Introduction au STAP : 3. Les Données du Club Stap

Introduction au STAP : 3. Les Données du Club Stap

Stéphanie Bidon Marc Montécot  Laurent Savy 

Université de Toulouse, Institut Supérieur de l’Aéronautique et de l’Espace, Département Électronique Optronique et Signal, 10 avenue Edouard Belin, F-31055 Toulouse Cedex 4

Thalès Systèmes Aéroportés, 2 avenue Gay Lussac, F-78851 Élancourt Cedex

Office National d’Études et de Recherches Aérospatiales, BP 80100, F-91123 Palaiseau Cedex

Page: 
57-79
|
DOI: 
https://doi.org/10.3166/TS.28.57-79
Received: 
N/A
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This paper gives an overview of the radar data that are available to the “club STAP’’ members. More specifically, datacubes of the DGA-Maîtrise de l’Information are described as well as the synthetic data of ONERA and the experimental data from Thales Airborne Systems. Special features are highlighted according to each data set.

Extended Abstract

In 2006, a technical meeting about space-time adaptive processing (STAP) has been organized by the French Department of Defense (DGA, Délégation Générale de l’Armement) at ENSTA, Paris. During this meeting, it appeared to the French radar community as a good opportunity to create a group that could federate the work of people in this research area. The French “Club STAP’’ was then borne.

Soon, it appeared essential to club members to share common sets of data to compare the efficiency and assess the robustness of STAP algorithms that either already exist or will be developed in the future.

The “club STAP’’ gathers people coming from different affiliations: state agency, firms and universities. Due to this diversity, club members share nowadays an interesting variety of data sets. Among them one can mention datacubes provided by the DGA/MI (DGA Maîtrise de l’Information), by THALES and by ONERA. This data can be :

– synthetic data generated via numerical simulations;

– experimental data collected with a reel airborne radar system;

– hybrid data, i.e., in between synthetic and experimental data.

In this paper, characteristics of three types of data sets available to club members are presented.

Firstly, the data set provided by the DGA/MI consists of several datacubes that are either purely synthetic or hybrid. Their generation is based on an original technique where SAR (Synthetic Aperture Radar) images are merged with synthetic target signals. The SAR image can be either synthetically simulated with Gaussian clutter or experimental; in this case the data are said to be hybrid. Realistic phenomena are also taken into account in the simulation chain.

Then, data sets provided by ONERA are described. They are synthetically generated according to the conventional STAP model. However, a realistic antenna with a forward looking configuration is considered. Also, some real-world phenomena, such as calibration errors, can be introduced during the simulation. Gaussian clutter and/or spiky clutter can be chosen when generating the data.

Finally, experimental data sets provided by THALES are presented. Data have been collected with a forward looking antenna configuration. New phenomena, which are usually not observed with synthetic data, arise here. Also, many targets are present in the observed scene.

Compared to conventional synthetic STAP data, the three types of datacubes presented in this paper offer the possibility to assess performance and robustness of STAP algorithms in more realistic scenarios and even real scenarios. So far, many studies have been conducted with these data and are presented in this special issue.

RÉSUMÉ

Cet article présente un panel illustratif des données radar qui sont à la disposition des membres du club STAP. En particulier, on présente les données semi-synthétiques de la DGA-Maîtrise de l’Information, les données synthétiques de l’ONERA et enfin les données réelles fournies par Thalès Systèmes Aéroportés. Les spécificités de chaque jeu de données sont soulignées.

Keywords: 

filtering, space-time adaptive processing, experimental and synthetic STAP data.

MOTS-CLÉS

filtrage, traitement spatio-temporel adaptatif, données STAP expérimentales et synthétiques.

1. Introduction
2. Données de la DGA Maîtrise de l’information
3. Données ONERA
4. Données Thalès
5. Conclusion
  References

Bidon S., (2011), « Introduction au STAP. Partie II : Modèle des signaux et principe du filtrage», Revue Traitement du Signal.

Busson M., (1988), « SIROS : un simulateur pour la conception d’un système d’observation spatiale par radar », SEE, Gif-sur-Yvette.

Capon J., (1969), « High resolution frequency-wavenumber spectrum analysis », Proc. IEEE, vol. 57, p. 1408-1418, August.

Cochin C., Pouliguen P., Delahaye B., Le Hellard D., Gosselin P., Aubineau F., (2008), « MOCEM - An “all in one” tool to simulate SAR image », 7th European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen.

Cochin C., Pouliguen P., Delahaye B., Le Hellard D., Gosselin P., Aubineau F., (2009), « MOCEM : fast generation of 3D scaterrers models for radar simulation », Proc. IEEE Radar Conference, Bordeaux, October 12-16.

Klemm R. (2002), Principles of Space-Time Adaptive Processing, IEE Press, London, U.K..

Li J., Stoica P., (1996), « An Adaptive Filtering Approach to Spectral Estimation and SAR Imaging », IEEE Trans. Signal Processing, vol. 44, n° 6, p. 1469-1484, June.

Milin J., Moore S., Burger W., Triboulloy P., Royden M., Gerster J., (2010), « AMSAR – A France-UK-Germany success story in active-array radar », p. 11-18, October 12-15.

MIXSAR, (2006), « Génération de données brutes multi-voies à partir de la version V2 du logiciel MIXSAR », Proc. Journée thématique SEE, November.

Ovarlez J.-P., Le Chevalier F., Bidon S., (2011), « Le club STAP », Revue Traitement du Signal.

Stoica P., Li H., Li J., (2000), « Amplitude Estimation of Sinusoidal Signals : Survey, New Results, and an Application », IEEE Trans. Signal Processing, vol. 48, n° 2, p. 338-352, February