Residual behavior of Tunisian concretes under the effect of high temperatures

Residual behavior of Tunisian concretes under the effect of high temperatures

Maher Chakhari Saber Hassen Abderrazek Kallel 

Département de génie civil, institut supérieur des études technologiques de Nabeul, campus universitaire de Mrezga, 8000, Nabeul, Tunisie

Département de génie civil, institut supérieur des technologies de l’environnement, de l’urbanisme et des bâtiments, rue de l’Artisanat, 2035, Charguia II, Tunis, Tunisie

Université du Prince Sattam bin Abdulaziz, PSAU, Riadh, Arabie saoudite

Corresponding Author Email: 
chakkarimaher@gmail.com; hassen.sabeur@univ-mlv.fr; abderrazek.kallel@enit.rnu.tn
Page: 
111-122
|
DOI: 
https://doi.org/10.3166/rcma.2017.00007
Received: 
|
Accepted: 
|
Published: 
30 June 2017
| Citation

ACCESS

Abstract: 

Knowledge of the behavior of concrete at high temperature and its residual performance is of great interest for the safety evaluation of civil engineering structures. Several studies have investigated the behavior of concrete at high temperatures but few researches have focused on the residual behavior of concrete. The latter has been studied experimentally on Tunisian concretes formulated with the aggregates of the quarries of Djebel Ressas and Borj Hfaiedh. Thermogravimetric (TGA) and differential thermal (DTA) analyzes allowed the determination of different physicochemical processes occurring within the cement paste. The rate of rise in temperature is chosen according to the RILEM recommendations (0.50 °C/min). This rate showed the presence of chemical kinetics. Four temperature steps (corresponding to the temperature peaks obtained during the ATG/ATD tests) were applied, with three different durations (4, 8 and 24 hours), to study the effect of duration of heating on the properties of the concrete. These heating-cooling cycles allowed the study of mechanical (residual compressive strength) and physical (loss of residual mass) properties on cylindrical specimens (100*300 mm). Compression tests have shown that the various properties of the concrete mentioned above decrease as a function of temperature.

Keywords: 

residual behavior, high temperatures, heating-cooling, residual compressive strength, loss of residual mass

1. Introduction
2. Analyse de la microstructure du béton par ATG/ATD
3. Étude expérimentale
4. Résultats et discussions
5. Conclusion
  References

Baroghel V., et al. (2002). From chemical and microstructural evolution of cement pastes to the development of autogenous deformations.ACI’s Fall Convention, Phoenix Arizona, USA.

Ehrlacher A., Ruiza L.A., Platret G., Massieu E. (2005). The use of thermal analysis assessing the effect of temperature on a cement paste. Cem. Concr. Res., vol. 35, p. 609-613.

Handoo S.K., Agarwal S., Agarwal S.K., Ahluwalia S.C. (1997). Effect of temperature on the physico-chemical characteristics of hardened concrete. In: Justnes H. ed. 10th International Congress of Chemistry of Cement, Gothenburg, Sweden, June 2-6 4IV 067, 1997, 4.

Harmathy T.Z. (1968). Determining the temperature history of concrete constructions following fire exposure. ACI J., vol. 65, no 11, p. 959-964.

Luccioni B.M., et al. (2002). Thermo-mechanic model for concrete exposed to elevated temperatures. Eng. Struct., vol. 25, p. 729-742.

Raina S.J., Vishwanathan V.N., Ghosh S.N. (1978). Instrumental techniques for investigation of damaged concrete. Indian Concr. J., vol. 52, p. 147-149.

RILEM TC 129-MHT (1997). Test methods for mechanical properties of concrete at high temperatures. Recommendations: part 6: thermal strain. Mater. Struct., Supplement March, p. 17-21.

RILEM TC 129-MHT (1998). Test methods for mechanical properties of concrete at high temperatures. Recommendations: part 7: transient creep for service and accident conditions. Mater. Struct., vol. 31, p. 290-295.

RILEM TC 129-MHT (2000). Test methods for mechanical properties of concrete at high temperatures. Recommendations: part 8: steady-state creep and creep recovery. Mater. Struct., vol. 31, no 225.

Saber H. (2006). Nouvelle approche thermo-hygro-mécanique couplée pour la modélisation du fluage thermique transitoire. Thèse de doctorat, École des Ponts et Chaussées de Paris et à l’Institut francilien des sciences appliquées.

Saber H., Meftah F., Colina H., Platret G. (2008). Correlation between transient creep of concrete and its dehydration. Mag. Concr. Res., vol. 60, no 3, p. 157-163.

Saber H. (2011). On the modeling of the dehydration induced transient creep of concrete at high temperatures. Mater. Struct., vol. 44, p. 1609-1627.