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Electroencephalography (EEG) is a test performed to assess the electrical signals 

spontaneously produced during brain activities. In recent years, it is popularly used for 

studying both normal and pathological changes occurring in the human brain. With the 

World Health Organization (WHO) listing psychological disorders as a major health issue 

faced by the modern society, the current work focuses on this niche. It categorizes cognitive 

impairment like depression and anxiety using a computer-aided machine learning approach 

called Convolutional Neural Network. The deep CNN is trained using EEG signals from 30 

patients suffering from depression and 30 others suffering from anxiety. Initially, the signal 

is preprocessed using Fractional Order Butterworth Filter (FOBF). The work considers the 

occurrence of ultra-damped, hyper-damped, and under-damped poles while designing a 

FOBF in a composite w-plane (w=sq; where, q is a real number). As usually executed for 

integer order filters in a composite w-plane, the primary initial fractional Butterworth filter 

is employed. The characteristics of each electrode's gamma, theta, delta, beta, alpha, and 

full-band EEG are then analyzed. This results in the removal of 270 nonlinear and linear 

characteristics. The feature space’s dimensions are then reduced using a feature selection 

approach called Minimal-Redundancy-Maximal-Relevance (MRMR). The EEG 

characteristics are finally categorized by utilizing the suggested deep CNN, Artificial Neural 

Network (ANN) and K-Nearest Neighbor (KNN). The accuracy of classification of the 

proposed approach is evaluated and found to be 97.6%. This shows it is promising for 

detecting depression and anxiety symptoms accurately and cost-effectively.  
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1. INTRODUCTION

The brain is a vital organ that enables an individual to 

communicate, think rationally, make moral decisions, and be 

creative. It is liable for a person's actions, memories, character, 

and insight on the universe. Additionally, it also oversees the 

insensate physiological processes like breathing and digestion. 

It is a large organ with over 100 billion nerve cells that 

harmonize bodily activities. Emotions play a strong role in in 

the daily lives of human beings. Rash emotions lead to 

cognitive disorders, of which the two common ones are 

anxiety or depression. 

These disorders change the electrical and chemical 

processes in the brain. Researchers monitor these variations by 

obtaining images and brain signals. Psychiatrists often come 

across situations where they need to diagnose patients 

suffering from anxiety or depression.  

Anxiety disorder is a condition in which the individual 

suffers from a variety of pathological qualms and abnormal 

anxieties. A persistent dread of an object or circumstance is 

known as phobic disorder. It might also entail long-term 

behavioral changes and continuing anxiety or concern about 

the consequences.  

Depression is another condition in which an individual's 

feelings, thoughts, behavior, and physical well-being are 

affected by a mood disorder, characterized by distaste to action. 

Depressed persons may experience anxiety, feelings of 

sadness, irritability or restlessness, emptiness, worthlessness, 

and guilt. Such psychosomatic illnesses can be identified by 

analyzing emotions based on the brain's impulses. 

An EEG assesses the brain's impulsive electrical activity 

due to the existence of neurons [1]. Electric impulses moving 

amidst brain cells in the brain’s cerebral cortex area produce 

an EEG signal. The rapidity of these electrical changes lead to 

specific temporal precision in the microsecond or millisecond 

range [2, 3]. Electrical energy produced by brain vs time 

graphs are shown as EEG recordings. The potential variance 

between two electrodes positioned at a distance is used to 

create an EEG channel, which is subsequently used to record 

the summed potential of neurons. EEG is often recorded by 

means of a 10-20 electrode setup as shown in Figure 1. 

In recent years, studying EEG to better apprehend human 

reasoning processes, brain illness diagnostics and mechanisms, 

fundamental brain activities, and the realm of Brain Computer 

Interface (BCI) has garnered a lot of interest. For, EEG 

provides a greater temporal resolution, a simpler operating 

approach, and cheaper maintenance costs than Computed 

Tomography (CT) and functional Magnetic Resonance 

Imaging (fMRI). Further, it serves as a nonintrusive technique 

for studying reasoning behavior and disease symptoms like 
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sleep problem, epilepsy, and insomnia. EEG has aided in 

diagnosing mental illnesses like psychosis, sadness, and 

anxiety. EEG may serve as the right tool to trace brain 

functioning corresponding to aberrant activity related to 

depression. For, depression is manifested by evident 

emotional fluctuation, sluggish thinking, and severe 

unhappiness. 

 

 
 

Figure 1. The 10–20-electrode positioning system displaying 

the positions of 19 electrodes 

 

The EEG signal frequency could be categorized into five (5) 

wave bands: theta wave (4–8Hz), which is typically noticed 

when somebody is sleepy; delta wave (4Hz), which is 

observed during slow-wave sleep in adults; gamma wave (30–

50Hz), which is associated with situations like meditation; 

beta wave (14–30Hz), which is detected when someone is 

actively thinking; and alpha wave (8–14Hz), which is 

characteristically observed when the individual is calm and 

relaxed. An ideal feature matrix for the anxiety and depression 

categorization process is created using a feature selection 

approach. On the basis of EEG data, an original deep CNN 

structure has been proposed to categorize anxious and 

depressed individuals. The suggested method's performance, 

in terms of testing precision and training outcomes, is 

evaluated alongside that of popular classification algorithms. 

The following is the paper's structure: Section 2 reviews 

literature pertaining to the current work. Section 3 explains the 

research methodology employed in the current study for 

dataset description, preprocessing, feature extraction, and 

classification. Section 4 discusses the result outcomes viz., 

training and testing accuracy of the proposed approach and 

popular classification algorithms. Section 5 concludes the 

study. 

 

 

2. LITERATURE REVIEW 

 

A DeprNet, DL-based CNN was proposed by Seal and co 

for categorizing EEG information from healthy and depressed 

patients [4]. It examined DeprNet's performance in two trials, 

i.e., subject-wise split and record-wise split. The record-wise 

split data brought about a 0.9937 accuracy and a low Receiver 

Operating Characteristic (ROC) curve of value of 0.999. Such 

low performances ruled out these approaches as unsuitable for 

real world application. In the studies carried out before this, 

single-channel raw EEG data was fed into the network as input, 

using DL models, wherein the spatial information for 

categorization was entirely lost [5].  

The performance of Decision Tree (DT), Support Vector 

Machine (SVM) and KNN was assessed by Cai et al. [6] on an 

identical data set. Of those, the KNN model was found to be 

the most accurate, with an accuracy of 89.98 percentage. The 

creation of a psychophysiological databank of 213 participants 

(121 healthy controls and 92 depressive patients) was 

discussed by Cai et al. [7]. A three-electrode EEG device, 

which is extensively used in prefrontal lobe, was used to 

capture EEG signals of all the subjects during sound 

stimulation and at rest. It was found that KNN generated the 

greatest accuracy of 79.27 percent. The findings revealed that 

the complete strength of theta wave could be a useful indicator 

of depression. It was concluded that the commonly available 

three-electrode EEG collection equipment can facilitate 

depression detection.  

Martínez-Rodrigo et al. [8] utilized a renowned deep 

learning system, AlexNet, to assess 3-D and 2-D spectral 

pictures produced through shared thirty-two (32) channels of 

EEG data for distinguishing between distressed and calm 

emotional conditions. Deep learning algorithms are recently 

utilized for detecting various mental diseases such as epilepsy 

[9, 10], dementia [11], depression [12], and Parkinson's 

disease [13]. 

CNN techniques are most frequently utilized in the niche of 

emotion recognition [14] as well as in the broader context of 

deep learning [15]. Contrary to conventional machine learning 

techniques, CNN automatically grasps the complicated 

features by integrating the weights of many convolutional 

filters to classify the signals. The majority of experiments on 

emotion identification utilizing CNN was fed with 2-D EEG 

spectrograms [16-18]. These spectrograms, however, provide 

data from a single channel, independently assessing each area 

of the brain. So, a holistic and coordinated brain information 

is not available. However, the brain functions as a network and 

mental activities are built on the harmonized functioning of 

various sections, says studies [19]. Therefore, simultaneous 

investigation of all brain regions is needed [20] for a 

comprehensive evaluation of the fundamental brain dynamics 

leading to various emotions. 

Li et al. [21] proposed a new method for detecting mild 

depression using electroencephalography. The findings 

suggested that combining CNN with functional connectivity 

matrix is effective in detecting moderate depression. In 

another study by Hosseinifard et al. [22], it was discovered that 

nonlinear characteristics are also efficient for interpreting EEG 

data.  

Faust et al. [23] used Probabilistic Neural Networks (PNN) 

to leverage other nonlinear characteristics and wavelet packet 

decomposition to equate the results obtained from right and 

left electrodes. In addition, the outcomes of seven traditional 

categorization methods were also equated. Despite the 

approaches being quite accurate, they have significant 

limitations. For, the study did not consider feature redundancy 

and skipped the stage of feature selection. Furthermore, 

because the data was split into testing and training segments in 

a record-by-record manner, the great precision claimed to be 

attained could be due to such over fittings. 

Acharya et al. [24] came up with a depression diagnostic 

index using nonlinear techniques and Support Vector Machine 

(SVM) for classification. By combining nonlinear 

characteristics in an intelligent way, a depression diagnostic 

index was also developed. The utilization of depression 

diagnostic index for categorization is dubious, as there is no 

indication of a connection between the nonlinear 

characteristics employed in the study for outlining depression 

and depression diagnosis index. 

Convolutional Neural Networks (CNN), are frequently 

utilized in image processing and have good performance in 

terms of accuracy. Three machine learning methods such as 

972



 

logistic regression, K-Nearest Neighbor (KNN), and Artificial 

neural network (ANN) are implemented in huge EEG 

recordings. Dataset are collected from 90 patients (45 

depressed and 45 normal). The correlation dimension, a useful 

nonlinear characteristic, is employed for evaluating EEG data 

and distinguishing between non-depressed and depressed 

patients. The proposed model on combining nonlinear and 

linear characteristics will improve recognition accuracy. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Description of data and procedure 

 

The EEG signals investigated in this work were obtained 

Database for Emotion Analysis using Physiological (DEAP) 

signals [25]. 6,000 recordings including 3,000 from anxious 

patients and 3,000 depressive patients acquired from the 

dataset. These pertained to the right and left brain hemispheres, 

which corresponded to two conditions viz., eyes closed and 

eyes opened, respectively. The data so collected was from 30 

depressed patients (age between 20 and 50 years) and 30 

anxiety-affected patients (aged between 20 and 50 years). An 

ethics committee of senior physicians gave the ethics approval 

for the EEG data collected for this study. 

 

 
 

Figure 2. Sample anxiety EEG recording 

 

 
 

Figure 3. Sample depression EEG recording 

 

Bipolar montage established on the conventional 10-20 

electrode placement technique is used to capture EEG data. 

The left half, FP1-T3; and right half, FP2 –T4 related to brain 

is utilized for obtaining the EEG data. Figure 2 depicts 

depressed person’s sample EEG recordings and Figure 3 

depicts a sample EEG recording of an anxiety-affected person. 

The samples so obtained are five-minute recordings in eyes-

closed and eyes-opened conditions. EEG signals are 

experimented at the rate of 256 hertz. 

 

3.2 Data pre-processing 

 

The MATLAB Programme version R2014a is used for all 

preprocessing and data analysis carried out in this 

investigation. The brainwave activity's physiological signal is 

gathered by employing a noninvasive technique called EEG. 

Usually, the EEG so obtained is mixed with interferences from 

surrounding settings like baseline wander and nearby power 

line. EEG sensors can also find and record other physiological 

signals including Electrooculogram (EOG), 

Electromyography (EMG), and Electrocardiogram (ECG) [26]. 

The entire raw data must be de-noised for achieving accurate 

feature classification and selection results. The recommended 

approach’s general block diagram is shown in Figure 4. 

 

 
 

Figure 4. General block diagram 

 

During the preprocessing phase, noise in the incoming EEG 

signal gets eliminated. The physiological signal of brainwave 
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activity which is being recorded, is only a few uV in amplitude. 

So, the signal to noise ratio is very low. However, interfering 

signals may bear hundreds of uV amplitude. Therefore, to 

eliminate obtrusive signals, FOBF is constructed in the w-

plane. This study also takes into account the W plane, which 

may be written as (w 14 sq; qR+). It comprises of all likely 

pole kinds viz., hyper, under, and ultra-damped. A diagnostic 

filter design has been applied in the w-plane, and specific pole 

position criteria, including stable and unstable, have been 

identified. According to the standard butterworth filter 

principle, the poles whose radius is the same as the cutoff 

frequency are situated along the circle's perimeter. These have 

been discovered to be unaffected by fractional order derivation. 

As a result, the suggested formulation accounts for all stable 

poles. 

By obtaining the transfer function, and then, rebinding into 

the s-plane, the relation s=w(1/q) can be applied for the w-

plane. The corresponding reaction curves are obtained. These 

demonstrate the existence of a maximally flat butterworth. The 

ensuing complexity in a fractional domain would make the of 

generalization filters more challenging, and the benefits of 

adding more flexibility will exceed the costs of fabrication. 

Therefore, a relative tradeoff between accuracy and 

complexity has been taken into consideration when designing 

the system. To ensure that the overall order is a fraction, the 

filter has been cut short to the first decimal. The frequency 

domain features can be improved in terms of accuracy by 

making intuitive assessments. The FBW filter is designed 

according to the integer order BW filter by taking into account 

the stability of fractional linear systems [27]. 

 

 
 

Figure 5. Preprocessing using FBWF for depression results 

 

 
 

Figure 6. Preprocessing using FBWF for anxiety results 

Pole positions of every real order FO Butterworth low-pass 

filter P/Q, (P, Q)∈Z+ is calculated by wk=± 𝑗 Ω𝑐𝑒𝑗 (2𝑘−1)
𝜋

2𝑃, 

where, k=1, 2, .., p and the criterion to root stability is 

calculated by arg |𝑊𝑘|>
𝑞𝜋

2
 , where q=1/Q is commensurate 

order and P denotes the quantity of poles dispersed on Q 

Riemann sheets. A pre-processed EEG signal of depression 

and anxiety are respectively shown in Figures 5 and 6. 

 

3.3 Construction of features matrix 

 

Features matrix comprises of m columns and n rows, with n 

and m respectively representing the quantity of EEG data and 

the quantity of characteristics derived from every EEG. The 

following are the three steps used in the current study to create 

an effective training features matrix: 

(1) Recognize and extract all effective features from each 

batch of EEG data, wherein each row signifies a feature vector. 

(2) From every row of the features matrix, which contains 

all the recovered features, the best relevant feature is chosen 

to generate a final feature vector. 

(3) Depression and anxiety are labeled in every row of the 

feature vectors. 

 

3.3.1 Feature extraction 

EEG signals inherently have complicated dynamics, and are 

nonlinear, feeble, and time-sensitive. An alteration in the 

emotional state results in the modification of the EEG 

characteristics. EEG data analysis that has been employed in 

recent work revealed several linear characteristics like 

variance, peak, and skewness. Nonlinear characteristics of 

disorder signals, such as Correlation Dimension, have been 

ascertained and proved to be helpful markers of those 

disorders. It is necessary to primarily extract the features from 

pre-treated EEG for creating a feature matrix. Frequency 

Domain Features and Time Domain Features are the two kinds 

of EEG features. This work excerpts nonlinear characteristics 

like Shannon Entropy and Correlation Dimension due to the 

arbitrariness and nonlinearity of EEG signal. The 

characteristics listed below were finally chosen for extraction. 

Time domain features. The utmost instinctive EEG 

characteristics are in the time domain. EEG signals are 

gathered at a specific frequency and time. The traces in time 

domain of the EEG signals are eliminated unfalteringly, and 

important data is recovered as a feature in the time domain. 

This might be utilized for the finding those ceaseless long-term 

EEG. This work retrieves time domain characteristics 

including skewness, peak, kurtosis, and variance including 

Hjorth parameter. In signal processing of time domain, Hjorth 

parameters represent numerical characteristics. Therefore, 

these considerations are often employed for extracting features 

EEG data. 

Frequency domain features. The technique employed for 

identifying, and then analyzing EEG data is the domain of 

frequency. The characteristics of this domain are absolute 

power, relative power, absolute centroid frequency, and 

relative centroid frequency. 

Nonlinear features. EEG signals are nonlinear as well as 

unpredictable as they possess some nonlinear dynamic 

characteristics. So, using the nonlinear dynamics theory to 

examine and process EEG signals has become a new field in 

research work. This work focuses on nonlinear characteristics 

including Kolmogorov Entropy, Power-Spectral Entropy, C0-

complexity, Shannon Entropy, and Correlation Dimension. 
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This enhances the better performance improvement in proper 

feature selections and their multiple feature combinations. 

The C0-complexity is designed as per Lempel-Ziv 

Complexity (LZC) for solving issues in over-coarse graining 

preprocessing. The C0-complexity describes the fraction of 

irregularities and deconstructs the sequence into irregular and 

regular components. Greater the complexity of time domain 

signal, nearer it is to a random sequence and bigger is the 

fraction of its share. The concept assumes that the signal may 

be broken down into stochastic and regular part. The ratio of 

A1 and A0 is C0-complexity, where A0 is a signal 

measurement and A1 is the measurement related to stochastic 

component. Eqns. (1) and (2) are used to evaluate the power 

of stochastic component A1, while Eq. (3) measures the C0-

complexity. 

 

𝐴1=∑ |𝑥(𝑛) − 𝑦(𝑛)|2𝑁−1

𝑛=0
 (1) 

 

𝐴0=∑ |𝑥(𝑛)|2𝑁−1

𝑛=0
 (2) 

 

𝐶0=
𝐴1

𝐴0
 (3) 

 

The rate of information loss per unit time is measured using 

Kolmogorov Entropy. The dynamic and time series behind the 

phenomena are chaotic when the entropy is finite and positive. 

Zero entropy in the space dimension indicates a regular 

occurrence. Infinite entropy is a nondeterministic and 

stochastic occurrence. As shown in Eq. (4), the average rate at 

which data loss occurs is termed as Kolmogorov Entropy. 

 

KE=-lim
𝜏=𝜋

lim
𝜖→0

lim
𝑛→∞

1

𝑛𝜏
∑ 𝑃𝑖0..𝑖𝑛−1𝑙𝑛𝑖0..𝑖𝑛

𝑃𝑖0..𝑖𝑛−1 s (4) 

 

A Mathematical Theory of Communication is introduced by 

Shannon Entropy. It goes as amount of data in a message is 

proportional to its uncertainty. In other words, the 

improbability of random variable’s measure and random 

signal is known as Shannon Entropy. The higher the entropy, 

the more is the unpredictability and uncertainty. For the 

purpose of calculating skewness and uncertainty, the current 

work views EEG as a measure of signal order, and uses 

entropy to process it [28]. Entropy is calculated using Eq. (5). 

It includes an approved probability distribution for random 

variables. 

 

𝐻(𝑋) = ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥 𝜖 χ

 (5) 

 

where, 𝑋 is a random variable having an alphabet set 𝜒 and 

probability distribution 𝑝(𝑥). 

The dynamic characteristics of EEG signals are shown by 

Correlation Dimension. A time series graph is used to 

determine the Correlation Dimension, which is a fractal 

dimension. It is a single-data-vector-based, simplified phase 

space diagram. Procacia and Grassberger proposed the basic 

Correlation Dimension method, which is evaluated using Eq. 

(6). 

 

CD=lim
𝑟→0

(
ln 𝐶 (𝑟)

ln 𝑟
) (6) 

 

where, r is the radial distance around every reference point and 

C(r) is the correlation integral. 

Power Spectral Entropy is a series of power densities with 

a Fourier frequency distribution. It is the computed entropy of 

power spectrum, which is simple to construct. Power Spectral 

Entropy has been utilized to evaluate temporal signals in EEG 

data. In order to assess the intensity and quality of brain 

activity, entropy may be used as a physical metric. When the 

entropy is more, the brain will be more active [29]. 

 

3.3.2 Feature selection 

The feature assessment function sometimes includes 

duplicated characteristics that affect learning accuracy and 

outcomes. Feature selection not only minimizes the noise, but 

also reduces the complexity of classification issue by 

eliminating irrelevant features. It is utilized for selecting a 

meaningful subset comprising of all existing features. It 

facilitates the determination of the features that are ideal for 

identifying EEG signal by examining the characteristics 

picked by the technique employed. MRMR method is utilized 

in the current study for selecting the features. Feature selection 

using MRMR resolves the problem by concurrently assessing 

relevance and feature redundancy. In specific, maximization 

of the pertinence of a feature subset S to the class label c is 

defined as max D(S, c). A feature subset’s relevance is 

evaluated using Eq. (7). 

 

Max D(S,c)=
1

|𝑆|
∑ Φ (𝑓𝑖 , c)𝑓𝑖 𝜖 𝑆  (7) 

 

where, feature relevance fi to 𝑐 is given as Φ (fi, c). One can 

evaluate Φ by utilizing any correlation measure. 

The pairwise feature dependency is employed to determine 

if there is any feature redundancy. If two important features 

strongly resemble one another, the power of class 

discrimination does not alter drastically when one of them is 

removed. A feature subset of mutually exclusive 

characteristics is selected using min-redundancy, or min (S). 

Eq. (8) is used to evaluate the min-redundancy. 

 

Min R(S)=
1

|𝑆|2
∑ Φ (𝑓𝑖 , 𝑓𝑗)𝑓𝑖 𝑓𝑗𝜖 𝑆  (8) 

 

MRMR is a simple operator that maximizes D and lowers R 

in that order. The incremental search approach is employed to 

search for a near-optimal feature. An m-order feature that 

optimizes Eq. (9) is chosen from the feature subset Sm-1 of the 

m-1 selected feature. 

 

max
𝑓𝑗∈𝑆𝑚−1

Φ ( 𝑓𝑖 , 𝑐) −
1

𝑚 − 1
∑ Φ (𝑓𝑖 , 𝑓𝑗)

𝑓𝑖∈𝑆𝑚−1

 (9) 

 

3.3.3 Effective tagging 

Every row in the feature matrix must be assigned an 

emotional tag. Since the experimental population in the 

present study is split into two groups viz., anxiety controls and 

depressed patients, the tags- depressed or anxiety are assigned 

to all the vectors. 

 

3.4 Proposed deep CNN architecture 

 

Finally, classification of EEG data as depressed and anxiety 

subjects is carried out by utilizing deep CNN. The shared 

information related to EEG comprises of all the nonlinear and 

linear features encompassed in it. Based on the features 

obtained from the EEG signal, the CNN classifier classifies the 
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cognitive disorders as anxiety or depression. The proposed 

deep CNN is trained using the MRMR technique. This 

approach tends to choose a subset of features that are least 

correlated among themselves and most correlated with the 

class (output). This is done to lower the noise and decrease the 

complexity of classification. This in turn allows discovering 

the utmost pertinent characteristics for accurately categorizing 

the EEG signal. Thus, the reliability of the results is boosted. 

After training, the CNN is tested for its accuracy. In the post 

training and testing phases, the proposed deep CNN will be 

used for classifying EEG signals into either of the two classes, 

namely, depression and anxiety. 

The inputs fed into CNN are order-3 tensors, which are 

monophonic channel images with W columns and H rows. A 

c-dimensional vector comes out as an output of the c-class 

classification task, as the entire network levels handle such 

inputs in a progressive order. The value in the k-th feature map 

related to l-th network layer at point (i, j) is expressed using 

the below given equation. 

 

𝑍𝑖,𝑗,𝑘
𝑙 =𝑤𝑘

𝑙𝑇
 𝑥𝑖,𝑗

𝑙 +𝑏𝑘
𝑙  (10) 

 

The indigenous input area for this layer and location is 

denoted as 𝑥𝑖,𝑗
𝑙 , while 𝑤𝑘

𝑙  and 𝑏𝑘
𝑙  are weight and bias vectors 

corresponding to 𝑘-th filter at l-th layer, respectively. The time 

taken for the preparation is cut short because of the pooling of 

the convolution kernels demarcated by network weight masks 

𝑤𝑘
𝑙 . The value obtained from calculating (10) is applied to the 

Rectified Linear Unit (ReLU) activation Eq. (11) to identify 

the nonlinear structures. 

 

𝑎𝑖,𝑗,𝑘
𝑙 =ReLU (𝑍𝑖,𝑗,𝑘

𝑙 ) (11) 

 

The activation function of CNN architecture is used to bring 

non-linearity into the method. Some common examples from 

among the numerous activation functions widely used in deep 

learning simulations include sigmoid function, Softmax, and 

ReLu. Owing to the data misplaced in input data, sigmoid 

activation function degrades the CNN. In the current study, the 

non-linear ReLu function that has its output as 0 obtained at 

an input, which is less than 0, is selected to be the activation 

function. Some of the benefits offered by the ReLU activation 

function include its resemblance to the humanoid nervous 

system, ease of usage, and capacity to quickly train bigger 

networks.  

In Figure 7, two dense layers are retained in the completely 

connected layer in the subsequent five rounds of convolution, 

pooling layers, and batch normalization. The foremost layer 

has 16 neurons, whereas the immediately next layer has eight. 

The classifier here is the most commonly used fully-connected 

feed forward network. The neurons present in the preceding 

layer are linked to the neurons in the fully-connected layers. 

This layer computes the predicted classes by recognizing an 

EEG data by pooling together all of the features grasped by the 

preceding layers. The amount of all output classes is 

determined by the amount of classes available in the target 

database. It is found by this study that the CNN layers in the 

proposed technique can extract the key characteristics for 

identifying EEG signal and classify depression and anxiety 

after viewing the activation map of 15th layer. As a result, the 

fully-linked layers require lesser neurons. A dense layer 

having the Softmax activation function is the final layer that 

predicts the classification outcome. A set of possible outcomes 

probability distributions is signified by the Softmax function 

that provides a vector as its output. Two neurons are required 

to represent the two possible results in this scenario. 

 

 

 
 

Figure 7. Deep convolution neural network architecture 

 

 

4. RESULTS AND DISCUSSION 

 

Most of the EEG-related studies popularly use KNN and 

ANN as the categorization techniques. The current work 

evaluates the performance of KNN, ANN and the proposed 

deep CNN classifier in classifying the given EEG data as 

depression or anxiety. Every electrode's full-band EEG (Fpz, 

Fp2, and Fp1), delta wave, theta wave, alpha wave, beta wave, 

and gamma wave are used to extract all the nonlinear and 

linear characteristics. An overall of 270 characteristics are 

retrieved (3 electrodes, 6 frequencies, and 15 fundamental 

features). Features such as binary weight have been learned for 

training the classifier. 

These features are obtained by segregating 80% of the 

trained and 20% of the test dataset. These are then classified 

using the proposed deep CNN model as anxiety and depression 

signals. The findings indicate that the proposed model attains 

a higher accuracy of 97.6% in classifying the EEG signals 

obtained from DEAP database. This is graphically represented 

in Figure 8.  
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Figure 8. The suggested deep CNN model’s training and testing accuracy 

 

 
 

Figure 9. Training and testing accuracy of KNN 

 

 
 

Figure 10. Training and testing accuracy of ANN 
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KNN is a nonparametric supervised machine learning 

technique employed for regression and classification. The 

KNN centered classifier does not need to be trained, and their 

computing complexity is associated with the amount of data in 

the training set. The KNN classifier's temporal complexity is 

O(n), if the amount of data in the training set is N.  

By using a training dataset for additionally classifying the 

data points in accordance to their closeness to K in the training 

database, the feature spaces are categorized by KNN into 

multiclass and binary clusters. Figure 9 shows how KNN had 

achieved an accuracy of 80.30 percent with the static EEG data. 

Classifying using an ANN-based model attains an accuracy 

of 94.54% as seen in Figure 10. 

The ANN consists of an information processing network, 

comprising a large number of basic units connected parallel to 

each other. This is a classification approach is based on the 

function and structure of the biological neural network. This 

network resembles the human brain with respect to knowledge 

generalization, learning, and memory. There are seven hidden 

layers in the ANN model and each layer has eight neurons. The 

selected characteristics of the Bayesian method are 

independently retrieved from each channel. As a result, all of 

the characteristics of all the channels are integrated into a 

feature vector for feeding as an input to the ANN model.  

By combining the features of absolute gamma wave power 

on Fp1, absolute beta wave’s centre frequency on Fp2, 

absolute theta wave power on Fp2, and absolute beta wave’s 

power on Fp2, the proposed deep CNN approach obtained the 

highest accuracy of 97.6% for static EEG data which is 

comparatively more than the other existing model (ANN, 

KNN, LSTM, RNN) as shown in Figure 11. 

 

 
 

Figure 11. Comparative the validation accuracy based on 

categorizing depression and anxiety signal 

 

 

5. CONCLUSIONS 

 

Millions suffer from various cognitive mental disorders. 

This paper focuses on early diagnosis of depression and 

anxiety, which are two serious mental health problems faced 

by modern society. For, the existing approaches for identifying 

depression and anxiety are labor-intensive and reliant on the 

physician's proficiency. A smart deep-learning Convolutional 

Neural Network architecture that recognizes and classifies 

electroencephalography data into either of the two classes viz., 

anxiety or depression, has been proposed in this paper. It was 

applied to the electroencephalography signals obtained from 

Database for Emotion Analysis using Physiological signals. 

Before that, feature selection was done using the Minimal-

Redundancy-Maximal-Relevance approach is employed in 

this study for feature selection The performance efficiency of 

the proposed model was evaluated against that of two existing 

approaches- Artificial Neural Network and K-Nearest 

Neighbor. The proposed deep CNN method attains the 

accuracy of 97.6% which is almost 3% higher than the existing 

methods. Artificial Neural Network-based model and K-

Nearest Neighbor delivers the accuracy rate of 94.54% and 

80.3% respectively. The accuracy enhancement in proposed 

method is due implementation of MRMR technique. The 

outcomes demonstrate that our suggested approach can greatly 

increase performance accuracy. 
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