Capteur d’images à grande dynamique et compression intégrée pour technologie 3D

Capteur d’images à grande dynamique et compression intégrée pour technologie 3D

Fadoua Guezzi-Messaoud Antoine Dupret  Arnaud Peizerat  Yves Blanchard 

Laboratoire de Circuits Intégrés et Intelligents pour l’Imagerie CEA-LETI-DACLE, Campus Minatec 17, Rue des Martyrs F-38054 Grenoble Cedex

Université Paris-Est, Département Systèmes, Électronique ESIEE Paris, Cité Descartes F-93160 Noisy Le Grand

Corresponding Author Email: 
fadoua.guezzi@gmail.com
Page: 
343-365
|
DOI: 
https://doi.org/10.3166/TS.30.343-365
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper presents a new High Dynamic Range (HDR) Image Sensor architecture that uses the capabilities of Three-Dimensional Integrated Circuit (3D IC) to attain a range of 120 dB without modifying the classic pixel architecture (3T, 4T). The integration time is evaluated by group of pixels on a stack IC and feedback by vertical interconnections to the sensor. A two level compression is then applied on the pixel groups to reduce the output data rate while keeping the high dynamic range.

RÉSUMÉ

A travers l’exploitation de l’intégration 3D, nous proposons d’améliorer la dynamique des capteurs d’images actuels et dépasser 120 dB. La technique utilisée se base sur l’adaptation du temps d’intégration par groupe de pixels en rétroagissant sur l’ensemble des pixels via les interconnexions verticales. L’architecture des pixels classiques, 3T ou 4T, n’est pas modifiée ce qui permet de bénéficier des hautes performances des imageurs classiques tout en rajoutant la grande dynamique. L’augmentation du nombre de bits pour représenter l’image grande dynamique est absorbée par une compression à deux niveaux, employée afin de réduire le flux de données en sortie du circuit tout en gardant la grande dynamique du signal.

Keywords: 

3D-IC, image sensor, high dynamic range, compression, DCT, floating point coding

MOTS-CLÉS

3D Intégration, capteur d’images, HDR, compression, DCT, codage flottant

 

1. Introduction
2. Architecture Du Capteur D’images 3D HDR
3. Codage HDR : Principe Et Architecture
4. Étude Du WTA Et évaluation De L’erreur Induite
5. Deuxième Niveau De Compression À Base De DCT
6. Conclusion
  References

Akahane N., Adachi S., Mizobuchi K., Sugawa S. (2009, nov.). Optimum Design of Conversion Gain and Full Well Capacity in CMOS Image Sensor with Lateral Overflow Integration Capacitor. IEEE Transactions On Electron Devices, vol. 56, n°. 11.

Bermak A., Kitchen A. (2006). A Novel Adaptive Logarithmic Digital Pixel Sensor. IEEE Photonics Technology Letters, vol. 18, n° 20, Oct. 15.

Carvajal R.G., Ramirez-Angula J., Tombs J. (2000). High-speed high-precision voltage-mode MIN/MAX circuits in CMOS technology. Circuits and Systems, Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on.

Guezzi Messaoud F., Dupret A., Peizerat A., Blanchard Y. (2011). A novel 3D architecture for High Dynamic Range image sensor and on-chip data compression. Proceedings of the Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications XII, San Francisco, SPIE 2011.

Guezzi Messaoud F., Dupret A., Peizerat A., Blanchard Y. (2010). On-Chip Compression for HDR Image Sensors. Proc.DASIP, p. 90-96.

Lazzaro J. (1988). Winner Take-All Networks Of O(N) Complexity. Computer Science Department Technical Report CALTECH–CS–TR–21–88, California Institute of Technology.

Lopez-Morillo E., Carvajal R.G., Galan J., Ramirez-Angulo J., Lopez-Martin A., RodriguezVillegas E. (2006). A low-voltage low-power QFG-based Sigma-Delta modulator for electroencephalogram applications. Biomedical Circuits and Systems Conference, 2006. BioCAS. IEEE.

Magnan P., Battude P., Gagnard X., Leyris C., Depoyan L., Vinet M., Cazaux Y., Giffard B., Ancey P., Coudrain P. (2009, June). Towards a Three-Dimensional Back –Illuminated Miniaturized CMOS Pixel Technology using 100 nm Inter-Layer Contacts. International Image Sensor Workshop, p.1-4.

Mase M., Kawahito S., Sasaki M., Wakamori Y., Faruta M. (2005). A Wide Dynamic Range CMOS Image Sensor with Multiple Exposure-Time Signal Outputs and 12-bit Column Parallel Cyclic A/D Converters. IEEE Journal of Solid-State Circuits, vol. 40, n° 12.

Rhee J., Joo Y. (2003 Feb.). Wide dynamic range CMOS image sensor with pixel level ADC. IEEE Electron. Letters, vol. 39, p. 360-361.

Rhee J., Park D. (2009 May). Analysis and Design of a Robust Floating Point CMOS Image Sensor. IEEE Sensors Journal, vol. 9, n° 5.

Soleimani M., Khoei A., Hadidi K., Kazemi Nia S. (2009). Design of High-speed highprecision voltage-mode MIN/MAX circuits with Low Area and Low Power Consumption. IEEE.

Spivak A., Belenky A., Fish A., Yadid-Pecht O. (2009). Wide-Dynamic-Range CMOS Image Sensors Comparative Performances Analysis. Electron Devices, IEEE Transactions on Electron Devices, p. 2446-2461.

Suntharalingam V., Berger R. (2005). Megapixel CMOS Image Sensor Fabricated in ThreeDimensional Integrated Circuit Technology. IEEE International Solid-State Circuits Conference. ISSCC proceeding, p. 356-357.

Vatteroni M., Covi D., Stoppa D., Crespi B., Sartori A. (2007). High Dynamic Range CMOS Image Sensors in Biomedical Applications. Proceedings of the 29 th Annual International Conference of the IEEE EMBS, Cité Internationale, Lyon, France, August 23-26.

Yang D., El Gamal A., Fowler B., Tian H. (1999, Dec). A 640×512 CMOS image sensor with ultrawide dynamic range floating-point pixel-level ADC. IEEE J. Solid State Circuits, vol.34, p. 1821-1834.