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Geological disasters, characterized by their destructive nature, pose significant threats to 

both human life and ecological environments. The advent of remote sensing technology has 

rendered hyperspectral remote sensing images an integral data source in monitoring and 

predicting these phenomena. However, it is noted that minor variations and detailed nuances 

within the images are often overlooked by traditional computer vision and deep learning 

techniques. Furthermore, data imbalances during the training of deep learning models have 

been identified as a potential hindrance to optimal performance. Recognizing these issues 

and the inherent unpredictability of geological disasters, an innovative approach has been 

developed. This approach encapsulates an optical flow-based method for enhancing the 

edges of geological remote sensing images, an improved geological disaster monitoring 

model leveraging the Isolation Forest algorithm, and an efficient implementation strategy. 

The suggested methods present numerous advantages, including the acceleration of 

computations to augment real-time monitoring of geological disasters, an enhanced capacity 

for handling extensive data, an improved system stability and fault tolerance, and the 

preservation of fundamental strengths such as linear computational complexity, 

unsupervised learning, and non-parametric methodologies. By synthesizing these 

methodological improvements and advantages, a swift, efficient, and flexible strategy for 

enhancing the Isolation Forest model is put forth. This research supports the development 

of geological disaster monitoring and early warning systems grounded in computer vision 

and deep learning, presenting substantial technical aid for related tasks. 
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1. INTRODUCTION

This study investigates the escalating threat of geological 

disasters including landslides, mudslides, and ground 

subsidence, which result in profound human and economic 

losses [1-6]. The urgency of predicting and monitoring these 

hazards to mitigate their impact is underscored by a consistent 

rise in both the annual direct economic loss and the number of 

fatalities attributable to these geological calamities [7, 8]. The 

dawn of computer vision and deep learning technologies 

carries potential for improving the efficiency of monitoring 

and warning systems tailored to these geological disasters [9, 

10]. However, the existing methodologies employing these 

technologies exhibit significant limitations that curb progress 

in this critical domain. 

Firstly, an evident deficiency lies in the current handling of 

geological remote sensing imagery by conventional computer 

vision and deep learning methods [11-13]. These methods tend 

to overlook subtle changes and detailed information within the 

images. However, the initiation of geological disasters often 

hinges on these subtle surface variations and underlying risk 

factors, necessitating the extraction of such intricate details for 

effective prediction and monitoring [14]. Unfortunately, 

contemporary computer vision techniques and deep learning 

models display restricted abilities in capturing these nuances, 

thereby constraining the precision of predictions and 

detections pertaining to geological disasters [15]. 

Secondly, the challenges posed by data imbalance during 

the training phase of deep learning models have a detrimental 

effect on their performance [16-19]. Geological disasters are 

inherently unpredictable and random, resulting in an 

imbalanced distribution of positive and negative samples. This 

disparity often leads to a bias in model training, with models 

typically favoring more abundant samples over those that are 

less frequent [20, 21]. This bias compromises the accuracy of 

geological disaster prediction, subsequently weakening the 

trustworthiness of monitoring and warning systems. 

Addressing this issue necessitates the development of more 

appropriate data processing methodologies and models. 

To address these challenges, this manuscript proposes an 

edge enhancement method for geological remote sensing 

image regions predicated on optical flow fields, along with an 

optimized geological disaster monitoring model rooted in the 

Isolation Forest algorithm. The second chapter delineates the 

basic principle of the edge enhancement method [11-13]. 

Utilizing the characteristics of the optical flow field, this 

method effectively extracts subtle changes and detailed 

information within images, thereby improving the accuracy of 

geological disaster prediction and monitoring. The third 

chapter introduces the improved geological disaster 

monitoring model based on Isolation Forest [16-19]. By 

enhancing the Isolation Forest algorithm, the issue of data 

imbalance is effectively managed, thereby augmenting the 

model's performance in geological disaster prediction and 
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monitoring. 

The findings of this study bear significant theoretical and 

practical implications. It is anticipated that these insights will 

provide valuable support for technological advancement and 

application in the field of geological disaster monitoring and 

warning, thereby aiding in the reduction of the impact of 

geological disasters on human lives and economic 

development. 

 

 

2. GEOLOGICAL REMOTE SENSING IMAGE AREA 

EDGE ENHANCEMENT  

 

In geological disaster monitoring and early warning systems, 

precise detection and prediction of the boundaries of 

geological disaster areas are crucial. Yet, traditional computer 

vision methods and deep learning models often display 

roughness in boundary segmentation when processing 

geological remote sensing images. By incorporating semantic 

flow and edge enhancement modules, it is feasible to boost the 

intra-class consistency and inter-class distinctiveness of 

boundary pixels, thereby refining boundary precision. Edge 

features hold significant value in geological disaster 

monitoring and early warning tasks, as they can aid models in 

better distinguishing different types of geological disaster 

areas. An edge enhancement module can be built to indirectly 

strengthen edge features, thereby improving the model's 

discriminative capabilities when processing geological remote 

sensing images. Additionally, a geological remote sensing 

image region edge enhancement method based on optical flow 

fields can learn rich semantic flow information from feature 

maps of different resolutions. This aids in dynamically 

obtaining pixel positional relationships within the feature map, 

enhancing the information transfer between feature layers, and 

thereby improving model performance in geological disaster 

monitoring and early warning tasks. The architecture of the 

edge enhancement module is depicted in Figure 1. 

The edge enhancement module for geological remote 

sensing images is built under the application scenario of 

geological disaster monitoring and early warning systems 

based on computer vision and deep learning research and 

development. Traditional bilinear interpolation upsampling 

methods can only deal with fixed and pre-declared feature map 

pixel position misalignments. However, the edge enhancement 

module improved by the flow alignment module can 

dynamically adjust the positional relationship of feature map 

pixels, thereby better resolving feature map pixel position 

misalignment issues. Since geological remote sensing images 

often contain complex terrain, geomorphology, and geological 

disaster features, the flow-aligned, edge-enhanced module can 

learn rich semantic flow information between feature maps of 

different resolutions, giving the model a stronger adaptability 

and better performance in complex geological remote sensing 

image scenarios. In semantic segmentation tasks, the recovery 

of smaller spatial resolution and semantically stronger feature 

maps is crucial. The flow-aligned, edge-enhanced module can 

effectively retain the information of apparent and semantic 

features by upsampling and skip-connection methods, thereby 

improving the recognition accuracy of geological remote 

sensing image boundaries. The dynamic positional 

relationship of feature map pixels is considered further in the 

upsampling process to enhance the model's discriminative 

capabilities when processing geological remote sensing 

images. The architecture of the flow alignment module is 

depicted in Figure 2. 

 

 
 

Figure 1. Edge enhancement module 

 

 
 

Figure 2. Flow alignment module 

 

The input of the constructed edge enhancement module is 

two adjacent geological disaster sequence remote sensing 

image feature blocks D1 and D2 at different hierarchies, with 

sizes represented by H1×W1×V1 and H2×W2×V2, respectively, 

where H1 is greater than H2, and W1 is greater than W2. The 

results of 1×1 convolution operations on D1 and D2 are 

represented by �̄�1 and �̄�2. The result of performing bilinear 

interpolation on �̄�2 is represented by �̄�2
1. The flow field ∆y-1 is 

obtained after the concatenation and 3×3 convolution 

operations of �̄�2
1 and �̄�1. After obtaining ∆y-1, the pixel value 

at position (u,k) in the high-resolution feature map �̄�2
11 , 

obtained from the low-resolution feature map D2, is solved. 

This step requires mapping (u,k) to a specific location O in D2. 

The positional change from (u,k) to O is determined by the 

flow field ∆y-1. 

 

( ) ( )1, ,

2

yu k u k
O

−+
=  (1) 

 

Based on the differentiable bilinear sampling mechanism in 

spatial transformation networks, compute the pixel value c at 

position (u,k) in �̄�2
11 at the corresponding O position. 

 

( ) ( )0,1 0,1
H W

v v a a

u bl u u

b l

C I MAX z l MAX t b= − − − −  (2) 

 

From the above formula, it is known that the adopted 

interpolation mechanism is to perform linear interpolation 
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calculations on the values at the upper left, upper right, lower 

left, and lower right four different positions of O, thereby 

achieving an update on its pixel values. 

Assume that the pixel value solution for the v-th channel at 

the pixel position ( y

uz , y

ut ) in �̄�2
11 is represented by v

uC , the 

height and width of the corresponding feature map in the z-th 

channel of D2 are represented by H and W, and the pixel value 

of the pixel position (b,l) in the v-th channel of D2 is 

represented by v

blI . The pixel position ( y

uz , y

ut ) of the high-

resolution feature map to be solved is mapped to the pixel 

position ( a

uz , a

ut ) in the low-resolution image D2 through the 

flow field ∆y-1 transformation. As can be known from the 

above formula, when the result of | a

ut -b| or | a

uz -l| is greater than 

1, v

blI MAX()MAX()=0, it can be considered that the pixel value 

of the target position in the geological disaster area is 

determined by the four closest pixel points to ( a

uz , a

ut ). At the 

same time, when the values of | a

ut -b| and | a

uz -l| are relatively 

small, v

blI  will obtain a larger weight coefficient. Based on the 

derivation of the above formula with respect to v

blI , a

uz , and 

a

ut , it is shown that the constructed edge enhancement module 

can adjust and correct parameters through continuous learning 

during the training process. 

 

( ) ( )0,1 0,1
v H W

a au
u uv

b lbl

C
MAX z l MAX t b

I


= − − − −


  (3) 

 

( )
0, 1

0,1 1,

1

a

u
v H W

v a au
bl u uv

b lbl

u

d l z

C
I MAX t b d l z

I
IF l z

 − 
 

= − − 
 − 




，

 (4) 

 

In the application scenario of the research and development 

of a geological disaster monitoring and early warning system 

based on computer vision and deep learning, the improved 

flow alignment module can make the features after 

upsampling more consistent in the same object representation. 

This helps to improve the model's ability to discriminate 

different types of geological disaster areas in geological 

disaster monitoring and early warning tasks. By learning the 

relationship between adjacent feature maps to form a semantic 

flow, dynamically upsampling the feature maps with smaller 

spatial dimensions and stronger semantic expression 

capabilities, the obtained high-resolution features are more 

structurally tidy, thereby improving the recognition accuracy 

of geological remote sensing image edges. Compared with 

using only bilinear upsampling operations, the improved flow 

alignment module can obtain richer semantic information. 

This allows the model to have stronger semantic segmentation 

capabilities when processing geological remote sensing 

images, thereby achieving better performance in geological 

disaster monitoring and early warning tasks. These advantages 

make the improved flow alignment module have a higher 

application value in geological disaster monitoring and early 

warning tasks. 

 

 

 

3. GEOLOGICAL DISASTER MONITORING MODEL 

ARCHITECTURE AND RAPID IMPLEMENTATION 

STRATEGY 

 

Current hyperspectral image geological disaster monitoring 

algorithms often present high computational complexity or 

suboptimal monitoring outcomes in practical application. The 

Isolation Forest algorithm, possessing linear computational 

complexity, yields satisfactory results when used for 

continuous data geological disaster monitoring tasks. 

However, its performance in detecting local anomalies is not 

ideal, with substantial false alarms and missed detections for 

local anomaly samples. Improvements to existing algorithms 

are required to enhance efficiency in handling vast remote 

sensing image data for geological disaster monitoring tasks. 

This study, based on relative quality theory, directionally 

improves the original Isolation Forest algorithm. The 

enhanced detection sensitivity towards local geological 

disaster area targets, reduced risks of false alarms and missed 

detections, are among the improvements made. The improved 

Isolation Forest algorithm exhibits strong adaptability, able to 

deal with geological disaster monitoring tasks of various types 

and complexities. 

In the original Isolation Forest algorithm, the "path length" 

index primarily assesses global anomalies and falls short in 

detecting performance for local anomaly pixels. By replacing 

"path length" with "local relative quality", sensitivity towards 

local anomaly pixels is improved. The original Isolation Forest 

algorithm's detection performance is insufficient when dealing 

with local anomalies, with problems of false alarms and 

missed detections. The proposed improvement is expected to 

resolve these issues and enhance monitoring accuracy. The 

introduction of the concept of "local relative quality" allows 

the original algorithm to more accurately detect local anomaly 

pixels, thereby improving the accuracy of geological disaster 

monitoring while retaining the advantages of the original 

algorithm, such as linear computational complexity, 

unsupervised and non-parametric learning. Figure 3 shows the 

process of geological disaster monitoring by the proposed 

method. 

 

 
 

Figure 3. Geological disaster monitoring process 
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Next, the definition of the relative quality anomaly score for 

local geological disaster area target monitoring is provided. 

Let's assume the Isolation Tree is represented by Yu and the 

relative quality of pixel z is represented by ZLu(z). It is 

assumed that z in the Isolation Tree Yu is represented by Yu(z) 

and Yu(z) in the Isolation Tree TYu has a direct parent node 

represented by �̃�𝑢(𝑧) . The number of pixels in the node is 

represented by l(·), the normalization factor by q, and the 

comparison of the number of pixels l(�̃�𝑢(𝑧)) in the leaf node 

where z is located with the number of pixels l(Yu(z)) in its 

direct parent node can yield ZLu(z): 

 

( )
( )( )

( )( )
u

u

u

l Y z
ZL z

l Y z q
=


 (5) 

 

From the above formula, it can be seen that ZLu(·) is greater 

than 0 and less than 1. The closer the value of ZLu(z) is to 1, 

the higher the anomaly degree of z in its neighborhood and the 

higher the possibility of being a geological disaster area. The 

following formula gives the relative quality calculation 

formula for z in a forest containing y isolated trees: 

 

( ) ( )
1

1 y

uu
EL z ZL z

y =
=   (6) 

 

By traversing all the pixels in the geological remote sensing 

image based on the improved model, an anomaly degree 

ranking based on the local measurement of the geological 

disaster area target can be obtained. According to the 

definition of the geological disaster area target, the abnormal 

pixels representing the geological disaster area target should 

be a very small number in the whole image. 

Based on this, given a geological remote sensing image 

containing b pixels, the abnormal score of pixel z in a forest 

containing y isolated trees can be calculated through the 

following formula: 

 

( ) ( ) ( ), 1 2
EL z v b

EA z b
−

= −  (7) 

 

where, the average height of the isolated tree is represented by 

c(n)v(b). 

In order to improve the efficiency of the improved model, 

this study discusses the time complexity and space complexity 

of the Isolation Forest algorithm. Assuming that y isolated 

trees are required in the model training stage, each isolated tree 

needs q geological disaster sequence remote sensing image 

samples for training. The number of recursive splits is 

represented by log2q, and the asymptotic time complexity of 

the original algorithm is represented by YTR(q). The calculation,  

 

( ) ( )2logTRY q P y q q=    (8) 

 

For a given geological disaster sequence remote sensing 

image containing b pixels, the asymptotic time complexity 

YTE(b) of the original algorithm in the testing stage can be 

calculated by the following formula: 

 

( ) ( )2logTEY b P y b q=    (9) 

 

The time complexity TI(b) of the algorithm is provided by 

the following formula: 

( ) ( )( )2logTI b P y b q q= +  (10) 

 

Correspondingly, the space complexity SP(b) of the 

algorithm can be calculated by the following formula: 

 

( ) ( )SP b P y q=   (11) 

 

The number of pixels in the hyperspectral image and the 

number of pixels in the training set directly influence the time 

complexity of the Isolation Forest model. In geological 

disaster monitoring tasks, the challenge of processing a vast 

amount of remote sensing image data is faced. Deploying the 

Isolation Forest model on a large-scale distributed system can 

effectively utilize parallel computing resources, accelerating 

the computational process, and enhancing the real-time nature 

of geological disaster monitoring. 

Furthermore, this study constructs and trains a geological 

disaster monitoring model, taking geological remote sensing 

images as an example. Assume the image height, i.e., pixel 

row number, is represented by G, the image width, i.e., pixel 

column number, by Q, and the total number of bands, i.e., pixel 

feature dimensions, by F. The normalized (0,1) geological 

remote sensing image data cube is represented by the 

following formula: 

 
G Q FZ    (12) 

 

Assume the height of the local geological disaster area 

target region in the image, i.e., the number of target area pixel 

rows, is represented by G', the width of the target area in the 

image, i.e., the number of target area pixel columns, by Q', and 

G'=G/j1, q'=q/j1. The total number of bands in the geological 

remote sensing image is represented by F. Divide the 

geological remote sensing image cube equally into j1×j1 target 

areas, with the kth target area denoted as: 

 
k G Q F

SUZ
    (13) 

 

Assume that the total number of pixels in the target area 

image is represented by B'=G'×Q', and the total number of 

image bands by F. Before using the improved model for 

geological disaster area target monitoring, each target area 

geological remote sensing image cube is unfolded into: 

 
k B F

SUZ
  (14) 

 

The B' pixels of this target area image can be considered as 

B' vectors. Hence, all pixel samples from the kth target area 

can be represented by the following formula: 

 

 
1

Bk F

SU u u
Z z



=
=   (15) 

 

By partitioning the initial large field-of-view hyperspectral 

remote sensing image into several target areas, and unfolding 

the three-dimensional data cube form of hyperspectral images 

in each target area into a matrix, computational complexity is 

reduced, the speed of model training and prediction is 

improved, and an efficient pixel anomaly degree evaluation is 

facilitated using the improved Isolation Forest model. By 

dividing the large field-of-view hyperspectral remote sensing 

image into target areas and unfolding the hyperspectral images 

into matrices, each pixel can be effectively evaluated for its 
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anomaly degree using the improved Isolation Forest model, 

enabling rapid geological disaster monitoring. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The experimental results and analysis of this study 

commences with an examination of the relationship between 

the quantity of isolated trees and the Area Under Curve (AUC) 

value of geological disaster monitoring results, as depicted in 

Figure 4. An observation from the figure reveals that as the 

number of isolated trees escalates from zero to fifteen, a slight 

reduction in AUC value is observed in both disaster-stricken 

and non-disaster-stricken areas. This suggests that within this 

range, an increase in the number of isolated trees bears a 

minimal effect on the AUC value of geological disaster 

monitoring results. 

 

  
(1) (2) 

 

Figure 4. The influence of the number of isolated trees and the number of samples required for isolated tree training on the AUC 

value of monitoring results 

 

Further analysis, when the number of isolated trees rises 

from fifteen to thirty, points to the disaster-stricken area's AUC 

value reverting to 0.908, while the AUC value of the non-

disaster-stricken area slightly increases. This observation 

suggests that within this range, an increase in the number of 

isolated trees has a marginal impact on the AUC value in the 

disaster-stricken area but a somewhat positive effect on the 

AUC value in the non-disaster-stricken area. 

As the isolated tree count increases from thirty to ninety, the 

AUC value of the disaster-stricken area experiences minor 

fluctuations, but the overall trend is ascendant, while the non-

disaster-stricken area's AUC value remains relatively stable. 

This pattern suggests that within this range, an increase in the 

number of isolated trees has a positive impact on the disaster-

stricken area's AUC value, but only a minor effect on the non-

disaster-stricken area's AUC value. 

An analysis of the relationship between the sample size 

required for isolated tree training and the AUC value of 

geological disaster monitoring results is also offered. It is 

noted that with the increase in the sample size required for 

isolated tree training, the AUC value of the disaster-stricken 

area fluctuates considerably. However, the overall trend shows 

an initial rise followed by a decrease. The AUC value for the 

disaster-stricken area reaches its peak, approximately 0.912, 

when the sample size is 0.03B. 

For the non-disaster-stricken area, the AUC value also 

fluctuates with the increase in the sample size required for 

isolated tree training, but the overall trend remains relatively 

stable. The AUC value for the non-disaster-stricken area 

reaches its peak, approximately 0.966, when the sample size is 

0.03B. Thus, 0.03B is chosen as the default sample size 

required for isolated tree training. 

Table 1 presents a comparison of AUC values for geological 

disaster area classification using different algorithms. From 

the data presented, it is noted that the AUC values of the 

method used in this study outperform other algorithms for all 

types of geological disasters including landslides, debris 

flows, ground subsidence, ground fissures, and floods. This 

suggests the superior performance of the method used in this 

study in the task of geological disaster area classification. 

In the case of landslides, debris flows, and ground fissures, 

the CNN algorithm performs well, but not as well for ground 

subsidence and floods. The SVM algorithm excels in ground 

subsidence and ground fissures but falls short in debris flows 

and floods. RF performs well in ground subsidence but is the 

weakest for debris flows. U-Net performs well for floods but 

poorly for ground subsidence and ground fissures. By 

comparing the method used in this study before and after 

regional edge enhancement, it is observed that AUC values for 

all types of geological disasters improve, suggesting the 

effectiveness of regional edge enhancement in improving the 

accuracy of geological disaster classification. 

The table data presented in Table 2 provides an analytical 

viewpoint on the performance of different algorithms based on 

the AUC (Area Under the Curve) value in geological disaster 

zone localization tasks. Notably, the method introduced in this 

study displays a higher AUC value than other algorithms 

across landslide, debris flow, land subsidence, ground fissure, 

and flood geological disaster types. This indicates a superior 

performance of this method in geological disaster zone 

localization tasks. The RF (Random Forest) algorithm 

performs well in terms of landslides, ground fissures, and 

flooding, yet underperforms in detecting debris flows and land 

subsidence. The CNN (Convolutional Neural Networks) 
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excels at identifying ground fissures but shows weaker 

performance in detecting landslides, debris flows, and land 

subsidence. SVM (Support Vector Machines) performs 

adequately in flooding scenarios, but underperforms in 

detecting landslides, debris flows, land subsidence, and 

ground fissures. U-Net performs well in debris flows and 

ground fissures, but underperforms in detecting landslides, 

land subsidence, and flooding. A comparison between the 

region-edge enhancement method and this study's method 

yields a similar conclusion - the AUC value of this method 

improved across all geological disaster types, thereby 

validating the effectiveness of region-edge enhancement in 

improving the accuracy of geological disaster zone 

localization. 

 

Table 1. Comparison of AUC values for geological disaster area classification 

 
Different algorithms Landslide Mudslide or Debris flow Ground subsidence Ground fissures Floods 

CNN 0.945 0.985 0.891 0.936 0.954 

SVM 0.953 0.926 0.951 0.955 0.933 

RF 0.941 0.851 0.964 0.913 0.915 

U-Net 0.942 0.916 0.926 0.934 0.967 

The previous method 0.941 0.942 0.951 0.937 0.952 

The method in this study 0.958 0.988 0.978 0.961 0.975 

 

Table 2. Comparison of AUC values for the localization of geological disaster areas 

 
Different algorithms Landslide Mudslide or Debris flow Ground subsidence Ground fissures Floods 

CNN 0.895 0.864 0.846 0.943 0.862 

SVM 0.861 0.826 0.825 0.829 0.944 

RF 0.941 0.943 0.848 0.901 0.933 

U-Net 0.933 0.962 0.882 0.942 0.937 

The previous method 0.954 0.976 0.964 0.943 0.928 

The method in this study 0.968 0.978 0.978 0.951 0.955 

 

 
 

Figure 5. Standard 2D ROC (D, F) curves for different 

geological disaster monitoring algorithms 

 

The standard 2D ROC (Receiver Operating Characteristic) 

curve of different geological disaster monitoring algorithms in 

Figure 5 shows the FAR (False Alarm Rate) and DR (Detection 

Rate) data. It is ideal to find an algorithm with a high detection 

rate (close to 1) and a low false alarm rate (close to 0). On the 

ROC curve, algorithms that are closer to the upper-left corner 

have superior performance. The detection rate of the method 

in this study gradually increases with a lower false alarm rate 

and significantly improves when FAR exceeds 0.6. This 

method generally performs well under low false alarm rate and 

high detection rate conditions. The detection rate of U-Net is 

relatively stable with a low false alarm rate and gradually 

increases as FAR grows, showing prominent improvement 

when FAR exceeds 0.6. Overall, U-Net performs well under 

high false alarm rate and high detection rate conditions. As the 

false alarm rate increases, the detection rate of RF gradually 

improves and becomes relatively stable when FAR exceeds 

0.6. In general, RF performs adequately under moderate false 

alarm rate and detection rate conditions. The detection rate of 

SVM remains at a lower level when the false alarm rate is low, 

however, it significantly improves when FAR increases to 0.6. 

CNN has a gradually increasing detection rate under lower 

false alarm rate conditions, but the improvement is not 

significant when FAR exceeds 0.6. Overall, this method 

performs adequately under low false alarm rate and moderate 

detection rate conditions. A comprehensive analysis indicates 

that the method in this study exhibits the best performance 

under conditions of low false alarm rate and high detection rate, 

rendering it suitable for geological disaster monitoring 

applications. 

 

Table 3. Performance comparison of different geological 

disaster monitoring algorithms 

 

Metrics 
Method in 

this study 
U-Net RF SVM CNN 

Accuracy 0.9013 0.8651 0.8235 0.5424 0.8152 

Precision 0.3845 0.3267 0.0784 0.0003 0.0018 

Recall 0.0756 0.1285 0.0465 0.0002 0.0008 

F1 score 1.2364 1.1582 0.8562 0.8512 0.8125 

IoU 5.1298 2.2352 1.7518 1.7582 2.2034 

 

According to the accuracy, precision, recall, F1 score, and 

IoU (Intersection over Union) data of different geological 

disaster monitoring algorithms shown in Table 3, the 

performance of each algorithm can be analyzed. As can be 

seen from the table, the method proposed in this paper has a 

higher accuracy (0.9013), precision, and recall, but the F1 

score (1.2364) and IoU (5.1298) indicators are relatively high. 

This indicates that this method performs well in terms of 

overall prediction accuracy, but the accuracy and coverage of 

detecting geological disasters need to be improved. U-Net has 

a higher accuracy (0.8651), precision, and recall, but the F1 

score (1.1582) and IoU (2.2352) indicators are relatively low. 

This shows that U-Net performs well in terms of overall 

prediction accuracy, but there is a greater room for 

improvement in the accuracy and coverage of detecting 

geological disasters. RF has a lower accuracy (0.8235), 
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precision, and recall, and the F1 score (0.8562) and IoU 

(1.7518) indicators are relatively low. This indicates that RF 

does not perform well in terms of overall prediction accuracy 

and the accuracy and coverage of detecting geological 

disasters. SVM has the lowest accuracy (0.5424), extremely 

low precision and recall, and the F1 score (0.8512) and IoU 

(1.7582) indicators are also relatively low. This indicates that 

SVM performs poorly in terms of overall prediction accuracy 

and the accuracy and coverage of detecting geological 

disasters. CNN has a lower accuracy (0.8152), extremely low 

precision and recall, but the F1 score (0.8125) and IoU 

(2.2034) indicators are relatively low. This shows that CNN 

needs improvement in terms of overall prediction accuracy 

and the accuracy and coverage of detecting geological 

disasters. In summary, the method proposed in this paper is 

relatively good in terms of accuracy, F1 score, and IoU 

indicators, indicating that it has better performance in overall 

prediction accuracy. 

 

 
 

Figure 6. Monitoring example 

 

In the geological disaster monitoring example given in 

Figure 6, it can be seen that the geological disaster monitoring 

achieves better results by enhancing the regional edges of 

these images. This verifies that the proposed method of 

regional edge enhancement for geological remote sensing 

images based on optical flow fields captures motion 

information in images by calculating optical flow fields, 

thereby better highlighting the edges of geological disaster 

areas. The improved geological disaster monitoring model 

based on the Isolation Forest algorithm is used to identify 

geological disaster areas in these enhanced images. The 

Isolation Forest algorithm itself has high anomaly detection 

performance, and this paper improves it to adapt to the 

scenario of geological disaster monitoring. In the experiments, 

this improved Isolation Forest model shows higher accuracy 

and stability. This further verifies that the proposed method is 

highly effective in improving edge clarity, detection accuracy, 

and computation speed. This provides strong support for 

geological disaster monitoring in practical applications. 

 

 

5. CONCLUSION 

 

This study investigates the development of a geological 

disaster monitoring and early warning system based on 

computer vision and deep learning. A regional edge 

enhancement method for geological remote sensing images 

based on optical flow fields, an improved geological disaster 

monitoring model based on the Isolation Forest algorithm, and 

a rapid implementation approach are proposed. The optical 

flow field-based regional edge enhancement method 

effectively extracts subtle changes and detailed information in 

images, thereby improving the accuracy of geological disaster 

monitoring and early warning. The improved geological 

disaster monitoring model based on Isolation Forest addresses 

data imbalance issues by optimizing the algorithm, effectively 

solving the data imbalance problem and enhancing the model's 

performance in geological disaster monitoring and early 

warning. 

The following conclusions can be drawn from the 

experimental results: 

(1) In the field of geological disaster monitoring, various 

algorithms perform differently in terms of accuracy, 

precision, recall, F1 score, and IoU performance 

indicators. The method proposed in this study is found 

to be the most suitable monitoring approach based on 

the experimental results. 

(2) The proposed regional edge enhancement method for 

geological remote sensing images based on optical 

flow fields captures motion information in images by 

calculating optical flow fields, significantly improving 

the clarity of geological disaster area edges and laying 

the foundation for subsequent analysis and processing. 

(3) The improved geological disaster monitoring model 

based on Isolation Forest demonstrates higher accuracy 

and stability in experiments, proving its suitability for 

geological disaster monitoring scenarios. 

(4) To achieve rapid geological disaster monitoring, a fast 

implementation approach is also proposed, which 

employs parallel computing techniques to accelerate 

the training and prediction processes, enabling the 

handling of a large amount of remote sensing image 

data in a short amount of time. 

(5) Considering performance indicators, edge 

enhancement methods, the improved Isolation Forest 

model, and the fast implementation approach's 

effectiveness, the proposed geological disaster 

monitoring method has high potential in practical 

applications, contributing to increased accuracy and 

efficiency in geological disaster monitoring. 
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