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The complementary metal oxide semiconductor (CMOS) technique is widely used in 

modern manufacturing processes for the high compatibility. A novel metaheuristic with 

deep learning based compression with image classification model (MDL-CCIM) technique 

is developing to compress and classify the images captured by CMOS image sensors. The 

proposed MDL-CCIM technique follows two major processes, namely, butterfly 

compression and classification. Primarily, the BOA with LBG model is applied for image 

compression. Secondly, the DenseNet with softmax layer is employed for image 

classification. Finally, the hyper parameter tuning of the DenseNet model is optimally 

chosen by the Adam optimizer. A wide range of simulations was carried out to highlight the 

enhancement of the MDL-CCIM technique. The extensive comparative analysis reported 

the improved outcomes of the MDL-CCIM technique over the recent approaches. Hybrid 

DL models can be used for image classification purposes. 
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1. INTRODUCTION

The demand for lower-power sensing, higher-resolution 

devices with incorporated image processing capabilities, 

particularly compression capability, is growing. The 

complementary metal oxide semiconductor (CMOS) 

technique permits the incorporation of image processing and 

sensing, making it feasible to enhance the complete 

performance of the system. The CMOS is a semiconductor 

technology used in the manufacturing of integrated circuits 

(ICs). In a CMOS circuit, each transistor operates as either an 

on or off switch. When a transistor is on, it allows current to 

flow through it, while when it's off, no current flows. By using 

complementary pairs of transistors, CMOS circuits can 

efficiently switch between these two states, which makes them 

ideal for use in digital circuits. One of the main advantages of 

CMOS technology is its low power consumption. Since the 

transistors are either fully on or fully off, they consume very 

little power when they are not actively switching. This makes 

CMOS ideal for use in battery-powered devices, such as 

mobile phones and laptops. Another advantage of CMOS 

technology is its high noise immunity. The complementary 

pairs of transistors ensure that noise signals are canceled out, 

resulting in a high signal-to-noise ratio.  

The CMOS is used in a wide range of applications, from 

digital logic circuits to analog signal processing circuits. The 

CMOS technique permits the incorporation of image 

processing and sensing, making the CMOS image sensor the 

optimal solution to enhance the performance of the overall 

system [1]. Figure 1 shows the block diagram of CMOS image 

sensor. Over the previous years, image sensors integrating 

distinct on-chip compression methods, namely, wavelet-based 

image processing, predictive coding, conditional 

replenishment, image processing, and SPIHT algorithm were 

introduced. The integral part of image compression lies in 

internet browsing, medical sciences, TV broadcasting, 

navigation applications, etc., with the development of science 

and techniques, the need for reduction in transmission time 

and the storage space requirement for digital images becomes 

an important concern. The broadcast range has been restricted 

which makes issue [2]. A proper and efficient image 

compression method is of major need to address the issue of 

constrained bandwidth.  

Figure 1. Block diagram of CMOS image sensor 

Over the past decades, the research field has paid more 

towards the presented method for image compression. Vector 

Quantization (VQ) approach outperforms another method, 

namely, pulse code modulation (PCM), Adaptive DPCM, 

differential PCM (DPCM) that belongs to the group of scalar 

quantization methods [3]. VQ, the more common lossy image 
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compression method is mainly a c-means clustering method 

commonly employed for pattern recognition and image 

compression, face detection, speech and image coding speech 

recognition due to the advantage that includes high 

compression rate and simple decoding architecture it offers 

with lower distortion [4]. Object detection and image 

classification are two applications of artificial intelligence (AI) 

commonly employed in the industry. 

The research gap in the existing works is need to optimize 

the convolutional neural network (CNN) architecture and 

CMOS sensor to train the edge platform for larger data. The 

research motivation of this study is deep learning (DL) model 

plays an integral part in enhancing the performance and 

accuracy. High speed or resolution CMOS image sensor 

provides vital image quality to exact processes like CNN based 

object detection and image classification [5]. The CNN 

method that has been trained is extremely based on the training 

data. When the training data is contained in lower-quality 

images, the CNN cannot recognize the object under 

deliberation and is more possible to give poor accuracy for 

object detection and image classification methods. 

The results of the proposed metaheuristics with deep 

learning based compression with image classification model 

(MDL-CCIM) method has been provided to identify and 

compress the images taken by CMOS image sensors. The 

butterfly compression and classification processes are the two 

main steps in the proposed MDL-CCIM approach. The BOA 

with LBG model is primarily used to compress images. 

Second, DenseNet with a softmax layer is used to classify 

images. The Adam optimizer then selects the DenseNet 

model's hyperparameter tweaking in the best possible way. 

The results are looked at from a variety of angles. A set of 300 

images from each category are taken into consideration in this 

work. The compression result analysis of the MDL-CCIM 

methodology with new methods under various Codebook Size 

(CS) and pictures. The results showed that every CS and image 

had higher Peak signal-to-noise ratio (PSNR) values as a result 

of the MDL-CCIM technique. 

Section 2 of the paper, which analyses the connected works 

involved in compression with image classification model, is 

how the other portions of the essay are structured. The 

suggested MDL-CCIM model is described in Section 3. The 

results are then analyzed and discussed in Section 4, along 

with a performance comparison with alternative approaches. 

Finally, the important findings of the suggested investigation 

are summarized in Section 5. 

 

 

2. LITERATURE SURVEY 

 

Gnanasambandam and Chan [6] presented a student-teacher 

learning system that permits to categorize the noisy raw 

information. In this work, they showed that using the presented 

method, we could accomplish image classification at a photon 

level of a single photon lower or for each pixel. The 

experiment result verifies the efficiency of the presented 

approach in comparison with the current solution. Ammah and 

Owusu [7] projected a discrete wavelet transform DWT 

method for compressing images and to maintain perceptual 

quality at a physically tolerant level. In the hybrid method, 

speckle and salt and pepper noises in ultrasound imagery are 

decreased considerably. When the image isn’t ultrasound, the 

procedure has negligible effect, hover, edge is conserved. 

Then, the image is filtered through DWT. A threshold method 

is employed for generating the coefficient in effective manner. 

Later, the consequence is vector quantized. At last, the 

quantized coefficient is Huffman encoded. 

Wang and Du [8] have developed a squirrel search 

algorithm (SSA) using LBG based image compression 

approach named SSA-LBG for UAV. The SSA is employed 

for constructing of the codebook for VQ and it uses LBG 

method as the beginning of SSA for VQ. Zou et al. [9] 

examined a technique, called Dynamic Predictive Block 

Adaptive VQ (DP-BAVQ), to decrease the capacity of 

downlinked information for staggered SAR. Firstly, it 

compresses the variance of prediction and raw data with the 

dynamic prediction block adaptive quantization (DP-BAQ). 

Next, a secondary compression is implemented by using. Xu 

et al. [10] proposed a higher-capacity RDHEI system-based 

VQ prediction (VQP) and adoptive block selection. VQ 

compression is a lossy compression technique. In this method, 

VQ compression is utilized for estimating the raw pixel with 

an empty room beforehand encryption. As the variance 

between the original image and the VQ decompressed image 

is smaller once the length of codebook is satisfactory, with the 

variance as a predictive error could attain and obtain space for 

embedding information. 

This research introduces novel metaheuristics with deep 

learning based compression with image classification model 

(MDL-CCIM) on CMOS image sensors. The proposed MDL-

CCIM technique aims to compress and classify the images 

captured by CMOS image sensors. The proposed MDL-CCIM 

technique follows two major processes, namely, butterfly 

compression and classification. At the initial stage, the 

butterfly optimization algorithm (BOA) with LBG model is 

applied for image compression. Next, in the second stage, the 

DenseNet with softmax layer is employed for image 

classification. Furthermore, the hyperparameter tuning of the 

DenseNet model is optimally chosen by the Adam optimizer. 

A wide range of simulations was carried out to highlight the 

enhancement of the MDL-CCIM technique. 

 

 

3. PROPOSED METHODOLOGY 

 

In this research study, a new MDL-CCIM technique has 

been developed to compress and classify the images captured 

by CMOS image sensors. The proposed MDL-CCIM 

technique follows two major processes, namely, butterfly 

compression and classification. Primarily, the BOA with LBG 

model is applied for image compression [11]. Secondly, the 

DenseNet with softmax layer is employed for image 

classification. Finally, the hyperparameter tuning of the 

DenseNet model is optimally chosen by the Adam optimizer. 

 

3.1 Design of BOA-LBG based compression technique 

 

The BOA-LBG technique is derived to compress images. 

An efficient image compression approach is named as BOA-

LBG algorithm is established for compressing the image. The 

BOA-LBG approach creates to utilize of BOA technique with 

LBG algorithm. The VQ is a lossy data compression method 

in block coding [12]. The generation of codebook was detected 

as a vital process of VQ. Considering that size of new images 

Y={yij} be M×M pixel that separated into various blocks with 

size of n×n pixel. Especially, there are 𝑁𝑏 = [
𝑁

𝑛
] × [

𝑁

𝑛
] block 

that is indicated as set of input vectors=(xi, i=1, 2, …, Nb). 

Consider that L be n×n. An input vector 𝜒𝑖 , 𝜒𝑖 ∈ ℜ𝐿 where ℜ𝐿 
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is L dimension Euclidean space. The codebook C has of Nc L 

dimensions code word, i.e., = {𝑐1, 𝑐2, … , 𝑐𝑁𝐶
}, 𝑐𝑗 ∈ ℜ𝐿 , ∀𝑗 =

1,2, … 𝑁𝑐.  

Every input vector was signified as row vector xi=(xi1, xi2, …, 

xiL) and jth codeword of codebook is illustrated as cj=(cj1, cj2, …, 

cjL). The VQ methods assign every input vector for connecting 

codeword, and the codeword is changing the linked input 

vector finally to attain the resolve of compression. The 

optimizing of C interms of MSE was written as minimizing 

distortion function D. “Usually, the minimal value of D was 

optimal the quality of C in Eq. (1).”: 

 

𝐷(𝐶) =
1

𝑁𝑏

∑ ∑ 𝜇𝑖𝑗

𝑁𝑏

𝑖=1

𝑁𝑐

𝑗=1

⋅ ‖𝑥𝑖 − 𝑐𝑗‖2 (1) 

 

According to the succeeding constraint in Eq. (2): 

 

∑ 𝜇𝑖𝑗

𝑁𝑐

𝑗=1

= 1, ∀𝑖 ∈ {1,2, … , 𝑁𝑏} (2) 

 

𝜇𝑖𝑗 = {
1 𝑖𝑓𝑥𝑖𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

 

𝐿𝑘 ≤ 𝑐𝑗𝑘 ≤ 𝑈𝑘 , 𝑘 = 1,2, … , 𝐿 (4) 

 

where, Lk implies the minimal of kth elements in all trained 

vectors, and Uk refers the higher of kth elements in every input 

vector. The ‖x-c‖ indicates the Euclidean distance among the 

vector x as well as codeword c. The two important states that 

an optimum vector quantize in Eq. (3) and Eq. (4). 

The partition Rj, j=1, …, Nc be needed to be done in Eq. (5): 

 

𝑅𝑗 ⊃ {𝑥 ∈ 𝜒: 𝑑(𝑥, 𝑐𝑗) < 𝑑(𝑥, 𝑐 ∀𝑘) (5) 

 

The codeword cj was offered as the centroid of Rj in Eq. (6): 

 

𝑐𝑗 =
1

𝑁𝑗

∑ 𝑥𝑖

𝑁𝑗

𝑖=1

, 𝑥𝑖 ∈ 𝑅𝑗 (6) 

 

where, Nj implies the whole count of vectors going to Rj. 

 

3.1.1 LBG algorithm 

This approach to a scalar quantizer was projected by Lloyd. 

This technique was named LBG or generalization Lloyd 

algorithm (GLA). It implements the 2 abovementioned states 

for the input vector for defining the codebook. For providing 

input vectors xi, i=1, 2, …, Nb, distance function d, and first 

codewords cj(0), j=1, …, Nc. The LBG iteratively executes 2 

states to produce a better codebook due to the succeeding 

approach: 

(1) Partition the input vector as numerous groups employing 

the lesser distance rule. This outcome partition is stored from 

Nb×Nc binary indicator matrix U when the element is defined 

as subsequent in Eq. (7): 

 

𝜇𝑖𝑗 = {
1 𝑖𝑓 𝑑 (𝑥𝑖 , 𝑐𝑗(𝑘)) = min

𝑝
𝑑 (𝑥𝑖 , 𝑐𝑝(𝑘))

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
 (7) 

 

(2) Resolve the centroid of every partition. Interchange the 

old codeword with centroids Eq. (8): 

𝑐𝑗(𝑘 + 1) =
∑ 𝜇𝑖𝑗

𝑁𝑏
𝑖=1 𝑥𝑖

∑ 𝜇𝑖𝑗
𝑁𝑏
𝑖=1

, 𝑗 = 1, … , 𝑁𝑐 (8) 

 

(3) Repeat steps (1) & (2) until no cj, j=1, …, Nc alters 

already. 

 

3.1.2 Codebook construction process 

For the optimal codebook construction process, the BOA is 

utilized. The BOA is derived from the characteristics of BFs 

at the time of matting and food source discovery. It employs a 

pair of navigation patterns for searching the area. During 

exploration (r1≤p), BFs goes in the direction of the optimal BF 

of the colony, whereas during exploitation (r1>p), the BFs 

carry out an arbitrary searching process within the searching 

area by searching the arbitrary BFs. They can be defined in a 

mathematically way as follows in Eq. (9) and Eq. (10). 

If r1≤p, Global searching: 

 
𝑡 + 1

𝑋𝑖 =
𝑡

𝑋𝑖 + (𝑟2
2 × 𝑔∗ −

𝑡
𝑋𝑖) × 𝜑𝑖 (9) 

 

If r1>p, Local searching: 

 
𝑡 + 1

𝑋𝑖 =
𝑡

𝑋𝑖 + (𝑟3
2 ×  

𝑡
𝑋𝑗 −

𝑡
𝑋𝑘) × 𝜑𝑖 (10) 

 

where, t and t+1 represent the present and update levels of the 

respective variables. Besides, the place of the optimal BF can 

be represented using g*, and tXi and tXk, indicates the places of 

two randomly chosen BF; r1, r2 and r3 implies random scalars 

and φi indicates the fragrance factor which can be represented 

as follows in Eq. (11): 

 

𝜑𝑖 = 𝑐𝐼𝑎
 (11) 

 

where, φi indicates the fragrance magnitude for ith BF; I and a 

denote the stimulus intensity and fluctuating absorption degree. 

𝐼 undergoes correlation to the objective function value, and for 

ith BF as f(Xi), where f defines an objective function. The 

coefficients a and c are chosen from intervals of [0,1], p imply 

probability switching that computes the searching nature. The 

entire procedure contained in the BOA-LBG method was 

provided as follows.  

During the initial phase, the parameter initialization occurs 

so that the codebook generated by LBG method is allocated to 

the initial solution (i.e., satin bowerbirds), however, the rest of 

the initial solutions are arbitrarily created. Every solution 

represents the codebook of NC codeword. In addition, the 

initialization of BOA occurs.  

Secondary phase, the presented optimal solution is selected 

by computing the fitness of every place and the higher fitness 

place is detected as the optimal one.  

During the tertiary stage, a novel solution is generated in the 

bowerbird mutation process. 

The solution is ranked on the basic of FF in the subsequent 

step among that the optimal is chosen.  

The secondary and tertiary steps are iteration until the 

termination state is met. 

 

3.2 Design of image classification technique 

 

The proposed image classification module incorporates 

three major processes, namely, DenseNet based feature 
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extraction, Adam based hyperparameter tuning, and SM based 

classification. 

 

3.2.1 DenseNet model 

The DenseNet technique is a DL approach established on 

ResNet [13]. Recently, DenseNet is attaining optimum 

outcomes in the domain of image classification. The 

fundamental model of ResNet and DenseNet is similar; but, 

DenseNet introduces a dense connection amongst every 

preceding layer and the latter, and it recognizes feature 

reprocess with the connection of features to the channels. This 

feature creates DenseNet to obtain optimum efficiency than 

ResNet with some parameters and computational cost and 

alleviate gradient vanishing problems.  

The DenseNet is mostly collected from DenseBlock and 

Transition layer. The DenseBlock implements a radical dense 

connection process; i.e., every layer is linked to everyone. 

Specially, all layers accept the resultant of each previous layer 

as their input. In DenseBlock, all layers have a similar size and 

all layers are concatenated with every previous layer in the 

channel dimensional. In order to network with L layer, 

DenseBlock has an entire of L(L+1)/2 connection. The input 

of layer L is as follows in Eq. (12): 

 

𝑥𝐿 = 𝐻𝐿  ([𝑥1, 𝑥2, … , 𝑥𝐿−2, 𝑥𝐿−1]) (12) 

 

where, L implies the amount of layers. HL stands for non-linear 

transformation that is, a group of Batch Normalization (BN), 

ReLU, Pooling, and Conv functions. The common DenseNet-

B infrastructure was employed, and the bottleneck layer was 

utilized for reducing the count of computation; i.e., the 

infrastructure BN+ReLU+1×lConv+BN+ReLU+3×3 Conv was 

implemented. All layers from DenseBlock output k feature 

map were then convolutional, specifically, the number of 

convolutional kernels. When it can be set the channel count of 

input DenseBlock as k0, afterward, the input channel count of 

L layer is k0+ k(L-1). At this point, the last convolutional of all 

layers are k, and k is named as growth rate. In DenseBlock, 

with improvement in the number of layers, the number of input 

channels is superior. While the input size of the model passing 

to DenseBlock remains unvaried, the channel dimensional is 

remaining for increasing. So, dimensional decrease is essential 

for reducing computational complexity.  

The Transition layer was mostly collected of 1×1 

convolutional and 2×2 Avg_Pooling or Max_Pooling, and 

their infrastructure was BN+ReLU+1×1Conv+2×2 

Avg_Pooling. It attaches 2 neighboring denseblock and 

decreases the dimensional resultant of the denseblock. In this 

case, DenseNet-121 model is utilized. Figure 2 shows the 

layered architecture of DenseNet-121 model. To adjust the 

hyperparameter values of the DenseNet model, the Adam 

optimizer is utilized in Eq. (13): 

 

𝑥𝐿 = 𝐻𝐿  ([𝑥1, 𝑥2, … , 𝑥𝐿−2, 𝑥𝐿−1]) (13) 

 

where, L implies the amount of layers. HL stands for non-linear 

transformation that is, a group of Batch Normalization (BN), 

ReLU, Pooling, and Conv functions. The common DenseNet-

B infrastructure was employed, and the bottleneck layer was 

utilized for reducing the count of computation; i.e., the 

infrastructure BN+ReLU+1×lConv+BN+ReLU+3×3 Conv was 

implemented. All layers from DenseBlock output k feature 

map were then convolutional, specifically, the number of 

convolutional kernels. When it can be set the channel count of 

input DenseBlock as 𝑘0, afterward, the input channel count of 

L layer is k0+k(L-1). At this point, the last convolutional of all 

layers are k, and 𝑘 is named as growth rate. In DenseBlock, 

with improvement in the number of layers, the number of input 

channels is superior. While the input size of the model then 

passing with DenseBlock remains unvaried, the channel 

dimensional is remaining for increasing. So, dimensional 

decrease is essential for reducing computational complexity. 
 

 
 

Figure 2. DensNet 121 architecture 
 

3.2.2 Softmax classifier 

The SM layer is the forecast the label probability of input xj 

with employing the feature learned from the 3rd hidden state 

representation ℎ𝑖
(3)

. The number of nodes existing in SM state 

was chosen as equivalent to the number of labels [14, 15].  

The SM state is 5 nodes equivalent to grading groups in 1-

5. But the classifiers like SVM are employed, softmax LR 

permits for optimizing the whole deep network to fine-tuned 

jointly. The succeeding main function was minimizing to a 

finetune the network to softmax state in Eq. (14) [16, 17]. 
 

𝐽𝑆𝑆𝐴𝐸−𝑆𝑀𝐶(𝑊, 𝑏, 𝑥, �̂�) 

= min
𝑊,𝑏

𝐽(𝑥, �̂�) + 𝜆𝑠𝑚𝑐‖𝑊𝑠𝑚𝑐‖2
2 (14) 

 

where, W and b refers the weight and bias of entire deep 

network, 𝐽(𝑥, �̂�) represents the LR cost amongst the classifier 

attained with input feature x and unsupervised outcome �̂� and 

Wsmc implies the weight and λsmc stands for the weight 

decomposed parameter [18, 19]. By implementing finetuned, 

the weight and bias of SM are optimized together, and SM 

state was employed to the classifier. Assume that yi refers the 

label of trained instances xi. The probability of xi refers to the 

kth class was written in Eq. (15): 
 

𝑝(𝑦𝑗 = 𝑘|𝑥𝑗; 𝑊𝑠𝑚𝑐 , 𝑏𝑠𝑚𝑐) =
𝑒𝑊𝑠𝑚𝑐

(𝑘)𝑇
𝑥𝑖+𝑏𝑠𝑚𝑐

(𝑘)

’

∑ 𝑒𝑊𝑠𝑚𝑐
(𝑗)𝑇

𝑁
𝑗=1 , 𝑥𝑖 + 𝑏𝑠𝑚𝑐

(𝑗)
 (15) 

 

where, 𝑊𝑠𝑚𝑐
(𝑘)

 and 𝑏𝑠𝑚𝑐
(𝑘)

 implies the distribution of weight and 

bias from the kth class. N signifies the entire amount of classes 

that relate to the 5 grade groups [20]. Due to the maximal 

probability, it can calculate the grade group of instances xj 

utilizing the formula in Eq. (16): 

 

𝐺𝑟𝑎𝑑𝑒(𝑥𝑖) = 𝑎𝑟𝑔𝑘 max
𝑘=1…𝑁

𝑝(𝑦𝑖 = 𝑘|𝑥𝑖; 𝑊𝑠𝑚𝑐 , 𝑏𝑠𝑚𝑐) (16) 
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4. RESULTS AND DISCUSSION 

 

The performance validation of the MDL-CCIM technique 

occurs using a benchmark dataset from Kaggle repository. It 

contains images under different classes namely Fresh Apples 

(FA), Fresh Bananas (FB), Fresh Oranges (FO), Rotten Apples 

(RO), Rotten Bananas (RB), and Rotten Oranges (RO). The 

results are examined in various aspects. In this work, a set of 

300 images from each category are considered. Table 1 and 

Figure 3 illustrate the compression result analysis of the MDL-

CCIM technique with recent methods under varying 

Codebook Size (CS) and images. 

 

Table 1. PSNR analysis of MDL-CCIM technique under 

different CS 

 

Codebook 

Size 
Methods 

Image-

1 

Image-

2 

Image-

3 

CS=8 

IDELBG 26.42 21.41 27.39 

IPSOLBG 26.00 21.04 26.70 

BALBG 24.50 19.90 25.83 

FALBG 25.17 19.26 25.05 

MDL-CCIM 27.44 22.79 28.87 

CS=16 

IDELBG 27.85 21.20 28.51 

IPSOLBG 27.34 21.16 27.48 

BALBG 26.38 20.00 27.33 

FALBG 25.67 20.38 25.97 

MDL-CCIM 28.69 23.17 29.18 

CS=32 

IDELBG 28.61 21.57 29.81 

IPSOLBG 28.56 22.41 28.19 

BALBG 26.15 21.17 26.67 

FALBG 25.59 20.36 26.33 

MDL-CCIM 29.83 23.87 30.83 

CS=64 

IDELBG 30.01 23.84 29.52 

IPSOLBG 29.47 23.52 29.15 

BALBG 26.91 21.99 27.96 

FALBG 27.36 22.39 27.55 

MDL-CCIM 31.16 24.97 30.68 

CS=128 

IDELBG 30.73 23.89 30.48 

IPSOLBG 31.33 24.68 29.73 

BALBG 28.97 22.85 29.41 

FALBG 28.91 22.91 28.51 

MDL-CCIM 32.74 26.16 31.93 

CS=256 

IDELBG 32.16 25.42 31.78 

IPSOLBG 31.43 25.43 30.92 

BALBG 28.76 24.04 30.26 

FALBG 29.62 23.73 29.26 

MDL-CCIM 34.74 26.43 32.93 

 

The results demonstrated that the MDL-CCIM technique 

has resulted in increased Peak signal-to-noise ratio (PSNR) 

values under every CS and image. 

For instance, with CS of 8 and image 1, the MDL-CCIM 

technique has attained higher PSNR of 27.44dB, whereas the 

IDELBG, IPSOLBG, BALBG, and FALBG techniques have 

obtained lower PSNR of 26.42dB, 26dB, 24.50dB, and 

25.17dB respectively. Likewise, with CS of 16 and image 1, 

the MDL-CCIM technique has achieved increased PSNR of 

28.69dB, whereas the IDELBG, IPSOLBG, BALBG, and 

FALBG techniques have reached reduced PSNR of 27.85dB, 

27.34dB, 27.34dB, 26.38dB, and 25.67dB respectively.  

Similarly, with CS of 32 and image 1, the MDL-CCIM 

technique has gained improved PSNR of 29.83dB, whereas the 

IDELBG, IPSOLBG, BALBG, and FALBG techniques have 

attained decreased PSNR of 28.61dB, 28.56dB, 26.15dB, and 

25.59dB respectively. Concurrently, with CS of 64 and image 

1, the MDL-CCIM technique has depicted reasonable PSNR 

of 31.16dB, whereas the IDELBG, IPSOLBG, BALBG, and 

FALBG techniques have exhibited lower PSNR of 30.01dB, 

29.47dB, 26.91dB, and 27.36dB respectively. 

 

 
 

Figure 3. Comparative analysis of various methods in terms 

of PSNR (dB) a) CS=8 b) CS=16 c) CS=32 d) CS=64 e) 

CS=128 f) CS=256 

 

Simultaneously, with CS of 128 and image 1, the MDL-

CCIM technique has reached to maximum PSNR of 32.74dB, 

whereas the IDELBG, IPSOLBG, BALBG, and FALBG 

techniques have resulted in minimal PSNR of 2630.73dB, 

31.33dB, 28.97dB, and 28.91dB respectively. At last, with CS 

of 256 and image 1, the MDL-CCIM technique has attained 

higher PSNR of 34.74dB, whereas the IDELBG, IPSOLBG, 

BALBG, and FALBG techniques have obtained lower PSNR 

of 32.16dB, 31.43dB, 28.76dB, and 29.62dB respectively. 

Figure 4 highlights the confusion matrix offered by the 

MDL-CCIM technique. The figure reports that the MDL-

CCIM technique has identified 284 images under class FA, 

285 images under class FB, 291 images under class FO, 300 

images under class RA, 292 images under class RB, and 285 

images under class RO.
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Figure 4. Confusion matrix of MDL-CCIM technique 

 

Table 2 and Figure 5 and Figure 6 provide a brief 

classification results analysis of the MDL-CCIM technique 

under distinct classes. The results indicated that the MDL-

CCIM technique has gained enhanced classifier results under 

every individual class. For instance, in FA class, the MDL-

CCIM technique has attained precn, recal, accuy, and Fscore of 

96.60%, 94.67%, 98.56%, and 95.62% respectively. 

Simultaneously, with FB class, the MDL-CCIM technique has 

attained precn, recal, accuy, and Fscore of 93.75%, 95%, 98.11%, 

and 94.37% respectively.  

Concurrently, with FO class, the MDL-CCIM technique has 

attained precn, recal, accuy, and Fscore of 97%, 97%, 99%, and 

97% respectively. At last, with DA class, the MDL-CCIM 

technique has attained precn, recal, accuy, and Fscore of 96.77%, 

100%, 99.44%, and 98.36% respectively. 

 

Table 2. Classification result analysis of MDL-CCIM 

technique 

 
Methods Precision Recall Accuracy F-Score 

Class-FA 96.60 94.67 98.56 95.62 

Class-FB 93.75 95.00 98.11 94.37 

Class-FO 97.00 97.00 99.00 97.00 

Class-RA 96.77 100.00 99.44 98.36 

Class-RB 97.66 97.33 99.17 97.50 

Class-RO 97.27 95.00 98.72 96.12 

Average 96.51 96.50 98.83 96.50 

 

 
 

Figure 5. precn and recal analysis of MDL-CCIM technique 

 

 
 

Figure 6. accuy, and Fscore analysis of MDL-CCIM technique 

 

Table 3 reports the comparative results analysis of the 

MDL-CCIM technique with the existing DLFFCD technique. 

Figure 7 offers the comparison study of the MDL-CCIM 

technique with existing one in terms of precn. The figure 

reports that the MDL-CCIM technique has accomplished 

better values of 𝑝𝑟𝑒𝑐𝑛  under all classes. For instance, with 

class FA, the MDL-CCIM technique has obtained increased 

precn of 96.60% whereas the DLFFCD technique has attained 

decreased precn of 91.04%.  

Moreover, in class Fo, the MDL-CCIM technique has 

obtained increased precn of 97% whereas the DLFFCD 

technique has attained decreased precn of 96.64%. 

Furthermore, with class RO, the MDL-CCIM technique has 

obtained increased precn of 97.27% whereas the DLFFCD 

technique has attained decreased precn of 96.96%. 

 

Table 3. Comparative result analysis of MDL-CCIM with 

recent models 

 

Classes 

Precision (%) Recall (%) 

DLFFC

D 

MDL-

CCIM 

DLFFC

D 

MDL-

CCIM 

Class-FA 91.04 96.60 93.72 94.67 

Class-FB 92.21 93.75 94.5 95.00 

Class-FO 96.65 97.00 94.58 97.00 

Class-RA 95.61 96.77 95.17 100.00 

Class-RB 97.05 97.66 96.43 97.33 

Class-RO 96.96 97.27 94.53 95.00 

 

Figure 8 offers the comparison study of the MDL-CCIM 

technique with existing one in terms of recal. The figure 

reports that the MDL-CCIM technique has accomplished 

better values of recal under all classes. For instance, with class 

FA, the MDL-CCIM technique has obtained increase recal of 

94.67% whereas the DLFFCD technique has attained 

decreased recal of 93.72%. Moreover, in class Fo, the MDL-

CCIM technique has obtained increased recal of 97% whereas 

the DLFFCD technique has attained decreased recal of 

94.58%. Furthermore, on class RO, the MDL-CCIM technique 

has obtained increased recal of 95% whereas the DLFFCD 

technique has attained decreased 𝑟𝑒𝑐𝑎𝑙 of 94.53%. 

From these results and discussion, the improvement of the 

MDL-CCIM technique is verified. Thus, it can be utilized as 

an effective tool for CMOS image sensor compression and 

classification. 
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Figure 7. Comparative precn analysis of MDL-CCIM with 

existing models 

 

 
 

Figure 8. Comparative recal analysis of MDL-CCIM with 

existing models 

 

 

5. CONCLUSIONS 

 

CMOS image sensors were used in this work to build a 

novel MDL-CCIM approach for compressing and classifying 

pictures. Butterfly compression and classification are the two 

main steps in the proposed MDL-CCIM method. The BOA 

with LBG model is mostly used for compressing images. 

Second, a DenseNet with a softmax layer is used to classify 

images. Finally, the Adam optimizer selects the best 

hyperparameter setting for the DenseNet model. The MDL-

CCIM approach was improved using several simulations. 

Exhaustive comparison investigation found that the MDL-

CCIM technique outperformed other techniques. The MDL-

CCIM technique has accomplished better values of 𝑟𝑒𝑐𝑎𝑙 

under all classes. For instance, with class FA, the MDL-CCIM 

technique has obtained increase recal of 94.67% whereas the 

DLFFCD technique has attained decreased recal of 93.72%. 

Moreover, in class Fo, the MDL-CCIM technique has obtained 

increased recal of 97% whereas the DLFFCD technique has 

attained decreased recal of 94.58%. Furthermore, on class RO, 

the MDL-CCIM technique has obtained increased 𝑟𝑒𝑐𝑎𝑙  of 

95% whereas the DLFFCD technique has attained decreased 

recal of 94.53%. In the future, hybrid DL models can be used 

for image classification purposes. Moreover, planning to 

evaluate the research with more distinct quality of service 

parameters. 
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