Effect of chemical modification of fibers on the properties of renewable biocomposites

Effect of chemical modification of fibers on the properties of renewable biocomposites

Carine Mangeon Xavier Samain Erica Gea Rodi Etienne Dessauw Vittorio Sansalone Thibault Lemaire* Estelle Renard Valérie Langlois* 

Université Paris Est, institut de chimie et des matériaux Paris Est, UMR 7182, 2, rue Henri-Dunant, 94320 Thiais, France

Laboratoire de modélisation et simulation multi-échelle, UMR 8208, CNRS, 61, avenue du Général-de-Gaulle, 94010 Créteil, France

Corresponding Author Email: 
lemaire@u-pec.fr; langlois@icmpe.cnrs.fr
Page: 
11-30
|
DOI: 
https://doi.org/10.3166/rcma.2017.00001
Received: 
|
Accepted: 
|
Published: 
30 June 2017
| Citation

ACCESS

Abstract: 

We have developed two techniques for chemical modification of plant fibers: a method using the esterification reactions between the hydroxyl functions of cellulose and the acid chloride functions of oligoesters, or transesterification reaction. This process has been optimized to provide solvent-free and catalyst-free reactions. The second technique consists in directly modifying the whole vegetable fibers. It is a question of reacting the reactive groups of the lignin with a multifunctional polysiloxane derivative making it possible to covalently couple the matrix and the lignocellulosic reinforcement. This simple radical chemistry can be carried out directly as an extruder. The study of the mechanical properties showed an improvement in the mechanical properties of the biocomposites.

Keywords: 

biocomposites, biosourced materials, plant fibers, chemical modifications

1. Introduction
2. Matériel et méthodes
3. Résultats et discussion
4. Conclusion
  References

Adler E. (1977). Lignin Chemistry-Past, Present and Future, Wood Sci. Technol., vol. 11 no 3, p. 169-218.

Aoyama M., Sakakibara S., Hokkaido U. (1979). Hydrolysis of lignin with dioxane-water, 18: Isolation of a new lignol from hardwood lignin, J. Jpn. Wood Res. Soc. Jpn., vol. 10, no 25, p. 644-646.

Collura S., Azambre B., Finquenesiel G., Zimny T., Weber J.-V. (2006). Miscanthus Giganteus straw and pellets as sustainable fuels combustion and emission tests, Environ. Chem. Lett., vol. 4, p. 75-78.

Dutschk V., Pisanova E., Zhandarov S., Lauke B. (1998). Fundamental and practical adhesion in polymer-fiber systems, Mech. Compos. Mater., vol. 34, no 4, p. 309-320.

Fischer G., Prieler S., Van Velthuizen H. (2005). Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia, Biomass Bioenergy, vol. 28, no 2, p. 119-132.

Fowler P.A., Hughes J.M., Elias R.M. (2006). Biocomposites: technology, environmental credentials and market forces, J. Sci. Food Agric., vol. 86, p. 1781.

Lao H.K. (2009). Modification de biopolymère pour l’étude des interactions bactéries-surface abiotique. Thèse de doctorat, Lorient.

Langlois V., Renard E., Samain X. (2011). Procédé de préparation de biomatériaux hydrophobisés, matériaux hydrophobisés tels qu’obtenus et leurs utilisations. WO2011/104482 A2.

Mangeon C., Renard E., Langlois V. (2015). Fonctionnalisation de fibres lignocellulosiques parthiol-ène par voie photochimique. Brevet no 1551715.

Mas A., Jaaba H., Schue F., Belu A.M., Kassis C., Linton R.W., Desimone J.M. (1997). Surface modification of poly(hydroxybutyrate-co-9% hydroxyvalerate) by allyl alcohol plasma polymerization, Eur. Polymer J., vol. 33, p. 331-337.

Matthews F.L., Rawlings R.D. (1994). Composite materials: engineering and science. Chapman & Hall, London.

Nimz H., Beech. (1974). Beech lignin—proposal of a constitutional scheme, Angew. Chem. Int. Ed. Engl., vol. 13, no 5, p. 313-321.

Piló-Veloso D., Morais S.A.L. (1993). Isolamento e Análise Estrutural de Ligninas. Quimica Nova, vol. 16 no 5, p. 435-448.

Samain X., Langlois V., Renard E., Lorang G. (2011). Grafting biodegradable polyesters ontocellulose, J. Appl. Polymer Sci., vol. 121 no 2, p. 1183.

Santana A.L., Bieber L. (2013). Phenolic extractives and natural resistance of wood. In : Chamy R. ed. Biodegradation – Life of science. InTech.

Timbart L., Renard E., Langlois V., Guerin P. (2004). Novel Biodegradable Copolyesters Containing Blocks of Poly(3-hydroxyoctanoate) and Poly(e-caprolactone): Synthesis and Characterization, Macromol. Biosci., vol. 4, p. 1014-1020.

Timbart L. (2005). Élaboration de copolymères à base de biopolyesters pour la libération contrôlée de principes actifs. Thèse de doctorat, université Paris Est.

Timbart L., Renard E., Tessier M., Langlois V. (2007). Biomacromolecules, vol. 8, no 4, p. 1255-1265.

Ustariz-Peyret C., Coudane J., Vert M., Kaltsatos V., Boisramé B. (1999). J. Microencapsul., vol. 16, p. 181.

Vaca-Garcia C., Borredon M.E., Gaset A. (2000). Procédé de fabrication d’un ester gras decellulose ou d’amidon par estérification ou transestérification. Brevet WO 0050493 (A1).