Study of the accelerated aging under UV of the ethylene-vinyl acetate copolymer for photovoltaic applications

Study of the accelerated aging under UV of the ethylene-vinyl acetate copolymer for photovoltaic applications

Fabien DelaleuxVincent Guihéneuf Olivier Riou Pierre-Olivier Logerais Jean-Félix Durastanti 

CERTES, université Paris Est - Créteil, IUT Sénart-Fontainebeau, 36, rue Georges-Charpak, 77567 Lieusaint, France

Corresponding Author Email:
30 June 2017
| Citation



A photovoltaic module is a multi-stack system, compound of a semiconductor generally made of silicon, protected on is upper face a polymer encapsulant and a glass layer. The most usually employed polymer is ethylene-vinyl acetate (EVA) because of its moderate cost and its ease of implementation. However, an extended exposure on UV cause a loss of adhesion and a reduction of the optical transmission (phenomenon of yellowing). Although new formulations of EVA were developed, incorporating antioxidants and UV absorbers, the degradation of the optical properties of a module (via encapsulant and anti-reflective coat of the cell) is nowadays the main cause of the decrease of the performance and the efficiency of the photovoltaic system with time. The goal of this work is to evaluate the behavior of the functional optical properties (transmission, reflection) of a standard formulation of EVA during accelerated ageing under UV. An important temperature of lamination (155 °C) seems to be optimal for the optical properties evolution but not for physico-chemical one.


photovoltaic, ageing, EVA, optical transmission

1. Introduction
2. Étude préliminaire sur le verre
3. Protocole expérimental
4. Vieillissement de l’empilement verre/EVA/verre
5. Conclusions et perspectives

Cuddihy E.F., Coulbert C.D., Liang R.H., Gupta A., Willis P., Baum B. (1983). Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules. Tech. Rep., vol. 83-35, p. 1-71.

Guiheneuf V., Delaleux F., Riou O., Logerais P.-O., Durastanti J.-F. (2017). Investigation of damp heat effects on glass properties for photovoltaic applications. Corros. Eng. Sci. Tech., vol. 52, p. 170-177.

Hasan O., Arif A.F.M. (2014). Performance and life prediction model for photovoltaic modules: effect of encapsulant constitutive behavior. Sol. Energy Mater. Sol. Cells, vol. 122, p. 75-87.

Jin J., Chen S., Zhang J. (2010). UV aging behavior of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents. Polym. Degrad. Stab., vol. 95, p. 725-732.

Jordan D., Kurtz S. (2013). Photovoltaic degradation rates. An analytical review. Prog. Photovolt. Res. Appl., vol. 21, p. 12-29.

Jorgensen G.J., Terwilliger J.A., DelCueto J.A., Glick S.H., Kempe M.D., Pankow J.W., Pern F.J., McMahon T.J. (2006). Moisture transport, adhesion and corrosion protection of PV module packaging materials. Sol. Energy Mater. Sol. Cells, vol. 90, p. 2739-2775.

Kempe M.D., Jorgensen G.J., Terwilliger K.M., Mac Mahon T.J., Kennedy C.E., Borek T.T. (2007). Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Sol. Energy Mater. Sol. Cells., vol. 95, p. 315-329.

Klemchuk P., Ezrin M., Lavigne G., Halley W., Agro J.S. (1997). Investigation of the degradation and stabilization of EVA-based encapsulant in field-aged solar energy modules. Polym. Degrad. Stab., vol. 55, p. 347-365.

Liu F., Jiang L., Yang S. (2014). Ultra-violet degradation behavior of polymeric backsheets for photovoltaic modules. Sol. Energy, vol. 108, p. 88-100.

Oreski G., Wallner G. (2005). Evaluation of the aging behavior of ethylene copolymer fims for solar applications under accelerated weathering conditions. Sol. Energy, vol. 79, p. 612-617.

Pern J.F. (1997). Degradation and discoloration mechanisms and formulation modifications for improved photostability. Die Angewandte Makromolekulare Chemie, vol. 252, p. 195-216.