Chitosan-Heteropolyacid membranes for direct methanol fuel cells

Chitosan-Heteropolyacid membranes for direct methanol fuel cells

F. Di FrancoG. Burgio M. Santamaria 

Electrochemical Materials Science Laboratory, DICAM, Università di Palermo, Viale delle Scienze, Ed.6, 90128 Palermo, Italy

Corresponding Author Email: 
francesco.difranco@unipa.it
Page: 
141-147
|
DOI: 
https://doi.org/10.3166/RCMA.28.141-147
| |
Published: 
30 June 2018
| Citation

ACCESS

Abstract: 

This work is focused on the synthesis and characterization of CS/HPA membranes with the aim to test their performance as proton conductors in Methanol fed fuel cell (Direct Methanol Fuel Cells). Impedance Spectroscopy was used to get information of the conductivity of the membrane and to model the overall electrical behaviour of the cell.

Keywords: 

proton conductors, chitosan (CS)-based membrane, direct methanol fuel cells

1. Introduction
2. Experimental
3. Results
4. Conclusions
  References

Santamaria M., Pecoraro C. M., Quarto F. D., Bocchetta P. (2015). Chitosan–phosphotungstic acid complex as membranes for low temperature H2–O2 fuel cell. Journal of Power Sources, Vol. 276, pp. 189-194. https://doi.org/10.1016/j.jpowsour.2014.11.147

Pecoraro C. M., Santamaria M., Bocchetta P., Quartoa F. D. (2015). Influence of synthesis conditions on the performance of chitosan–Heteropolyacid complexes as membranes for low temperature H2–O2 fuel cell. International Journal of Hydrogen Energy, Vol. 40, No. 42, pp. 14616-14626. https://doi.org/10.1016/j.ijhydene.2015.06.083

Santamaria M., Pecoraro C. M., Franco F. D., Quarto F. D., Gatto I., Saccà A. (2016). Improvement in the performance of low temperature H2–O2 fuel cell with chitosan–phosphotungstic acid composite membranes. International Journal of Hydrogen Energy, Vol. 41, No. 11, pp. 5389-5395. https://doi.org/10.1016/j.ijhydene.2016.01.133

Santamaria M., Pecoraro C. M., Franco F. D., Quarto F. D. (2017). Phosphomolybdic acid and mixed phosphotungstic/phosphomolybdic acid chitosan membranes as polymer electrolyte for H2/O2 fuel cells. International Journal of Hydrogen Energy, Vol. 42, No. 9, pp. 6211-6219. https://doi.org/10.1016/j.ijhydene.2017.02.069

Ahmad H., Kamarudin S. K., Hasran U. A., Daud W. R. W. (2010). Overview of hybrid membranes for direct-methanol fuel-cell applications. International Journal of Hydrogen Energy, Vol. 35, No. 5, pp. 2160-2175. https://doi.org/10.1016/j.ijhydene.2009.12.054

Gatto I., Saccà A., Carbone A., Pedicini R., Urbani F., Passalacqua E. (2007). CO-tolerant electrodes developed with Phosphomolybdic Acid for Polymer Electrolyte Fuel Cell (PEFCs) application. Journal of Power Sources, Vol. 171, No. 2, pp. 540-545. https://doi.org/10.1016/j.jpowsour.2007.06.003

Yamada K., Chen T., Kumar G., Vesnovsky O., Topoleski L., Payne G. (2000). Chitosan based water-resistant adhesive. Analogy to Mussel Glue. Biomacromolecules, Vol. 1, No. 2, pp. 252-258. https://doi.org/10.1021/bm0003009

Kaiser V., Stropnik C., Musil V., Brumen M. (2007). Morphology of solidified polysulfone structures obtained by wet phase separation. European Polymer Journal, Vol. 43, No. 6, pp. 2515-2524. https://doi.org/10.1016/j.eurpolymj.2007.03.012