Time warping to improve a geoacoustic inversion scheme

Time warping to improve a geoacoustic inversion scheme

Amélie Barazzutti Cédric Gervaise Jérôme I. Mars 

DGA Ingénierie des Projets/ASC/ENV 60 Boulevard du Général Martial Valin 75009 Paris, France

Foundation of Grenoble-INP 46 Avenue Félix Viallet F-38301 Grenoble, France

Université Grenoble Alpes, GIPSA-LAB Université Grenoble Alpes, CNRS F-38000 Grenoble, France

Corresponding Author Email: 
amelie.barazzutti@intradef .gouv.fr
Page: 
53-72
|
DOI: 
https://doi.org/10.3166/TS.33.53-72
Received: 
21 May 2015
| |
Accepted: 
17 December 2015
| | Citation
Abstract: 

This paper presents new tools to improve a geoacoustic inversion scheme relying on the inversion of marine mammals vocalizations recorded on a single hydrophone. This method makes best use of the multipath propagation and time-frequency signature of vocal calls. The classical signal processing tools based on spectrogram limit both the range of the scheme and the signals panel that can be processed. In this paper, we introduce new tools based on temporal warping that allow high resolution paths separation. Each echo has to be transformed into a pure frequency. Therefore, they are warped according to the frequency law of the signal estima- ted according to the first echo. The warping tools enable a high resolution of each echo in the time-frequency warped domain. Applying the warping on a moving window, one can estimate the impulsive response (IR) of the channel and deduce the source location, grazing angle and transmission losses. Then, as warping operators conserve energy, the path levels can be estima- ted using the time-frequency warped representation. Through the processing of several signals, we get a curve of an estimation of the reflection coefficient that feeds the inversion algorithm. The theory of this extended method is described and its performances are evaluated on a controlled real data set in the Gulf of Lion. The range and the recording duration have been im- proved (range from 300 to 900 meters and duration multiplied by 2.5). With the new scheme, we have access to a set of geoacoustic parameters allowing to better describe the bottom features.

Keywords: 

warping, passive acoustics, geoacoustic inversion, environmental observation, multi- dimensional signal processing, oceanographic tomography.

Extended abstract
1. Contexte et objectifs des travaux
2. Description du procédé d’inversion étendu
3. Résultats sur données réelles avec émissions synthétiques contrôlées dans le golfe du Lion (Campagne ERATO 2011)
4. Discussion et perspectives
Remerciements
  References

Aubauer R., Lammers M. O., Au W. W. L. (2000). One-hydrophone method of estimating distance and depth of phonating dolphins in shallow water. The Journal of the Acoustical Society of America, vol. 107, no 5, p. 2744-2749.

Barazzutti A., Gervaise C., Sessarego J., Di Iorio L., Stephan Y. (2012). Estimer l’attitude d’un dauphin a partir d’un seul capteur - premiers resultats. Poster.

Barazzutti A., Gervaise C., Stephan Y., Dadouchi F., Sessarego J.-P. (2013). Inversion géoa- coustique passive en milieux petits fonds à partir de signaux représentatifs des émissions de cétacés. Traitement du Signal, vol. 30, no 3-4-5, p. 169-194.

Bonnel J., Thode A. (2013). Using warping processing to range bowhead whale sounds from a single receiver. Proceedings of Meetings on Acoustics, vol. 19, no 1.

Bonnel J., Thode A. M., Blackwell S. B., Kim K., Michael Macrander A. (2014). Range esti- mation of bowhead whale (balaena mysticetus) calls in the arctic using a single hydrophone. The Journal of the Acoustical Society of America, vol. 136, no 1, p. 145-155.

CE. (2008, 25/06/2008).  Directive 2008/56/ce du parlement europeen et du conseil du 17 juin 2008 établissant un cadre d’action communautaire dans le domaine de la politique pour le milieu marin (directive-cadre "stratégie pour le milieu marin"). Rapport technique. Parlement Européen.

CE. (2010, 02/09/2010). Decision de la commission 2010/477/ue du 1er septembre 2010 relative aux criteres et aux normes methodologiques concernant le bon etat ecologique des eaux marines. Rapport technique. Parlement Europeen.

Dadouchi F., Gervaise C., Ioana C., Huillery J., Mars J. I.  (2013).  Automated segmentation of linear time-frequency representations of marine-mammal sounds. The Journal of the Acoustical Society of America, vol. 134, no 3, p. 2546-2555.

Demoulin X., Pelissero L., Stephan Y., Jesus S., Porter M., Coelho E. (2000, July). Estima- ting equivalent bottom geoacoustical parameters from broadband inversion. In Europeen conference of underwater acoustics (ecua 2000), vol. 1, p. 191-196. Lyon, France.

Dettmer J., Dosso S. E., Holland C. W. (2008). Joint time/frequency-domain inversion of reflec- tion data for seabed geoacoustic profiles and uncertainties. The Journal of the Acoustical Society of America, vol. 123, no 3, p. 1306-1317.

Gervaise C., Barazzutti A., Dadouchi F., Ioana C., Stephan Y. (2011, June). A new scheme to estimate the nature of superficial sediment with dolphin whistles. In Underwater acoustic measurements (uam 2011). Kos, Greece.

Gervaise C., Kinda B. G., Bonnel J., Stephan Y., Vallez S. (2012). Passive geoacoustic inversion with a single hydrophone using broadband ship noise. The Journal of the Acoustical Society of America, vol. 131, no 3, p. 1999-2010.

Hamilton E. L. (1978). Sound velocity-density relations in sea-floor sediments and rocks. J. Acoust. Soc. Am., vol. 63, no 2, p. 366-377.

Harrison C. H., Simons D. G. (2002). Geoacoustic inversion of ambient noise: A simple method. The Journal of the Acoustical Society of America, vol. 112, no 4, p. 1377-1389.

Ioana C., Quinquis A. (2004). On the use of time-frequency warping operators for analysis of marine-mammals signals. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. II, p. 605-608.

Jarrot A., Ioana C., Quniquis A. (2006). An extension of the class of unitary time-warping projectors to discrete-time sequences. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. III, p. 412-415.

Jensen F. B., Kuperman W. A., Porter M. B., Schmidt H. (1994). Computational ocean acous- tics, aip series in modern acoustics and signal processing. American Institute of Physics, New York.

Jones B. D. (2008). Geoacoustic inversion of ocean surface-wave noise with a littoral glider. The Journal of the Acoustical Society of America, vol. 124, no 4, p. 2521-2521.

Josso N. (2010). Underwater environments characterization by motion opportunity sources. Theses, Institut National Polytechnique de Grenoble - INPG. Consulté sur https://tel.archives-ouvertes.fr/tel-00546875

Lurton X., Le Gac J.-C. (2004). The calimero project: Scientific objectives and first at-sea results. In 1st seatech week. Brest, France.

Park C., Seong W., Gerstoft P. (2005). Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towed array. The Journal of the Acoustical Society of America, vol. 117, no 4, p. 1933-1941.

Plantevin P., Le Gac J., Auger E., Theuillon G., Stephan Y. (2009). A joint seismo-geoacoustic inversion in shallow water using a subsurface towed sound source. Journal of Marine Sys- tems, vol. 78, p. S321–S332.

Roubi A., S. B., M.A. B., Danielou B., Jouet G. (2009). Analyse sedimentologique des preleve- ments in situ de la campagne calimero 3, rapport final du contrat de recherche 08/cr/0001. Rapport technique. SHOM-IFREMER.

Siderius M., Harrison C. H., Porter M. B. (2006). A passive fathometer technique for imaging seabed layering using ambient noise. The Journal of the Acoustical Society of America, vol. 120, no 3, p. 1315-1323.

Southall B. L., Bowles A. E., Ellison W. T., Finneran J. J. (2007). Marine mammal noise exposure criteria: initial scientific recommendations (2007) [Scientific]. Aquatic Mammals, vol. 33, p. 411-522. (and Gentry, Roger L. and Greene Jr., Charles R. and Kastak, David and Ketten, Darlene R. and Miller, James H. and Nachtigall, Paul E. and Richardson, W. John and Thomas, Jeanette A. and Tyack, Peter L)

Stotts S. A., Knobles D. P., Koch R. A., Grant D. E., Focke K. C., Cook A. J. (2004). Geoa- coustic inversion in range-dependent ocean environments using a plane wave reflection coefficient approach.   The Journal of the Acoustical Society of America, vol. 115, no  3,   p. 1078-1102.

Theuillon G., Stephan Y.,  Pacault A.  (2008).  High-resolution geoacoustic characterization  of the seafloor using a subbottom profiler in the Gulf of Lion. IEEE Journal of Oceanic Engineering, vol. 33, no 3, p. 240-254.

Thode A. M., D’Spain G. L., Kuperman W. A. (2000). Matched-field processing, geoacoustic inversion, and source signature recovery of blue whale vocalizations. The Journal of the Acoustical Society of America, vol. 107, no 3, p. 1286-1300.

Traer J., Gerstoft P.,  Hodgkiss W. S.  (2011).   Ocean bottom profiling with ambient noise: A model for the passive fathometer. The Journal of the Acoustical Society of America, vol. 129, no 4, p. 1825-1836.

Vallez S., Gervaise C., Khenchaf A., Stephan Y. (2006). Inversion géoacoustique d’un canal très petits fonds à partir des navires en mouvements. Traitement du Signal, vol. 25, no 151-164.