Integrated growth of Si-O-C nanosheets on the surface of carbon microstructure with the aid of carbon nanotubes

Integrated growth of Si-O-C nanosheets on the surface of carbon microstructure with the aid of carbon nanotubes

Shuang Xi* Yuzhou Zhang Yan Ji Yinlong Zhu Ying Liu Yutu Yang Maolin Yu

School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

Corresponding Author Email: 
shuangxi@hust.edu.cn
Page: 
289-298
|
DOI: 
https://doi.org/10.3166/RCMA.28.289-298
| |
Published: 
30 June 2018
| Citation

ACCESS

Abstract: 

The three-phase Si-O-C compound enjoys a great application prospects in the field of miniaturized high-temperature devices, thanks to its good high-temperature resistance and the unique physicochemical properties of its 2D structure. In light of these, this paper puts forward a simple and reliable method to synthetize Si-O-C nanosheets based on pyrolysis. The Si-O-C nanosheets were integrated on the surface of the pyrolyzed carbon microstructure after adding carbon nanotubes (CNTs) onto the surface of micropatterned SU-8 photoresist, and decomposing the CNT-modified pattern at a high temperature (1,100°C). Then, the surface morphology and internal structure of the Si-O-C nanosheets were characterized by a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM). The results show that the Si-O-C nanosheets are a uniform amorphous structure. Considering the absence of metal catalyst in the preparation process, the author explained the growth of the nanosheets with the volatile-solid (V-S) mechanism. Since the Si-O-C nanosheets tend to grow in areas where CNTs are aggregated, the CNTs must have played a key function in the growth process. Specifically, the CNTs promoted the redox reactions and nucleation of Si-O-C, and supplied extra carbon to the growth of Si-O-C nanosheets. In addition, the stress produced in high-temperature pyrolysis process tore Si-O-C nano-film into irregular Si-O-C nanosheets. The research findings help to promote the application of Si-O-C nanostructure in various fields, including but not limited to environmental management and plant protection.

Keywords: 

Si-O-C nanosheet, carbon nanotubes (CNTs), pyrolysis, volatile-solid (V-S) growth mechanism

1. Introduction
2. Methodology
3. Results and discussion
4. Conclusions
Acknowledgements

This work is financially supported by Natural Science Foundation of Jiangsu Province (BK20160934), and Youth Science &Technology Innovation Fund of Nanjing Forestry University (CX2017008).

  References

Babanzadeh S., Mehdipour-Ataei S., Mahjoub A. R. (2013). Effect of nanosilica on the dielectric properties and thermal stability of polyimide/SiO2 nanohybrid. Designed Monomers & Polymers, Vol. 16, No. 5, pp. 417-424. https://doi.org/10.1080/15685551.2012.747159

Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, Vol. 5, No. 4, pp. 263-275. https://doi.org/10.1038/NCHEM.1589

Durand F., Jean C. D. (2000). Solid-liquid equilibria in the silicon-rich corner of the Si-O-C system. Journal of Phase Equilibria, Vol. 21, No. 2, pp. 130-135. https://doi.org/10.1361/105497100770340174

Horiuchi S., Gotou T., Fujiwara M., Sotoaka R., Hirata M., Kimoto K., Asaka T., Yokosawa T., Matsui Y., Watanabe K., Sekita M. (2003). Carbon nanofilm with a new structure and property. Japanese Journal of Applied Physics, Vol. 42, No. 9A/B, pp. L1073-L1076. https://doi.org/10.1143/JJAP.42.L1073

Hu J., Odom T. W., Lieber C. M. (1999). Chemistry and physics in one dimension:  synthesis and properties of nanowires and nanotubes. Cheminform, Vol. 32, No. 5, pp. 435-445. https://doi.org/10.1021/ar9700365

Lei Z., Shi T., Tang Z. (2011). Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires. Nanoscale Research Letters, Vol. 6, No. 1, pp. 469. https://doi.org/10.1186/1556-276X-6-469

Liu Z. K., Sun Y. X., Yuan J. Y., Wei H. X., Huang X. D., Hua L., Wang W. W., Wang H. Q., Ma W. L. (2013). High-efficiency hybrid solar cells based on polymer/PbSxSe1-x nanocrystals benefiting from vertical phase segregation. Advanced Materials, Vol. 25, No. 40, pp. 5772-5778. https://doi.org/10.1002/adma.201302340

Mazo M. A., Tamayo A., Rubio J. (2016). Advanced silicon oxycarbide-carbon composites for high temperature resistant friction systems. Journal of the European Ceramic Society, Vol. 36, No. 10, pp. 2443-2452. https://doi.org/10.1016/j.jeurceramsoc.2016.03.012

Morales-García A., Marqués M., Menéndez J. M., Santamaría-Pérez D., Baonza V. G., Recio J. M. (2014). First-principles study of structure and stability in Si–C–O-based materials. Theoretical Chemistry Accounts, Vol. 5, pp. 197-201. https://doi.org/10.1007/s00214-012-1308-6

Qiang X., Li H., Zhang Y., Wang Z., Ba Z., Zhang X. (2016). Mechanical and oxidation protective properties of SiC nanowires-toughened SiC coating prepared in-situ by a CVD process on C/C composites. Surface & Coatings Technology, Vol. 307, pp. 91-98. https://doi.org/10.1016/j.surfcoat.2016.08.072

Segatelli M. G., Radovanovic E., Pires A. T. N. (2010). Influence of multiwall carbon nanotubes on the structural and morphological features of Si-C-O ceramics derived from a hybrid polymeric precursor. Materials Chemistry & Physics, Vol. 124, No. 2-3, pp. 1216-1224. https://doi.org/10.1016/j.matchemphys.2010.08.061

Tomar V., Ming G., Han S. K. (2010). Atomistic analyses of the effect of temperature and morphology on mechanical strength of Si-C-N and Si-C-O nanocomposites. Journal of the European Ceramic Society, Vol. 30, No. 11, pp. 2223-2237. https://doi.org/10.1016/j.jeurceramsoc.2010.03.002

Wang Q. H., Kalantarzadeh K., Kis A., Coleman J. N., Strano M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, Vol. 7, No. 11, pp. 699-712. https://doi.org/10.1038/NNANO.2012.193

Wang S. H., Hsiao Y. J., Fang T. H. (2016). Enhanced electrical conductivity and mechanical properties of Mo-interlayered ZnO multilayer nanofilms for NO sensor. Surface & Coatings Technology, Vol. 307, pp. 622-626. https://doi.org/10.1016/j.surfcoat.2016.09.069

Xi S., Shi T., Xu L., Tang Z., Liu D., Li X., Liu S. (2012). Metal-catalyst-free synthesis and characterization of single-crystalline silicon oxynitride nanowires. Journal of Nanomaterials, Vol. 2012, No. 2, pp. 1-8. https://doi.org/10.1155/2012/620475

Zhang L., Onet C. I., Clérac R., Rouzières M., Marzec B., Boese M., Venkatesan M., Schmitt W. (2013). A facile "bottom-up" approach to prepare free-standing nano-films based on manganese coordination clusters. Chemical Communications, Vol. 49, No. 67, pp. 7400. https://doi.org/10.1039/c3cc42954g

Zhang L., Shi T., Tang Z., Liu D., Xi S. (2012). Stress-driven and carbon-assisted growth of SiOxNy nanowires on photoresist-derived carbon microelectrode. Journal of Microelectromechanical Systems, Vol. 21, No. 6, pp. 1445-1451. https://doi.org/10.1109/JMEMS.2012.2211570