Modal estimation using a broadband source and a small horizontal array

Modal estimation using a broadband source and a small horizontal array

Florent Le Courtois Julien Bonnel 

Lab-STICC (UMR CNRS 6285), ENSTA Bretagne (UEB) 2 rue François Verny, 29806 Brest Cedex 9 France

Corresponding Author Email: 
{florent.le_courtois,julien.bonnel}@ensta-bretagne.fr
Page: 
35-51
|
DOI: 
https://doi.org/10.3166/TS.33.35-51
Received: 
21 May 2015
| |
Accepted: 
17 December 2015
| | Citation
Abstract: 

Estimation of the acoustic wavenumbers presents great interests in shallow environ- ments. They provide relevant material to infer the sediment parameters. Using a horizontal ar- ray, the wavenumbers are obtained with usual spectral estimation methods in the spatial dimen- sion. The computation of the wavenumber spectra at several frequencies leads to a frequency- wavenumber (f−k) diagram, which is appropriate for the characterization of dispersive propa- gations. In this paper, a Compressed Sensing (CS) method is proposed to improve the separation of the wavenumbers. The CS approach is particularly relevant since only few modes are pro- pagating. However, at higher frequencies the number of propagating mode increases and the wavenumber separation becomes more difficult, especially when using short arrays. This paper introduces a wideband particle filtering (PF) algorithm for the wavenumber tracking. It takes advantage of the dispersion relation which is true in every waveguides. The consecutive use of CS and PF allows computing the f-k representation for array measurements that does not respect the usual requirements of array length. An application on the 32 sensor SHARK array of the SW06 campaign illustrates the whole methodology.

Keywords: 

wavenumber, spectral estimation, particular filtering, compressed sensing.

Extended abstract
1. Introduction
2. Propagation acoustique dans un guide d’onde dispersif
3. Estimation des nombres d’onde
4. Estimation large bande des krm en contexte dispersif
5. Application sur les mesures de l’antenne SW06 SHARK
6. Conclusion
Remerciements
  References

Arulampalam M. S., Maskell S., Gordon N., Clapp T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, vol. 50, no 2, p. 174–188.

Babu P., Stoica P. (2010). Spectral analysis of nonuniformly sampled data–a review. Digital Signal Processing, vol. 20, no 2, p. 359–378.

Becker K. M., Frisk G. V. (2006). Evaluation of an autoregressive spectral estimator for modal wave number estimation in range-dependent shallow water waveguides. The Journal of the Acoustical Society of America, vol. 120, no 3, p. 1423-1434.

Bonnel J., Dosso S., Chapman R. (2013). Bayesian geoacoustic inversion of single hydrophone light bulb data using warping dispersion analysis. The Journal of the Acoustical Society of America, vol. 134, p. 120-130.

Bonnel J., Le Touzé G., Nicolas B., Mars J. (2013). Physics-based time-frequency represen- tations for underwater acoustics: Power class utilization with waveguide-invariant approxi- mation. IEEE Signal Processing Magazine, vol. 30, no 6, p. 120-129.

Bourguignon S., Carfantan H., Idier J.  (2007).  A sparsity-based method for the estimation of spectral lines from irregularly sampled data. IEEE Journal of Selected Topics in Signal Processing, vol. 1, no 4, p. 575–585.

Boyd S., Vandenberghe L. (2009). Convex optimization. Cambridge University Press (Cam- bridge). (Chapitre 6)

Bretthorst G. L. (1998). Bayesian spectrum analysis and parameter estimation (vol. 48). Sprin- ger (New York). (Chapitre 2)

Candès E. J., Wakin M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, vol. 25, no 2, p. 21–30.

Chartrand R., Yin W. (2008). Iteratively reweighted algorithms for compressive sensing. In- ternational Conference on Acoustics, Speech and Signal Processing, p. 3869–3872. Las Vegas, États Unis.

Chen S. S., Donoho D. L., Saunders M. A. (1998). Atomic decomposition by basis pursuit. SIAM journal on scientific computing, vol. 20, no 1, p. 33–61.

Daubechies I., DeVore R., Fornasier M., Güntürk C. S. (2010). Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathema- tics, vol. 1, no 63, p. 1–38.

Doucet A., De Freitas N., Gordon N. (2001). Sequential monte carlo methods in practice. Springer (New York). (Chapitre 2)

Doucet A., Johansen A. M. (2009). A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of Nonlinear Filtering, vol. 12, p. 656–704.

Ewins D. J. (2000). Modal testing: theory, practice and application (second éd.). Research Studies Press (Baldock). (Chapitre 2)

Harley J. B., Moura J. M. (2013). Sparse recovery of the multimodal and dispersive characte- ristics of lamb waves. The Journal of the Acoustical Society of America, vol. 133, p. 2732.

Harley J. B., Moura J. M. (2015). Dispersion curve recovery with orthogonal matching pursuit. The Journal of the Acoustical Society of America, vol. 137, no 1, p. EL1–EL7.

Jensen F., Kuperman W., Porter M., Schmidt H. (2011). Computational ocean acoustics (second éd.). American Institute of Physics (New York). (Chapitres 5 et 10)

Le Courtois F., Bonnel J. (2014a). Autoregressive model for high-resolution wavenumber estimation in a shallow water environment using a broadband source. The Journal of the Acoustical Society of America, vol. 135, no 4, p. EL199–EL205.

Le Courtois F., Bonnel J. (2014b). Wavenumber tracking in a low resolution frequency- wavenumber representation using particle filtering. International Conference on Acoustics, Speech and Signal Processing, p. 6805–6809. Florence, Italie.

Le Gall Y., Bonnel J. (2013, .)Méthode d’estimation de l’invariant océanique par couple de modes en acoustique sous-marine passive. XXIVe colloque gretsi. Brest, France.

Lu I.-T., Qiu R. C., Kwak J. (1998). A high-resolution algorithm for complex spectrum search. The Journal of the Acoustical Society of America, vol. 104, no 1, p. 288-299.

Marcos S. (1998). Les méthodes à haute résolution: traitement d’antenne et analyse spectrale.

Hermes. (Chapitre 1)

Neilsen T., Westwood E. (2002). Extraction of acoustic normal mode depth functions using vertical line array data. The Journal of the Acoustical Society of America, vol. 111, p. 748– 756.

Newhall A. E., Duda T. F., von der Heydt K. , Irish J. D. et al. (2007). Acoustic and oceano- graphic observations and configuration information for the whoi moorings from the sw06 experiment. Rapport technique no WHOI-2007-04. Woods Hole Oceanographic Institution.

Nicolas B., Mars J., Lacoume J. (2003). Geoacoustical parameters estimation with impulsive and boat-noise sources. IEEE Journal of Oceanic Engineering, vol. 28, no 3, p. 494–501.

Nicolas B., Mars J., Lacoume J.  (2006).   Source depth estimation using a horizontal array by matched-mode processing in the frequency-wavenumber domain. EURASIP Journal on Applied Signal Processing, vol. 2006, p. 1–16.

Oudompheng B., Pereira A., Picard C., Leclere Q., Nicolas B. (2014). A theoretical and expe- rimental comparison of the iterative equivalent source method and the generalized inverse beamforming. 5th Berlin Beamforming Conference Berlin, Allemagne.

Philippe F. D., Roux P., Cassereau D. (2008). Iterative high-resolution wavenumber inversion applied to broadband acoustic data. IEEE Transactions on Ultrasonics, Ferroeletrics, and Frequency Control, vol. 55, no 10, p. 2306-2311.

Rajan S. D., Bhatta S. D. (1993). Evaluation of high-resolution frequency estimation methods for determining frequencies of eigenmodes in shallow water acoustic field. The Journal of the Acoustical Society of America, vol. 93, no 1, p. 378-389.

Shang E. C., Wang H. P., Huang Z. Y. (1988). Waveguide characterization and source locali- zation in shallow water waveguides using the prony method. The Journal of the Acoustical Society of America, vol. 83, no 1, p. 103-108.

Suzuki T. (2011). l1 generalized inverse beam-forming algorithm resolving co- herent/incoherent, distributed and multipole sources. The Journal of Sound and Vibration, vol. 330, no 24, p. 5835–5851.

Westwood E., Tindle C., Chapman N. (1996). A normal mode model for acousto-elastic ocean environments. The Journal of the Acoustical Society of America, vol. 100, p. 3631–3645.

Xenaki A., Gerstoft P., Mosegaard K. (2014). Compressive beamforming. The Journal of the Acoustical Society of America, vol. 136, no 1, p. 260–271.

Yardim C., Michalopoulou Z.-H., Gerstoft P. (2011). An overview of sequential bayesian filtering in ocean acoustics. IEEE Journal of Oceanic Engineering, vol. 36, no 1, p. 73–91.

Yilmaz Ö. (2001). Seismic data analysis: processing, inversion, and interpretation of seismic data no 10. Society of Exploration Geophysicists (Tulsa). (Chapitre 1.2)