Recalage de séquences spatiales d’images en vue d’une évaluation dimensionnelle de surfaces libres

Recalage de séquences spatiales d’images en vue d’une évaluation dimensionnelle de surfaces libres

Registration of spatial image sequences for quantitative evaluation of free-form surfaces

Ch.Schoenenberger P.Graebling  E.Hirsch 

Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection (UPRES-A CNRS 7005), École Nationale Supérieure de Physique de Strasbourg, Université Louis Pasteur, Boulevard Sébastien Brant, F-67400 Illkirch, France.

Corresponding Author Email: 
Christophe.Schoenenberger@ensps.u-strasbg.fr
Page: 
325-339
|
Received: 
29 June 1998
| |
Accepted: 
N/A
| | Citation

OPEN ACCESS

Abstract: 

This contribution describes an iterative registration method of spatial image sequences in view of accurate measurements and 3D reconstruction of free-form surfaces. Each image is represented by a set of 3D points characterizing the surface to be analyzed, gained with a technique based on the use of a structured light. The novelty of our registration method lies in interpolation of the imaged surfaces for the matching step and in the automated determination of the overlap region between two consecutive images of the sequence. The use of a statistical criterion enables to discard the matchings of bad quality. The actual displacement is computed using a least-squares technique based on unit quaternions and knowing a priori and approximately the displacement between two positions of the sensor. Processing the whole sequence enables to express the points of all images in a common reference frame. Results on both synthetic and real sequences assess efficiency and robustness of this registration procedure.

Résumé

Cette contribution décrit une méthode itérative de recalage de séquences spatiales d'images en vue d'une mesure 3D précise et d'une reconstruction de surfaces gauches quelconques. Chaque image est représentée par une collection de points 3D caractérisant la surface à analyser, obtenue par une technique de projection de lumière structurée. La nouveauté de notre méthode de recalage réside dans l'interpolation des surfaces imagées pour l'étape d'appariement et dans la détermination automatique de la zone de recouvrement entre deux images consécutives de la séquence. L'utilisation d'un critère statistique permet d'éliminer les appariements de mauvaise qualité. Le déplacement effectif est calculé par une technique de moindres carrés reposant sur les quaternions unitaires en connaissant a priori et approximativement le déplacement entre deux positions du système de prise de vues. Le traitement de la séquence complète permet d'exprimer les points de toutes les images dans un même référentiel. Des résultats expérimentaux sur des données synthétiques et réelles montrent que cette méthode de recalage est robuste et précise.

Keywords: 

Computer vision, spatial image sequence, registration, 3D reconstruction, metrology

Mots clés

Vision par ordinateur, séquences spatiales d'images, recalage, reconstruction 3D, métrologie

1. Introduction
2. Recalage Et Système De Mesure
3. Algorithme De Recalage
4. Résultats Expérimentaux
5. Conclusion Et Perspectives
  References

[1] K.S. Arun, T.S. Huang, and S.D. Blostein. Least Squares Fitting of Two 3D Points Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5) : 698-700, 1987.

[2] E. Bayro-Corrochano. A Review of Automated Visual Inspection, Part I : Conventional Approaches. In Proceeding of the Spie : Intelligent Robots and Computer Vision XII, 2055, pages 128-158, 1993.

[3] E. Bayro-Corrochano. A Review of Automated Visual Inspection, Part II : Conventional Approaches. In Proceeding of the Spie : Intelligent Robots and Computer Vision XII, 2055, pages 159-172, 1993.

[4] R. Benjemaa and F. Schmitt. Recalage global de plusieurs surfaces par une approche algébrique. 11ème Congrés Reconnaissance des Formes et Intelligence Artificielle. RFIA 98, 20-22 janvier 1998, Clermont-Ferrand, France, 2 : 387-396, 1998.

[5] P.J. Bes’l and N.D. MacKay. A Method for Registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2) : 239-256, 1992.

[6] G. Blais and M.D. Levine. Registering multireview Range Data to Create 3D Computer Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8) : 820-824, 1995

[ 7] L.G. Brown. A Survey of Image Registration Techniques. ACM Computing Surveys, 24(4) : 325-376, 1992.

[8] S. Campagna Vergleich und Erweiterung von Verfahren für die Schnittpunktberechnung von Strahlen mit Polynomflächen. Diplomarbeit im Fach Informatik, Universität Erlangen-Nürnberg, 1995.

[9] Y. Chen and G. Medioni. Object Modelling by Registration of Multiple Range Images. International Journal of Image and Vision Computing, 10(3) : 145-155, 1992.

[10] D.H. Chung, I.D. Yun, and S.U. Lee. Registration of Multiple Range Views using the Reverse-Calibration Technique. Pattern Recognition, 31(4) : 457-464, 1998.

[11] B. Curless and M. Levoy. A volumetric method for building complex models from range images. In Proceedings of SIGGRAPH’96, Aug. 4-9 1996, New-Orleans (USA), 303-312, 1996.

[12] C. Doral, G. Wang, and A.K. Jain. Registration and Integration of Multiple Object Views for 3D Model Construction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1) : 83-89, 1998.

[13] G. Farin. Curves and Surfaces for CAGD : A Pratical Guide. Academic Press, INC, San Diego, 4th edition, 1996.

[14] J. Flusser and T. Sak. A Moment-based Approach to Registration of Images with Affine Geometric Distorsions. IEEE Transactions on Geoscience and Remote Sensing, 32(2) : 382-387, 1994.

[15] R. Franke and G.M. Nielson. Scattered Data Interpolation and Applications : A Tutorial and Survey. In H. Hagen and D. Roller, Editors. Geometric Modelling, Methods and Applications, Springer Verlag, pages 131-160, 1991.

[16] A. Goshtasby. Template Machine in Rotated Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(3) : 338-344, 1985.

[17] P. Graebling. Modélisation, Simulation et Traitement d’images en vue d’une inspection dimensionnelle de pièces manufacturées : Comparaison d’images réelles et conceptuelles. Thèse, Université Louis Pasteur, Strasbourg, 1992.

[18] P. Graebling, C. Boucher, C. Daul, and E. Hirsch. 3D Sculptured Surface Analysis using a Structured Light Approach. Proceedings of the SPIE : VIDEOMETRICS IV, 13-26 october 1995, Philadelphia, USA, 2598 : 128-139, 1995.

[19] G. Greiner. Least Square Fitting for B-Spline Curves. Tutorial Notes : Splines in Computer Graphics, EUROGRAPHICS’94, Oslo, September 6-9, 1994.

[20] R.L. Harder and R.N. Desmarais. Interpolation using Surface Splines. Journal of Aircraft, 9(2) : 189-191, 1972.

[21] B.K.P. Horn. Closed-form Solution of absolute Orientation using Unit Quaternions. Journal of the Optical Society of America A, 4(4) : 629-642, 1994.

[22] B. Kamgar-Parsi, J.L. Jones, and A. Rosenfeld. Registration of Mul-tiple Overlapping Range Images : Scenes without Distinctives Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9) : 857-871, 1991

[23] G. Medioni and R. Nevatia. Matching Images using Linear Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6) : 675-685, 1984.

[24] M. Merickel. 3D Reconstruction : The Registration Problem. Computer Vision. Graphics and Image Processing, 42(2) : 206-219, 1988.

[25] T.S. Newman and A.K. Jain. A Survey fo Automated Visual Inspection. Computer Vision and Image Understanding, 61(2) : 231-262, 1995.

[26] T.S. Newman and A.K. Jain. A System for 3D CAD-based Inspection using Range Images, Pattern Recognition, 28(10) : 1555-1574, 1995.

[27] G.M. Nielson. Scattering Data Modelling. IEEE Computer Graphics and Applications, 13(1) : 60-70, 1993.

[28] T. Nishita, T.W. Sederberg, and M. Kakimoto. Ray Tracing Trimmed Rational Surface Patches. Computer Graphics, 24(4) : 337-345, 1990.

[29] X. Pennec and J.P. Thirion. A Framework for Uncertainty and Validation of 3D Registration Methods Based on Points and Frames. International Journal of Computer Vision, 25(3) : 203-229, 1997.

[30] L. Piegl and W. Tiller. The NURBS Book. Monographs in Visual Communication, Springer Verlag, Berlin, Heidelberg, Second edition, 1997.

[31] F. Preparata and M. Shamos. Computational Geometry. An Introduction. Springer Verlag, Berlin, Heidelberg, New-York, 1996.

[32 D. Poussart, R. Bergevin, D. Laurendeau. Registering Range Views of Multipart Objects. Computer Vision and Image Understanding, 61(1) : 1-16, 1995.

[33] B. Sabata and J.K. Aggarwal. Estimation of Motion from a Pair of Range Images : A review. Computer Vision, Graphics and Image Processing : Image Understanding, 54(3) : 309-324, 1991.

[34] W.B. Seales and O.D. Faugeras. Building Three-Dimensional Objects Models from Image Sequences. Computer Vision and Image Understanding, 61(3) : 308-324, 1995.

[35] M. Soucy and D. Laurendeau. A General Surface Approach to the Intedration of a Set of Range Views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(4) : 344-358, 1995.

[36] A.J. Stoddart, S. Lemke, A. Hilton, and T. Renn. Estimating Pose Uncertainty for Surface Registration. Image and Vision Computing, 16 : 111-120, 1998.

[37] J. Ton and A.K. Jain. Registering Landsat Images by Point Matching. IEEE Transactions on Geoscience and Remote Sensing, 27(5) : 642-651, 1989.

[38] M.W. Walker, L. Shao, and R.A. Volz. Estimating 3D Location Parameters using Dual Number Quaternions. Computer Vision, Graphics and Images Processing : Image Understanding, 54(3) : 358-367, 1991.

[39] Z. Zhang. Iterative Point Matching for Registration of Free-Form Curves and Surfaces. International Journal of Computer Vision, 13(2) : 119-152, 1994.