[k] is the power spectrum with phase omitted. k is the 

frequency index, and the result is the product of multiplying 

X[k] by its conjugate X[k] divided by N. 

As a result of the fact that the whole frequency definition of 

the Fourier transform is symmetric to the zero frequency, 

direct access to the power spectral density in the time domain 

is challenging. Therefore, we must deal with the entire 

spectrum, including positive and negative frequencies. 

However, this situation can be solved by using Parseval's 

theorem and the time derivative property of the Fourier 

transform for nonzero values. As seen in Figure 6, TDD 

consists of six features (f1, f2, ..., f6), the details of which are 

given below [36, 37]. 

Root squared zero order moment: This property shows the 

total power in the frequency domain and can be described by 

the following equation: 

 

�̅�0 = √∑ 𝑥[𝑗]2
𝑁−1

𝑗=0
 (12) 

 

Root squared second and fourth order moments: Hjorth 

argues that the second moment can be seen as a power, but as 

a power with a varying spectrum, denoted by the notation 

k2P[k], which corresponds to the frequency function kX[k]. 

The first derivative of the time function is the time equivalent 

of a frequency function multiplied by k [38]. 

 

�̅�2 = √∑ 𝑘2𝑃[𝑘]
𝑁−1

𝑗=0
= √

1

𝑁
∑ (𝑘𝑋[𝑘])2

𝑁−1

𝑗=0

= √
1

𝑁
∑ (∆𝑥[𝑗])2

𝑁−1

𝑗=0
  

(13) 

 

A repetition of this procedure gives the moment. 

 

�̅�4 = √∑ 𝑘4𝑃[𝑘]
𝑁−1

𝑗=0
= √

1

𝑁
∑ (∆2𝑥[𝑗])2

𝑁−1

𝑗=0
  (14) 

 

Similarly, like the 4th order moment in Eq. (14), the 8th 

order moment can be defined as follows: 

 

�̅�8 = √∑ 𝑘8𝑃[𝑘]
𝑁−1

𝑗=0
= √

1

𝑁
∑ (∆4𝑥[𝑗])2

𝑁−1

𝑗=0
 (15) 

 

Taking the 4th and 8th derivatives allows us to calculate the 

spectral moments in the time domain while reducing the 

signal's overall energy. Therefore, we apply a power 

transformation as follows to normalize the m0, m4, and m8 

range and reduce the effect of noise on all moment-based 

features. 

 

𝑚0 =
�̅�0

𝜆

𝜆
,𝑚4 =

�̅�4
𝜆

𝜆
,𝑚8 =

�̅�8
𝜆

𝜆
 (16) 

 

With λ is empirically set to 0.1. Following that, the first 

three features derived from these variables are defined as 

follows: 

 
𝑓1 = log(𝑚0) , 𝑓2 = log(𝑚0 −𝑚4) , 𝑓3 = log(𝑚0 −𝑚8) (17) 

 

Sparseness (SP): The sparseness feature measures how 

much energy is contained in a vector's few constituent parts. It 

is provided as. 

 

𝑓4 = log (
𝑚0

√𝑚0 −𝑚2√𝑚0 −𝑚4

) (18) 

 

Irregularity Factor (IF): a measurement that reflects the 

proportion of upward zero crossings to peak crossings. Only 

in terms of their spectral moments can the number of upward 

zero crossings (ZC) and the number of peaks (NP) in a random 

signal be represented. The equivalent characteristic can be 

expressed as: 

 

𝑓5 = log (
𝑍𝐶

𝑁𝑃
) = log

(

 
√
𝑚4

𝑚0

√
𝑚8

𝑚4)

 = log (
𝑚4

√𝑚0𝑚8

) (19) 

 

Waveform Length Ratio (WL): given that the waveform 

length feature is defined as the addition of the absolute values 

of the signal derivatives, we describe our WL feature as the 

ratio of the first derivative's waveform length to the second 

derivative's waveform length. 

 

𝑓6 = log (
∑ |∆2𝑥|𝑁−1
𝑗=0

∑ |∆4𝑥|𝑁−1
𝑗=0

) (20) 

 

With the approach of TDD detailed above, 19 features are 

extracted from EMG signals, each channel represented by 

1×3000 data points and 19×2 features for two channels. A 

19×12 feature matrix is obtained from the EMG signals of 

each person's six basic hand movements. 

 

2.5 Minimal-redundancy-maximal-relevance 

 

MRMR is used to improve the performance of the 

relationship between the features obtained in feature extraction 

and the target classes [39]. The redundancy of some features 

in the feature extraction process can negatively affect the 

learning accuracy [40]. The MRMR feature selection 

algorithm eliminates this negative situation and reduces the 

computational cost of the proposed models by reducing the 

feature redundancy according to the level of relevance. In 

particular, the maximization of the relevance of a feature 

subset S to the class label c is referred to as max relevance, 

denoted as max D(S, c). According to the study [5], a feature 

subset's importance is indicated by the following: 

 

𝐷(𝑆, 𝑐) =
1

|𝑆|
∑ Φ(𝑓𝑖 , 𝑐)

𝑓𝑖∈𝑆

 (21) 

 

where, the relevance of a feature fi to c is indicated by Φ(fi, c). 

Based on pair-wise feature reliance, the term "feature 

redundancy" is used. If two important characteristics are 

strongly correlated, losing one of them would not significantly 
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affect the other's ability to discriminate based on class. Min-

redundancy, A feature subset of mutually incompatible 

features, is chosen using min R(S). According to the following 

definition, feature subset R(S) redundancy: 

 

𝑅(𝑆) =
1

|𝑆|2
∑ Φ(𝑓𝑖, 𝑓𝑗)

𝑓𝑖,𝑓𝑗∈𝑆

 (22) 

 

Accordingly, given a subset of features, the m-1 selected 

feature of Sm-1 should select the mth feature that best meets 

the criteria in Eq. (23): 

 

𝑚𝑎𝑥𝑓𝑗∉𝑆𝑚−1 [Φ(𝑓𝑖 , 𝑐) −
1

𝑚 − 1
∑Φ(𝑓𝑖 , 𝑓𝑗)

𝑓𝑖∈𝑆

] (23) 

 

2.6 Support vector machine 

 

In this section, SVM, one of the popular classification 

methods, is used to extract features from medical signals and 

classify features consisting of a combination of features 

obtained from 1D-CNN and LSTM methods [41]. 

SVM is one of the widely used machine learning methods 

based on Vapnik's statistical learning theory, which classifies 

data by separating them with linear and nonlinear boundaries 

[42]. The main function of this method is based on finding the 

maximum margin hyperplane that will provide optimal 

separation of the data by transforming the input data into a 

higher dimensional space [35, 43]. The hyperplane where w 

represents the normal vector and b means bias can be defined 

by Eq. (24): 

 

𝑓(𝑥) = 𝑤𝑇 ∙ 𝑥 + 𝑏 (24) 

 

The relation to optimizing the hyperplane can be defined by 

Eq. (25): 

 

{
 

 min { 
1

2
‖𝑤‖2}

{
𝑦𝑖 − 𝑤

𝑇𝑥𝑖 − 𝑏 ≤ 𝛼

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝛼

 (25) 

 

where, x defines the deviation between f(x) and the target yi. 

Eq. (25) can be expressed as follows, considering the 

regularization parameter (C), and the slack variable (ξi). 

 

{
 
 

 
 min { 

1

2
‖𝑤‖2 + 𝐶 ×∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑛

𝑖=1

}

{
𝑦𝑖 − 𝑤

𝑇𝑥𝑖 − 𝑏 ≤ 𝛼 + 𝜉𝑖
𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝛼 + 𝜉𝑖

∗    𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 (26) 

 

Since Eq. (26) is in a non-convex form, it can be optimized 

in Eq. (27) by adding the Lagrange multiplier (δi): 

 

𝑓(𝑥) =∑(𝛿𝑖 − 𝛿𝑖
∗)𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

 (27) 

 

where, K(xi, x) is the kernel function. Although many kernel 

functions exist, the Gaussian radial basis function (RBF) is 

generally used. 

 

3. EVALUATION OF PERFORMANCE 

 

Based on deep learning and TDD feature classification, the 

proposed hybrid model is evaluated for Accuracy (Acc), recall, 

Specificity (Spc), Precision (Pre), F1-score, and receiver 

operating characteristic (ROC) analysis. The analysis makes 

use of a confusion matrix defined by the following metrics: 

True-Positive (TP) is the number of outcomes in which the 

proposed model correctly classifies the positive class. 

False-Positive (FP) is the number of incorrect outcomes in 

which the proposed model incorrectly classifies the positive 

class. 

True-Negative (TN) is the number of outcomes in which the 

proposed model correctly classifies the negative class. 

False-Negative (FN) is the number of outcomes in which 

the proposed model incorrectly classified the negative class. 

The relations for these metrics are given in Eqns. (28)-(32). 

 

Acc =
TP + TN

TP + TN + FP + FN
× 10 (28) 

 

Recall =
TP

TP + FN
× 100 (29) 

 

Spc =
TN

TN + FP
× 100 (30) 

 

Pre =
TP

TP + FP
× 100 (31) 

 

𝐹1 𝑆𝑘𝑜𝑟 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒
× 100 (32) 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

Experimental works of the proposed model were carried out 

in Matlab with 32 GB RAM, NVIDIA P2200 Quadro GPU 

card, and Intel Xeon Silver 3.3 GHz processor installed on the 

10 Pro Operating System 

In experimental studies, EMG signals of 1×3000 size for 

each channel of 5 different volunteers were used, details given 

in Section 2.1. Two different experimental studies were 

conducted to detect basic hand grip movements, utilizing the 

1D-CNN, LSTM, and TDD+SVM models separately and 

using the three models together (hybrid). 

Firstly, for the training of the proposed 1D- CNN and 

LSTM models, the data set is randomly divided into two parts, 

86.67% training and 13.33% testing. The performances of 1D-

CNN and LSTM models, whose details are given in sections 

2.2 and 2.3, respectively, depend on many hyperparameters 

such as learning rate, batch size, number of training periods, 

dropout rates, and number of hidden neurons. In this study, 

after empirical evaluation that considers various combinations 

of hyperparameters to determine the appropriate value of the 

parameters, the training process was completed with the CNN 

model through the SGDM optimizer with a fixed learning rate 

of 0.01, 32 mini-batch size arrays, and iterations at 60 epochs.  

Likewise, the Adam optimizer trained the LSTM model 

with an initial learning rate of 0.006, 64 mini-batch size arrays, 

and iterations at 70 epochs. The training of both models has 

been completed with loss rates of 0.12 and 0.10, respectively. 

It is desired that deep learning models have minimum loss 

values during training, which shows that they provide a more 
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robust fit performance to the training data. After completing 

the training of both deep learning models according to the 

above parameters, the classification results of the test data are 

given in Table 1. 

From the same data set with TDD, feature extraction from 

EMG signals and classification with SVM is as follows. 

Nineteen features are extracted from 1×3000 data points in 

each channel of a subject's handgrip movement and 

represented by 19×2 features for the two channels. A 95×12 

feature matrix is obtained from the dataset's EMG signals of 1 

subject. These features are then applied to the SVM to classify 

hand gestures. Classification performances of each person's 

basic hand movements in experimental studies of each model 

at this stage are shown in Table 1. 

The maximum performance was attained in subject 2 with 

100% of all evaluation criteria, as shown in Table 1 results 

using 1-D CNN. Subject 1, subject 3 in LSTM classification 

results, and subject 2, subject 4 in TDD+SVM classification 

results achieved the highest performance. In both methods, 

accuracy, recall, Spc, pre, and F1 scores were 95.833%, 

95.833%, 99.167%, 96.667%, and 95.767% success rates, 

respectively. 

In the second experiment, features to distinguish basic hand 

movements from EMG signals were extracted separately from 

1D-CNN, LSTM and TDD models. One hundred features are 

extracted from the 1d-CNN FC-2 layer, 100 from the FC layer 

of LSTM, and 228 from the TDD. Then, the most effective 

features of each model are selected and combined with the 

MrMr feature selection approach. In this process step, the 13 

most effective features for 1d-CNN, 15 for LSTM and 150 for 

TDD are extracted. When these features are combined, a total 

of 178 most effective features are obtained. The SVM 

classification performances of each subject's combined most 

effective features are shown in Table 2. 

According to the results in Table 2, accuracy and recall 

performance evaluation criteria of 95.83%, specificity of 

99.16%, precision of 96.67% and F1 score of 95.76% were 

achieved in subjects 1 and 2. In addition, 100% performance 

was achieved in all performance evaluation criteria in peer 3, 

subject 4, and subject 5. 

Figures 7-9 show the confusion matrices of the proposed 

hybrid model for the classification of basic hand grip 

movements of 5 subjects in the dataset. The purpose of 

confusion matrices is generally to provide an opportunity to 

see the classification sensitivity of each basic hand grip 

movement and its ratio to precision. In confusion matrices, 

rows represent actual class values, and columns represent the 

proposed method's predicted class. As seen in the confusion 

matrix of subject 1 in Figure 7, the actual cylindrical (CY) 

hand grip was incorrectly identified as the proposed hybrid 

model hook (HO). It is classified with 75% accuracy in CY 

hand grip movement and 100% accuracy in all other hand grip 

movements. In total, a 95.83% accuracy rate was reached in 

the classification of all hand grip movements. The proposed 

model predicted all other hand grip movements correctly. 

A similar situation is also seen in the confusion matrix of 

subject 2 in Figure 8. The proposed hybrid model incorrectly 

detected the hand grasp, which is a hook (HO), as cylindrical 

(CY). The proposed model predicted all other hand grip 

movements correctly. In other words, the proposed model is 

classified with 75% accuracy in HO hand grip movement and 

100% accuracy in all other hand grip movements. In total, a 

95.83% accuracy rate was reached in the classification of all 

hand grip movements. 

As seen in Figure 9 confusion matrix of subject 3, subject 4, 

and subject 5, all hand grip movements are predicted correctly 

by the proposed hybrid model. In other words, the proposed 

model is classified as 100%accuracy in all (CY, HO, LA, PA, 

SP, TI) hand grasping movements. 

 

Table 1. Classification performances of 1-D CNN, LSTM, and TDD+SVM models (%) 

 
Subject No  1-D CNN LSTM TDD+SVM 

Subject 1 

Acc 95.833 95.833 91.667 

Recall 95.833 95.833 91.667 

Spc 99.167 99.167 98.333 

Pre 96.667 96.667 94.444 

F1 95.767 95.767 91.905 

Subject 2 

Acc 100.000 95.833 95.833 

Recall 100.000 95.833 95.833 

Spc 100.000 99.167 99.167 

Pre 100.000 96.667 96.667 

F1 100.000 95.767 95.767 

Subject 3 

Acc 91.667 95.833 87.500 

Recall 91.667 95.833 87.500 

Spc 98.333 99.167 97.500 

Pre 92.500 96.667 88.333 

F1 91.601 95.767 87.434 

Subject 4 

Acc 91.667 91.667 95.833 

Recall 91.667 91.667 95.833 

Spc 98.333 98.333 99.167 

Pre 93.333 94.444 96.667 

F1 91.534 91.111 95.767 

Subject 5 

Acc 91.667 87.500 83.333 

Recall 91.667 87.500 83.333 

Spc 98.333 97.500 96.667 

Pre 93.333 92.857 91.667 

F1 91.534 88.312 83.333 
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Table 2. Proposed hybrid model and classification results (%) 

 
 Acc Recall Spc Pre F1-Score 

Subject 1 95.83 95.83 99.16 96.67 95.76 

Subject 2 95.83 95.83 99.16 96.67 95.76 

Subject 3 100.00 100.00 100.00 100.00 100.00 

Subject 4 100.00 100.00 100.00 100.00 100.00 

Subject 5 100.00 100.00 100.00 100.00 100.00 

 

Table 3. Comparison of the performance of the proposed model and the state-of-the-art models 

 

Authors Feature extraction 
Classification 

models 

Classification accuracy (%) 

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5 

Sapsanis et al. [44] EMD Linear classifier 87.25 88.05 85.53 90.42 94.80 

Ruangpaisan at al. [45] SVD SMO 96.67 98.89 96.67 98.89 100.00 

Iqbal et al. [46] SDV-PAC k-NN 82.78 87.67 83.11 90.00 90.00 

Akben [47] Histogram k-means 93.04 86.66 97.00 99.23 97.66 

Subasi et al. [14] WPD Rotation forest 95.56 88.88 92.22 92.22 98.33 

Nishad et al. [12] TQ WT k-NN 98.33 97.78 99.44 98.89 98.33 

Yavuz and Eyupoglu [48] Cepstral coefficients GRNN 98.33 99.48 99.44 99.78 98.69 

Miften et al. [16] LSGS AB-k-means 98.00 99.00 99.00 99.00 99.00 

The Proposed model CNN+LSTM+TDD SVM 95.83 95.83 100.00 100.00 100.00 

 

 
 

Figure 7. Confusion matrix for the proposed model using 

Subject 1 

 

 
 

Figure 8. Confusion matrix for the proposed model using 

Subject 2 

 

Receiver Operating Characteristic (ROC) curves are shown 

in Figure 10 and Figure 11, respectively, to more effectively 

show the performance of each hand grip movement of Subjects 

1 and 2, where 100% performance was not achieved in the 

proposed hybrid model. The Area Under the Curve (AUC) 

value in the curves of the cylindrical (CY) grip movement in 

Subject 1 is 0.97, and the AUC in the hook (HO) hand grip in 

Subject 2 is 0.98. 

The proposed model was compared in terms of 

classification accuracy with some state-of-the-art methods 

using the same data set, and the results are given in Table 3. 

Sapsanis et al. [44] created the dataset used in all these studies 

in 2013 and proposed a method based on feature extraction 

with EMD and a linear classifier. The proposed method 

recorded the lowest accuracy rate for subject 3, with 85.43%, 

and the highest accuracy rate for subject number 5, with 

94.80%.  

 

 
 

Figure 9. Confusion matrix for the proposed model using 

Subjects 3, 4, and 5 

 

 
 

Figure 10. ROC curve of the proposed model for subject 1 
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Figure 11. ROC curve of the proposed model for subject 2 

 

Ruangpaisarn and Jaiyen [45] proposed a method that 

references the singular value decomposition (SVD) and 

sequential minimal optimization (SMO) methods. They 

performed feature extraction from EMG data with SVD. They 

then applied it to SMO to classify basic hand movements. In 

this study, the lowest accuracy rate of 96.67% was recorded in 

subjects 1 and 3, while the highest accuracy rate was recorded 

for subject 5 with 100%.  

Iqbal et al. [46] have suggested using SVD for feature 

extraction and k-NN for classification. They used PCA to size-

reduce their features after subtracting them with SVD from the 

EMG signals. Finally, they applied the k-NN classifier to 

classify hand gestures. In experimental studies, the lowest 

accuracy rate of 82.78% was recorded in subject 1, and the 

highest accuracy rate was recorded in subjects 4 and 5 at 90%. 

Akben [47] proposed a method based on histograms and k-

means. He used the histogram of the energy values of the EMG 

signals for feature extraction. Then, the classification of basic 

hand movements was performed with k-means. With the 

proposed method, the lowest accuracy rate of 86.66% was 

recorded in subject 2, and the highest accuracy rate of 99.23% 

was recorded in subject 4.  

Yavuz and Eyupolu [48] proposed a method based on 

cepstrum analysis for EMG signals and basic hand movement 

classification. The proposed method used the cepstral analysis 

technique, mel-frequency cepstral coefficients (MFCC), to 

extract the EMG signal features. The features composed of 

MFCCs were then applied to a generalized regression neural 

network (GRNN) to classify basic hand movements. Subject 

number 1 was recorded with the lowest accuracy rate of 

98.33%, and subject number 4 with the highest accuracy rate 

of 99.78% with the proposed method.  

Considering the highest classification accuracies in Table 3, 

Yavuz et al. proposed methods of 98.33% and 99.48% 

accuracy scores obtained in subjects 1 and 2, respectively. In 

the other three subjects (subject 3, subject 4, and subject 5), 

the proposed 1D-CNN, LSTM, and TDD based hybrid model 

was 100% successful. All these results provided an accuracy 

increase of 0.22% to 0.56% compared to state-of-the-art 

methods in Subject 3, Subject 4, and Subject 5. 

 

 

5. CONCLUSIONS 

 

This paper proposes a new hybrid model based on deep 

learning from EMG signals and time-domain descriptive 

features to classify basic hand movements. The proposed 

model has three stages: feature extraction, selection, and 

classification. In the first stage, feature extraction is done from 

EMG signals with reference to 1-D CNN and LSTM deep 

learning models and time domain descriptive approach. In the 

second stage, in the MRMR feature selection approach, the 

most effective features of each model are selected and 

concatenated. In the final stage, the most effective features 

combined are used to feed the SVM to classify basic hand 

gestures. 

The proposed model was evaluated using an EMG dataset 

consisting of five subjects public and including their basic 

movements such as Cylindrical (CY), Hook (HO), Lateral 

(LA), Palmar (PA), Tip (TI) and Spherical (SP). In the use of 

only 1-D CNN in the proposed hybrid model, the hand-grasp 

movements reached 95.83% in subject 1, 100% in subject 2 

and 91.66% accuracy rate in other subjects (3, 4 and 5). In the 

use of the LSTM model alone, (1, 2 and 3) reached 95.83% in 

subjects, 91.66% in subject 4 and 87.50% accuracy rate in 

subject 5. Similarly, in the use of TDD+SVM alone, the 

subject reached 91.66% in subject 1, 95.83% in subjects 2 and 

4, 87.5% in subjects 3 and 83.33% accuracy rate in subject 5. 

However, in the proposed hybrid model achieved an accuracy 

of 95.833% in the first two of the five subjects and 100% in 

the other three subjects. It also achieved an average accuracy 

of 98.34% and a specificity of 99.66% for five subjects.  

Experimental results show that the proposed method 

outperforms subjects 3, 4, and 5 with 100% accuracy in all 

state-of-the-art studies using the same dataset. In the future, 

the proposed model, with remarkable results, could be applied 

as a control unit to improve the quality of life of hand-

amputated patients and a robotic and prosthetic exoskeleton to 

mobilize the hand. 
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