Maintaining the road networks in a good condition is essential to the economy

Maintaining the road networks in a good condition is essential to the economy

Pierre Hankach Tristan Lorino 

LUNAM Université, IFSTTAR, MAST, LAMES F-44340 Bouguenais, France

Corresponding Author Email: 
pierre.hankach@ifsttar.fr, tristan.lorino@ifsttar.fr
Page: 
271-297
|
DOI: 
https://doi.org/10.3166/RIA.30.271-297
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
30 June 2016
| Citation
Abstract: 

Maintaining the comfort of the population. However, road operators are increasingly working with ever more limited budgets and financial constraints. Therefore, optimizing the efficiency of maintenance, through the right choice of interventions, becomes very important. Pavement management systems are computer software that assists this management process. Existing pavement management systems vary greatly in terms of their sophistication. In this paper, a new approach for implementing a pavement management system is defined based on the constraint programming (CP) paradigm. This approach offers many advantages including many efficient resolution algorithms, the ease of modelling, clarity of implementation as modelling and resolution are separated, a wide variety of constraint types, malleability in adding or retrieving constraints. MOTS-CLÉS: réseaux routiers, systèmes d’aide à la gestion de l’entretien, programme d’entre-tien pluriannuel, optimisation, programmation par contraintes, problèmes de satisfaction de contraintes.

Keywords: 

road networks, pavement management systems, multi-year network-level maintenance program, optimization, constraint programming, constraint satisfaction problems

1. Introduction
2. Programmation de l'entretien: données et approche
3. Programmation par contraintes
4. Modélisation du problème de programmation de l'entretien comme un problème de satisfaction de contraintes
5. Implémentation
6. Exemple numérique
7. Évaluation de l'efficacité par rapport à l'approche par priorisation
8. Conclusion
  References

Australia N. I. (2016). Minizinc challenge. minizinc.org.

Boyd S., Vandenberghe L. (2004). Convex optimization. Cambridge University Press, New York, USA.

Cheng B., Choi K., Lee J., Wu J. (1999). Increasing constraint propagation by redundant modeling: an experience report. Constraints, vol. 4, p. 167-192.

Choco-solver.org. (2016). A free and open-source java library for constraint programming.

De la Garza J., Akyildiz S., Bish D. (2011). Development of network level linear programming optimization for pavement maintenance programming. In Proceedings of the international conference on computing in civil and building ngineering. University of Nottingham, UK.

Developers G. (2016). Google optimization tools. Google.

Freitas N., Lepert P., Renault D. (1998). Aide à la gestion de l’entretien des réseaux routiers avec la gamme GiRR. Revue générale des routes et des aérodromes, vol. 765, p. 24-26.

Fwa T., Chan W., Tan C. (1996). Genetic algorithm programming road maintenance and rehabilitation. ASCE Journal of Transportation Engineering, vol. 122, p. 246- 253.

Gecode.org. (2016). Generic constraint development environment.

Ginsberg M. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research, vol. 1, p. 25-46.

Harik G., Cantu-Paz E., Goldberg D., Miller B. (1999). The gambler’s ruin problem, genetic algorithms, and the sizing of populations. In Evolutionary computation, ieee international conference, vol. 7, p. 231-253.

Herabat P., Tangphaisankun A. (2005). Multi objective optimization model using constraint based genetic algorithms for thailand pavement management. Journal of the Eastern Asian Society for Transportation Studies, vol. 6, p. 1137-1152.

Holland J. (1975). Adaption in natural and artificial systems. University of Michigan Press, Ann Arbor, MI.

Ifsttar. (2006). GiRR – gestion intelligente des réseaux routiers, logiciel d’aide à la programmation de l’entretien des réseaux routiers.

Khraibani H., Lorino T., Lepert P., Marion J. (2012). Nonlinear mixed-effects model for the evaluation and prediction of pavement deterioration. Journal of Transportation Engineering, vol. 138, p. 149-156.

LCPC. (1998). Catalogue des dégradations de surface des chaussées. Méthode d’essai numéro 52.

Lepert P. (1996). Outil d’aide à la programmation d’entretien GiRR : premières applications en site pilote. Laboratoire Central des Ponts et Chaussées.

Lepert P., Savard Y., Leroux D. (2003). Use of pavement performance models to improve efficiency of data collection procedures. In International symposium on maintenance and rehabilitation of pavements and technological control, portugal, p. 12.

Lu P., Tolliver D. (2013). Multiobjective pavement-preservation decision making with simulated constraint boundary programming. Journal of Transportation Engineering, vol. 139, p. 880-888.

Marler R., Arora S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, vol. 26, p. 369-395.

Mathew B., Isaac K. (2014). Optimisation of maintenance strategy for rural road network using genetic algorithm. International Journal of Pavement Engineering, vol. 15, p. 352-360.

Matousek J., Gärtner B. (2006). Understanding and using linear programming. Springer, Berlin.

Nethercote N., Stuckey P., Becket R., Brand S., Duck G., Tack G. (2007). Minizinc: Towards a standard cp modelling language. In Proceedings of the 13th international conference on principles and practice of constraint programming, vol. 4741, p. 529-543. Springer-Verlag.

Rèche M. (2004). Effet des travaux d’entretien sur les lois d’évolution des dégradations de chaussées. Thèse de doctorat non publiée, Université de Clermont-Ferrand.

Rossi F., van Beek P., Walsh T. (2006). Handbook of constraint programming (foundations of artificial intelligence). Elsevier Science Inc., NY, USA.

Senga Kiessé T., Lorino T., Khraibani H. (2014). Discrete nonparametric kernel and parametric methods for the modeling of pavement deterioration. Communications in Statistics - Theory and Methods, vol. 43, p. 1164-1178.

Stallman R., Sussman G. (1977). Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artificial Intelligence, vol. 9, p. 135-1996.

Tsang E. (1993). Foundations of constraint satisfaction. London, Academic Press.

Van Hoeve W. (2001). The alldifferent constraint: A survey. Cornell University, p. 1-42.