Récepteurs SIMO MLSE Widely Linear - Structures et performances en présence d’interférences non circulaires

Récepteurs SIMO MLSE Widely Linear

Structures et performances en présence d’interférences non circulaires

Jean Pierre Delmas Pascal Chevalier  Soumaya Sallem  Sadok Mustapha 

Telecom SudParis, UMR 5157 Samovar 91011 Evry, France

CNAM, CEDRIC, 75141 Paris Cedex 3, France. Thales-Communications and Security, SNE/SPM, 92622 Gennevilliers Cedex

Laboratoire LFSE/CEA, Saclay Nano-Innov, 91191 Gif sur Yvettes

Institut National des Télécommunications d’Oran, Laboratoire de Recherche Appliquée en TIC (LaRATIC), Algerie

Corresponding Author Email: 
jean-pierre.delmas@it-sudparis.eu
Page: 
7-37
|
DOI: 
https://doi.org/10.3166/TS.32.7-37
Received: 
25 February 2013
| |
Accepted: 
8 January 2014
| | Citation

OPEN ACCESS

Abstract: 

This paper derives the maximum likelihood sequence estimation (MLSE) single input multiple output (SIMO) receiver for the demodulation of a quadrature amplitude modulated (QAM) signal of interest (SOI) corrupted by inter-symbol interference (ISI) and total noise composed of co-channel (CCI) interference and background noise. The receiver is derived under the assumption of a zero-mean, potentially noncircular, stationary, temporally and spatially colored Gaussian total noise. It is proved that this receiver is composed of a widely linear filter followed by a sampling operation at the symbol rate and a ML decision box implementing a modified version of the Viterbi algorithm. This WL filter is interpreted as a spatio-temporal matched filter (STMF) which maximizes the signal to interference plus noise ratio (SINR) on the current symbol. The case of quasi rectilinear modulation is also considered, where the MLSE receiver is proved to have a similar structure provided post rotation processing. Despite the fact that in practice, CCI are cyclostationary and non Gaussian, it is shown that the proposed receiver outperforms the conventional ones for cyclostationary and noncircular CCI.

RÉSUMÉ

Cet article présente le récepteur mono entrée multiples sorties (SIMO) optimal au sens du maximum de vraisemblance de séquence pour la détection de modulation d’amplitude en quadrature en présence à la fois d’interférences inter symboles (ISI) et d’un bruit total composé d’interférences co-canal (CCI) et d’un bruit de fond. Ce récepteur est développé sous l’hypothèse d’un bruit total centré gaussien, potentiellement non circulaire, stationnaire et coloré. Il est démontré que ce récepteur est composé d’un filtre widely linear (WL) suivi d’un échantillonnage au rythme symbole et d’une version modifiée de l’algorithme de Viterbi. Ce filtre WL est interprété comme un filtre spatio-temporel adapté (WL STMF) qui maximise le rapport signal à interférence plus bruit (SINR) sur le symbole courant. Le cas des modulations linéaires quasi rectilignes est aussi considéré dans ce cadre, où nous démontrons que le ré-cepteur SIMO MLSE a la même structure moyennant un post-traitement de rotation. En dépit du fait qu’en pratique l’interférence co-canal soit cyclostationnaire et non gaussienne, il est démontré et illustré que le récepteur proposé a de meilleures performances que le récepteur conventionnel en présence d’interférence co-canal circulaire aussi bien stationnaire que cyclostationnaire.

Keywords: 

Single Input Multiple Output (SIMO), Maximum Likelihood Sequence Estimation (MLSE), rectilinear modulation, quasi rectilinear modulation, Gaussian Minimum Shift Keying (GMSK), noncircular interference

MOTS-CLÉS

SIMO, MLSE, modulation rectiligne, modulation quasi rectiligne, GMSK, interfé-rences non circulaires

1. Introduction
2. Récepteurs SIMO MLSE
3. Interprétation Des Filtres WL
4. Performances En Termes De SINR
5. Cas Particuliers Et Illustrations
6. Conclusion
  References

Bottomley G., Chennakeshu S. (1998, April). Unification of MLSE receivers and extension to time-varying channels. IEEE Trans. on Commu., vol. 46, no 4, p. 464-472.

Chavali V. G. (2012). Signal detection and modulation classification in non-gaussian noise environments. Thèse de doctorat non publiée, Blacksburg, Virginia.

Chevalier P., Pipon F. (2006, March). New insights into optimal widely linear array receivers for the demodulation of BPSK, MSK and GMSK signals corrupted by noncircular interferences - application to SAIC. IEEE Trans. Signal Proces., vol. 54, no 3.

Feinstein J., Shamash Y. (1977, July). Spectral factorization of a rational matrix. IEEE Trans. on Info. Theory, vol. 23, no 4, p. 534-538.

Forney G. (1972, May). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interferences. IEEE Trans. on Info. Theory, vol. 18, no 3, p. 363-378.

Forster P., Asté T., Fety L. (1998). Multisensors receivers using a filtered reference: application to GSM. In Proc. of IEEE international conference on universal personal communications. Florence, Italy.

Gardner W., Napolitano A., Paura L. (2006). Review cyclostationarity: half a centuary of research. Signal Processing, vol. 86, p. 639-697.

Kassam S. A., Thomas J. B. (1988). Signal detection in non-gaussian noiseseries. Springer Texts in Electrical Engineering.

Lindskog E. (1997). Multi-channel maximum likelihood sequence estimation. In Proc. of IEEE vehicular technology conference. Phoenix, Arizona.

Meyer R., Gerstacker W., Schober R., Huber J. (2006). A single antenna interference cancellation algorithm for increased GSM capacity. IEEE Trans. on Wireless Communications, vol. 5, no 7, p. 1616-1621.

Modestino J., Eyuboglu V. (1986, March). Integrated multielement receiver structures for spatially distributed interference channels. IEEE Trans. on Info. Theory, vol. 32, no 2, p. 195-219.

MUROS. (2009a). 3GPP TSG Geran Tdoc GP-090114 MUROS uplink receiver performance. Valetta, Malta, ST-NXP Wireless France, Com-Research, GERAN no 41.

MUROS. (2009b). 3GPP TSG Geran Tdoc GP-090115 MUROS downlink receiver performance for interference and sensitivity. Valetta, Malta, ST-NXP Wireless France, ComResearch, GERAN no 41.

Olivier J., Kleynhans W. (2007). Single antenna interference cancellation for synchronized GSM networks using widely linear receiver. IET Communications, vol. 1, no 1, p. 131-136.

Picinbono B. (1994, December). On circularity. IEEE-SP, vol. 42, no 12, p. 3473-3482.

Picinbono B., Chevalier P. (1995, August). Widely linear estimation with complex data. IEEESP, vol. 43, no 8, p. 2030-2033.

Proakis J. (2001). Digital communications (4th Edition éd.). McGraw Hill Series in Electrical andComputer Engineering.

Sallem S., Delmas J. P., Chevalier P. (2012). Optimal SIMO MLSE receivers for the detection of linear modulation corrupted by noncircular interference. In Proc. of IEEE workshop on statistical signal processing (SSP). Ann Arbor, Michigan.

Trigui H., Slock D. (1998, October). Cochannel interference cancellation within the current

GSM standard. In Proc. of int. conf. universal personal communications, p. 511-515. Florence, Italy.

Trigui H., Slock D. (2000, July). Performance bounds for cochannel interference cancellation within the current GSM standard. Signal Processing, vol. 80, no 7, p. 1335-1346.

Ungerboeck G. (1974, May). Adaptive maximum likelihood receiver for carrier-modulated data transmission systems. IEEE Trans. on Commu., vol. 22, no 5, p. 624-636.

VanTrees H. (1968). Detection, estimation and modulation theory, part 1. New York: John Wiley and Sons.

Vila P., Pipon F., Pirez D., Fety L. (1994). MLSE antenna diversity equalization of a jammed frequency selective fading channel. In European signal processing conference (EUSIPCO). Edinburgh, Scotland.

Wozencraft J., Jacobs I. (1965). Principles of communications engineering. New York: Wiley.