Visco-hyperelastic mechanical characterization of skeletal muscle in compression-relaxation test

Visco-hyperelastic mechanical characterization of skeletal muscle in compression-relaxation test

Naïm JalalMustapha Zidi 

EA 7377 bioingénierie, tissus et neuroplasticité (BIOTN), faculté de médecine, université Paris-Est Créteil, 8, rue du Général-Sarrail, 94010 Créteil cedex, France

Corresponding Author Email: 
naim.jalal@u-pec.fr; zidi@u-pec.fr
Page: 
31-44
|
DOI: 
https://doi.org/10.3166/rcma.2017.00002
Received: 
| |
Accepted: 
| | Citation

ACCESS

Abstract: 

The passive visco-hyperelastic behavior of porcine skeletal muscle is studied from relaxation tests in compression. Several hyperelastic models, coupled with a Prony serial, are investigated to identify material parameters. For muscle fibers orientations at 0° and 90° with the loading direction, it is shown that the first order Ogden’s model, coupled with a second order Maxwell’s model, is adequate to reproduce the mechanical behavior of the biological tissue.

Keywords: 

skeletal muscle, compression relaxation test, visco-hyperelasticity, material parameters identification

1. Introduction
2. Matériel et méthodes
3. Résultats et discussion
4. Limitations
5. Conclusion
  References

Abraham A.C., Kaufman K.R., Donahue T.L.H. (2013). Phenomenological consequences of sectioning and bathing on passive muscle mechanics of the New Zealand white rabbit tibialis anterior. J. Mech. Behav. Biomed. Mater., vol. 17, p. 290-295. doi: 10.1016/j.jmbbm.2012.10.003.

Böl M., Ehret A.E., Leichsenring K., et al. (2014). On the anisotropy of skeletal muscle tissue under compression. Acta Biomater., vol. 10, p. 3225-3234. doi: 10.1016/j.actbio.2014.03.003.

Böl M., Kruse R., Ehret A.E., et al. (2012). Compressive properties of passive skeletal muscle—The impact of precise sample geometry on parameter identification in inverse finite element analysis. J. Biomech., vol. 45, p. 2673-2679. doi: 10.1016/j.jbiomech.2012.08.023.

Böl M., Leichsenring K., Ernst M., Ehret A.E. (2016). Long-term mechanical behaviour of skeletal muscle tissue in semi-confined compression experiments. J. Mech. Behav. Biomed. Mater., vol. 63, p. 115-124. doi: 10.1016/j.jmbbm.2016.06.012.

Calvo B., Ramírez A., Alonso A., et al. (2010). Passive nonlinear elastic behaviour of skeletal muscle: Experimental results and model formulation. J. Biomech., vol. 43, p. 318-325. doi: 10.1016/j.jbiomech.2009.08.032.

Chakouch M.K., Pouletaut P., Charleux F., Bensamoun S.F. (2015). Viscoelastic shear properties of in vivo thigh muscles measured by MR elastography. J. Magn. Reson. Imaging. doi: 10.1002/jmri.25105.

Delfino A., Stergiopulos N., Moore J.E., Meister J.-J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech., vol. 30, p. 777-786. doi: 10.1016/S0021-9290(97)00025-0.

Gras L.-L., Mitton D., Viot P., Laporte S. (2013). Viscoelastic properties of the human sternocleidomastoideus muscle of aged women in relaxation. J. Mech. Behav. Biomed. Mater., vol. 27, p. 77-83. doi: 10.1016/j.jmbbm.2013.06.010.

Gras L.-L., Mitton D., Viot P., Laporte S. (2012). Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J. Mech. Behav. Biomed. Mater., vol. 15, p. 131-140. doi: 10.1016/j.jmbbm.2012.06.013.

Holzapfel G. (2000). Non linear Solid Mechanics, Wiley, Chichester, West Sussex, England. Humphrey J.D. (2003). Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. Math. Phys. Eng. Sci., vol. 459, p. 3-46. doi: 10.1098/rspa.2002.1060.

Humphrey J.D., Yin F.C. (1987). On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J. Biomech. Eng., vol. 109, p. 298-304.

Johansson T., Meier P., Blickhanb R. (2000). A finite-element model for the mechanical analysis of skeletal muscles. J. Theor. Biol., vol. 206, p. 131-149. doi: 10.1006/jtbi.2000.2109.

Klatt D., Papazoglou S., Braun J., Sack I. (2010). Viscoelasticity-based MR elastography of skeletal muscle. Phys. Med. Biol., vol. 55, p. 6445-6459. doi: 10.1088/0031-9155/55/21/007.

Leclerc G.E., Debernard L., Foucart F., et al. (2012). Characterization of a hyper-viscoelastic phantom mimicking biological soft tissue using an abdominal pneumatic driver with magnetic resonance elastography (MRE). J. Biomech., vol. 45, p. 952-957. doi: 10.1016/j.jbiomech.2012.01.017.

Martins P.A.L.S., Natal Jorge R.M., Ferreira A.J.M. (2006). A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain, vol. 42, p. 135-147. doi: 10.1111/j. 1475-1305. 2006.00257.x.

Moerman K.M., Simms C.K., Nagel T. (2016). Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. J. Mech. Behav. Biomed. Mater., vol. 56, p. 218-228. doi: 10.1016/j.jmbbm.2015.11.027.

Mohammadkhah M., Murphy P., Simms C.K. (2016). The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation. J. Mech. Behav. Biomed. Mater., vol. 62, p. 468-480. doi: 10.1016/j.jmbbm.2016.05.021.

Nagle A.S., Barker M.A., Kleeman S.D., et al. (2014). Passive biomechanical properties of human cadaveric levator ani muscle at low strains. J. Biomech., vol. 47, p. 583-586. doi: 10.1016/j.jbiomech.2013.11.033.

Ogden R.W., Saccomandi G., Sgura I. (2004). Fitting hyperelastic models to experimental data. Comput. Mech., vol. 34, p. 484-502. doi: 10.1007/s00466-004-0593-y.

Pawlikowski M. (2014). Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite. Mech. Time-Depend. Mater., vol. 18, p. 1-20. doi: 10.1007/s11043-013-9208-2.

Stålhand J., Klarbring A., Holzapfel G.A. (2011). A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J. Theor. Biol., vol. 268, p. 120-130. doi:10.1016/j.jtbi.2010.10.008.

Takaza M., Moerman K.M., Gindre J., et al. (2013). The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. J. Mech. Behav. Biomed. Mater., vol. 17, p. 209-220. doi: 10.1016/j.jmbbm.2012.09.001.

Van Ee C.A., Chasse A.L., Myers B.S. (2000). Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J. Biomech. Eng., vol. 122, p. 9-14.

Van Loocke M., Lyons C.G., Simms C.K. (2008). Viscoelastic properties of passive skeletal muscle in compression: Stress-relaxation behaviour and constitutive modelling. J. Biomech., vol. 41, p. 1555-1566. doi: 10.1016/j.jbiomech.2008.02.007.

Van Loocke M., Lyons C.G., Simms C.K. (2006). A validated model of passive muscle in compression. J. Biomech., vol. 39, p. 2999-3009. doi: 10.1016/j.jbiomech.2005.10.016.

Wheatley B.B., Morrow D.A., Odegard G.M., et al. (2016). Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity. J. Mech. Behav. Biomed. Mater., vol. 53, p. 445-454. doi: 10.1016/j.jmbbm.2015.08.041.