Analysis of wind resistance of high-rise building structures based on computational fluid dynamics simulation technology

Chunming Liu, Liang Liu*, Chengbin Liu

Department of Hydraulic and Architectural Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China

Corresponding Author Email: 70808@bvca.edu.cn

https://doi.org/10.18280/iijht.360150

Received: 10 September 2017
Accepted: 22 December 2017

Keywords:
high-rise buildings, structural wind resistance, computational fluid dynamics, wind tunnel test, numerical simulation.

ABSTRACT

This study focuses on wind resistance of high-rise building structures. Firstly, the monitoring results of wind tunnel test are compared with the numerical simulation results based on CFD to verify the feasibility of the CFD numerical method, and the wind pressure coefficients of full-size structures and multi-type high-rise buildings are analyzed with the CFD algorithm. The results show that the monitoring results based on wind tunnel test and CFD simulation are very similar, and the distribution of the overall wind pressure coefficients is basically the same. As seen in top view and elevation view of wind pressure coefficient contours for full-size building structures, the wind pressure coefficient on the windward side and leeward side of a full-size building is relatively small, and the wind pressure coefficient in the incoming wind side is relatively large, which is because of the influence of Reynolds Number Effect in the area of the incoming wind side, which results in the relatively greater negative pressure on the lateral side of the building. The contour distribution of wind pressure coefficients for different types of buildings is generally similar, indicating that the shape of buildings has basically no effect on the distribution of wind pressure coefficients. This study establishes static pressure field fitting curves for the windward, crosswind, upwind, and leeward directions. The “static pressure corridor” can accurately determine the zero pressure position, and long-term monitoring at the point with zero pressure can achieve the best test results.

1. INTRODUCTION

According to statistics, (super) high-rise buildings in coastal areas are affected by typhoons for 7-12 times a year. The natural vibration frequency of (super) high-rise buildings is similar to the main frequency rate of typhoon pulsating loads, and the response of high-rise buildings to typhoon is strong. The structural disturbance of (super) high-rise buildings under wind load has been the focus and difficulty of researches in recent years [1-4]. Field monitoring is the best way to test the wind resistance of building structure, but the high test cost and site environment cause many difficulties in field monitoring [5-9]. Most researchers use pneumatic tests and numerical simulation based on computational fluid dynamics (CFD) to analyze the wind resistance performance of the structures [10-13]. In the wind tunnel test, a wind tunnel flow field is built in a laboratory, with high-rise buildings reduced in equal proportion (similar simulation test), then the response of the high-rise building to wind disturbance can be studied from various angles and in various conditions. At present, the research direction mainly focuses on wind pressure distribution on building surface, wind load amplitude characteristics, static pressure field distribution, etc. [14-17]. However, the similar simulation tests require strict conditions for scaling with equal proportion. It is difficult to restore the situation in the test results and there are errors in the results obtained. The numerical simulation based on CFD has the advantages of low cost and repeatable calculation, and is the most frequently used research method at present [18-20].

The study focuses on wind resistance of high-rise buildings. Firstly, the monitoring results of wind tunnel test are compared with the numerical simulation results based on CFD to verify the feasibility of the CFD numerical method, and the CFD algorithm is used to analyze the wind pressure coefficients of full-size structures and multi-type high-rise buildings. The research conclusions can provide a new idea for the research on wind resistance of high-rise buildings [21].

2. WIND TUNNEL TEST AND CFD SIMULATION ANALYSIS

2.1 Brief introduction of wind tunnel test

The size of the wind tunnel laboratory is 23m * 6m * 3m, with complete test equipment. The models are scaled down by 1:150. The range of test wind speed is 0-25m/s and the ground roughness is $a = 0.12$. Figure 1 shows the average wind speed and turbulence curves of wind field in A-type geomorphology.

Figure 2 shows the layout of totally 22 measuring points on the 30th floor of the building. The test incoming wind angle is as shown in Figure 3, with a frequency of 400Hz and a sampling length of 5,000 data.

Formula 1 is used to calculate the wind pressure coefficient C_p at a certain point of a building:

$$C_p = \frac{P - P_a}{0.5 \rho v^2}$$

(1)
where, \(p_i \) is the static pressure at a certain point of the original wind tunnel, and \(p \) is the static pressure at that point after construction. \(p \) and \(v \) are air density and wind speed, respectively.

![Turbulence I, %](image)

Figure 1. The average wind speed and turbulence curve of the wind field

![Figure 2. Measuring point layout](image)

Figure 2. Measuring point layout

![North](image)

Figure 3. Angle of incoming wind in the experiment

2.2 CFD numerical modeling

Fluent software is used for numerical modeling based on fluid mechanics, with the same size of the model and the wind tunnel laboratory as those in the wind tunnel test. The network of the building and its adjacent area are encrypted, with a model of Realizable k-\(\varepsilon \). The calculation program is a three-dimensional single-precision solver, and the flow field uses the SIMPLEC algorithm.

2.3 Comparative analysis of the results of the two methods

Figures 4 and 5 show the wind tunnel test points and the wind pressure coefficient of 22 measuring points based on CFD numerical simulation when the incoming wind angle is 0-90°C. As it can be seen from the comparison of the two figures, the monitoring results based on wind tunnel test and CFD simulation are very similar, and the overall distribution of wind pressure coefficients is basically the same, suggesting that it is feasible to use CFD simulation to analyze the wind-resistance response and static pressure field distribution of high-rise buildings.

![Average wind pressure coefficient C](image)

Figure 4. Wind pressure coefficients of wind tunnel test points at different incoming wind angles

![Average wind pressure coefficient C](image)

Figure 5. Wind pressure coefficient of each CFD simulation measuring point at different incoming wind angles

3. ANALYSIS ON WIND RESISTANCE OF MULTI-TYPE HIGH-RISE BUILDING STRUCTURES BASED ON CFD NUMERICAL SIMULATION

3.1 Calculation of wind pressure coefficients of full-size structures

Relevant studies have shown that the wind pressure test results of the scaled model established by the wind tunnel test have some errors compared with the actual monitoring results. In this section, CFD numerical simulation is used to analyze the distribution of wind pressure coefficients and static
pressure field around the full-size building structure. The relevant parameters are set as above.

Figure 6 shows top view and elevation view of wind pressure coefficient contours for full-size building structures. As can be seen in the figure, the wind pressure coefficients on the windward side and the leeward side of the building are relatively small, which is in line with the theory of fluid mechanics. As the number of buildings increases, the wind flow blocking effect in the wind tunnel gradually increases, which leads to the increase of the drag coefficient inside the wind tunnel. The wind pressure coefficient in the lateral area of the coming wind is relatively higher, since the area is affected by the Reynolds Number Effect, and the negative pressure on the building is relatively greater. As can be seen from Figure 6(b), the wind pressure around the building is distributed in a three-dimensional structure, and the wind pressure coefficient at the top of the building is more densely distributed and more greatly varied, so the measuring points should be as far away from the roof position as possible, so as to improve the testing accuracy. As can be seen from Figure 6, it is feasible to use CFD to simulate the wind-resistance response of full-size buildings, and the calculated results can better reflect the actual wind-resistance characteristics of buildings.

Figure 6. Distribution of wind pressure coefficient contours of full-size building structures

3.2 Analysis on wind resistance of multi-type high-rise building structures

In order to further study the wind resistance of multi-type high-rise building structures, a circular building (diameter of 40m and height of 70m) and a rectangular building (32m × 15m × 100m) are established. Figure 7 shows the distribution of the wind pressure coefficient contours of circular and rectangular high-rise buildings. As can be comparatively seen from Figures 6 and 7, the distribution of the wind pressure coefficient contours of the three types are generally similar, indicating that the shape of the buildings basically has no influence on the wind pressure coefficients.

Figure 7. Distribution of the wind pressure coefficient contours of circular and rectangular buildings
Identification of static pressure field boundary is an important step for long-term monitoring of a building. Figure 9 shows the static pressure field determined with a wind pressure coefficient of 0.05 as a boundary, and the region, where the wind pressure coefficient is less than 0.05, is represented by a shadow.

Take the circular building as an example to obtain the static pressure field. It can be seen from Figure 10 that the starting point of the static pressure field is located at the part of the structure with 0 pressure, the static pressure corridor is mainly distributed at 55-75 degrees, and long-term monitoring at the point with 0 pressure can achieve the best test results.

4. CONCLUSIONS

This study focuses on wind resistance of high-rise buildings. Firstly, the monitoring results of wind tunnel test are compared with the numerical simulation results based on CFD to verify the feasibility of the CFD numerical method, and the CFD algorithm is used to analyze the wind pressure coefficients of full-size structures and multi-type high-rise buildings. The results are as follows:

(1) The monitoring results based on wind tunnel test and CFD simulation is very similar, and the distribution of the overall wind pressure coefficients is basically the same. As seen in top view and elevation view of wind pressure coefficient contours for full-size building structures, the coefficient of wind pressure on the windward side and leeward side of a full-size building is relatively small, and the wind pressure coefficient in the lateral area of the incoming wind is relatively large, due to the influence of Reynolds Number Effect in the area and the relatively greater negative pressure on the lateral side of the building.

(2) The distribution of wind pressure coefficient contours for different types of buildings is generally similar, indicating that the shape of buildings has basically no effect on the distribution of wind pressure coefficients. This study establishes static pressure field fitting curves for the windward, crosswind, upwind, and leeward directions. The “static pressure corridor” can accurately determine the zero pressure position, and long-term monitoring at the point with zero pressure can achieve the best test results.

REFERENCES

