Natural convection mechanism evaluation inside a shell and tube thermal energy storage (TES) devise inclination

Natural convection mechanism evaluation inside a shell and tube thermal energy storage (TES) devise inclination

Abderrahmane ElmeriahDriss Nehari Aichouni Mohamed Ahmed Remlaoui

Smart Structure Laboratory, University Center of Ain-Temouchent 46000 Ain-Temouchent, Algeria

Department of Mechanical Engineering, University of Hail P.O. Box 2440, Hail, Saudi Arabia

Corresponding Author Email: 
elmeriahabderrahmane@gmail.com
Page: 
257-276
|
DOI: 
https://doi.org/10.3166/RCMA.28.257-276
| |
Published: 
30 June 2018
| Citation

ACCESS

Abstract: 

A detailed numerical investigation has been carried out here about a heat storage system inclination effect on the phase change material (PCM) melting process in order to comprehend the natural convection mechanism inside a shell and tube thermal energy storage (TES) unit. This unit is filled by Rubitherm organic material (RT35) which has a low storage density. Distilled water is used as heat transfer fluid (HTF,) that circulates downwardly inside the tube to melt the PCM which contributes to acquire a storable thermal energy. Based on the enthalpy method, two dimensional numerical method has been employed to analyze this process which has shown a good numerical predictions against the experimental results. Several unit positions were examined to interpret physically the thermal demeanor of the fusion process in terms of; heat transfer modes estimation, PCM melting rate, axial and radial temperatures distribution. The obtained results clarify that the TES unit inclination according to the range angles [0-90°] makes an imbalance of the natural convection in the PCM liquid fraction which contributes to create an instability and diminution of the heat transfer during the melting process. Moreover, the vertical unit state was the favorite position to the heat transfer recirculation inward the PCM.

Keywords: 

heat transfer, phase change material, thermal energy storage, numerical investigation

1. Introduction
2. Mathematical formulation
3. Numerical methodology
4. Results and discussion
5. Conclusions
Acknowledgment

This work was carried out in the Laboratory of Smart Structure; the authors would like to acknowledge the support of the university center of Ain-Temouchent.

The authors address the most sincere thanks to the directorate general for scientific research and technological development for its financial support under the FNRSDT/DGRSDT within the framework of ERANETMED3 (Project.ERANETMED3-166 EXTRASEA).

  References

Adine H. A., El Qarnia H. (2009). Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Applied Mathematical Modelling, Vol. 33, No. 4, pp. 2132-2144. http://dx.doi.org/10.1016/j.apm.2008.05.016

Agyenim F., Eames P., Smyth M. (2009). A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy, Vol. 83, No. 9, pp. 1509-1520. http://dx.doi.org/10.1016/j.solener.2009.04.007

Akgün M., Aydın O., Kaygusuz K. (2007). Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Conversion and Management, Vol. 48, No. 2, pp. 669-678. http://dx.doi.org/10.1016/j.enconman.2006.05.014

Al-Abidi A. A., Mat S., Sopian K., Sulaiman M. Y., Mohammad A. T. (2013). Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, Vol. 53, No. 1, pp. 147-156. http://dx.doi.org/10.1016/j.applthermaleng.2013.01.011

Alva G., Liu L., Huang X., Fang G. (2017). Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, Vol. 68, pp. 693-706 http://dx.doi.org/10.1016/j.rser.2016.10.021

Avci M., Yazici M. Y. (2013). Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit. Energy Conversion and Management, Vol. 73, pp. 271-277. http://dx.doi.org/10.1016/j.enconman.2013.04.030

El Qarnia H. (2009). Numerical analysis of a coupled solar collector latent heat storage unit using various phase change materials for heating the water. Energy Conversion and Management, Vol. 50, No. 2, pp. 247-254. http://dx.doi.org/10.1016/j.enconman.2008.09.038

Elmeriah A., Nehari D., Aichouni M. (2018). Thermo-convective study of a shell and tube thermal energy storage unit. Periodica Polytechnica Mechanical Engineering, Vol. 62, No. 2. http://dx.doi.org/10.3311/PPme.10873

Esapour M., Hosseini M. J., Ranjbar A. A., Bahrampoury R. (2016). Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems. Applied Thermal Engineering, Vol. 109, pp. 351-363. http://dx.doi.org/10.1016/j.applthermaleng.2016.08.083

Farid M. M., Khudhair A. M., Razack S. A. K., Al-Hallaj S. (2004). A review on phase change energy storage: materials and applications. Energy Conversion and Management, Vol. 45, No. 9-10, pp. 1597-1615. http://dx.doi.org/10.1016/j.enconman.2003.09.015.

Hamila R., Jemni A., Nasrallah S. B., Perré P. (2017). Enthalpic lattice Boltzmann formulation for heat conduction during melting of PCMs with embedded solid blocks with different thermophysical properties. International Journal of Heat and Technology, pp. 728-736. http://dx.doi.org/10.18280/ijht.350214

Hosseini M. J., Rahimi M., Bahrampoury R. (2014). Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, Vol. 50, pp. 128-136. http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.11.008

Hosseini M. J., Ranjbar A. A., Sedighi K., Rahimi M. (2012). A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. International Communications in Heat and Mass Transfer, Vol. 50, pp. 128-136. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.07.028

Kousha N., Hosseini M., Aligoodarz M., Pakrouh R., Bahrampoury R. (2017). Effect of inclination angle on the performance of a shell and tube heat storage unit–An experimental study. Applied Thermal Engineering, Vol. 112, pp. 1497-1509. http://dx.doi.org/10.1016/j.applthermaleng.2016.10.203

Li Z., Wu Z. G. (2015). Analysis of HTFs, PCMs and fins effects on the thermal performance of shell–tube thermal energy storage units. Solar Energy, pp. 2726-2730. http://dx.doi.org/10.1016/j.solener.2015.09.019

Longeon M., Soupart A., Fourmigué J. F., Bruch A., Marty P. (2013). Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, Vol. 112, pp. 175-184. http://dx.doi.org/10.1016/j.apenergy.2013.06.007

Mosaffa A. H., Talati F., Basirat Tabrizi H., Rosen M. A. (2012). Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy and Buildings, Vol. 49, pp. 356-361. http://dx.doi.org/10.1016/j.enbuild.2012.02.053

Seddegh S., Wang X., Henderson A. D. (2015). Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system. Applied Thermal Engineering, Vol. 87, pp. 698-706. http://dx.doi.org/10.1016/j.applthermaleng.2015.05.067

Sharma A., Tyagi V. V., Chen C. R., Buddhi D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. http://dx.doi.org/10.1016/j.rser.2007.10.005

Tao Y. B., Carey V.P. (2016). Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit. Applied Energy, Vol. 13, pp. 318-345. http://dx.doi.org/10.1016/j.apenergy.2016.06.140

Vyshak N. R., Jilani G. (2007). Numerical analysis of latent heat thermal energy storage system. Energy Conversion and Management, Vol. 48, No. 7, pp. 2161-2168. http://dx.doi.org/10.1016/j.enconman.2006.12.013

Wang W. W., Wang L. B., He Y. L. (2016a). Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate. Applied Thermal Engineering, Vol. 93, pp. 50-60. http://dx.doi.org/10.1016/j.applthermaleng.2015.08.108

Wang Y., Wang L., Xie N., Lin X., Chen H. (2016b). Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and-tube latent heat thermal storage unit. International Journal of Heat and Mass Transfer, Vol. 99, pp. 770-781. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.125

Yang X., Li Y., Lu Z., Zhang L., Zhang Q., Jin L. (2016). Thermal and fluid characteristics of a latent heat thermal energy storage unit. Energy Procedia, Vol. 104, pp. 425-430. http://dx.doi.org/10.1016/j.egypro.2016.12.072

Zalba B., Marı́n J. M., Cabeza L. F., Mehling H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, Vol. 23, No. 3, pp, 251-283. http://dx.doi.org/10.1016/S1359-4311(02)00192-8

Zhang Y., Faghri A. (1996). Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. International Journal of Heat and Mass Transfer, Vol. 39, No. 15, pp. 3165-3173. http://dx.doi.org/10.1016/0017-9310(95)00402-5