Valorization of green and industrial wastes by composting process

Valorization of green and industrial wastes by composting process

Abdelilah MeddichFatima-Zohra Elouaqoudi Ahmed Khadra Widad Bourzik 

Laboratoire Biotechnologie et Physiologie Végétale, Faculté des Sciences Semlalia, Université Cadi Ayyad de Marrakech BP 40 001, Maroc

Laboratoire Ecologie et Environnement, Faculté des Sciences Semlalia Université Cadi Ayyad de Marrakech, BP 40 001, Maroc

Service Environnement Wilaya de la Région Marrakech-Safi Rue 11 Janvier, Marrakech, Maroc

Corresponding Author Email: 
a.meddich@uca.ma
Page: 
451-469
|
DOI: 
https://doi.org/10.3166/RCMA.26.451-469
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 December 2016
| Citation
Abstract: 

The objective of our study is to investigate the composting of some plants and industrial wastes and their agricultural use. The choice of wastes to compost and mixtures is justified by their abundance and their impact on the environment, their high minerals or organic matter with a C/N ratio favorable for microbiological activity. At different stages of composting, we measured the physical and chemical parameters to evaluate the biodegradation of wastes including temperature, pH, organic carbon, nitrogen and ash content. The majority of the prepared mixtures have reached maturity and stability after 3 months of composting. Compost products have been tested for their effect on growth of date palm and other underlying crops such as barley, wheat and alfalfa. Low doses composts were found to be beneficial for plant biomass.

Keywords: 

drought, soil degradation, composts, date palm and underlying crop, growth enhancement.

Extended abstract
1. Introduction
2. Matériaux et procédure expérimentale
3. Résultats et discussion
4. Conclusion et perspectives
Remerciements

Les auteurs remercient la Fondation Mohammed VI pour la protection de l’environnement à Rabat, la Wilaya de Marrakech-Safi et la Commune Urbaine de Marrakech, Maroc pour le soutien à ce projet et la mise à disposition des infrastructures et de la main d’oeuvre nécessaires. Nos remerciements vont également au Laboratoire Ecologie et Environnement de la Faculté des Sciences Semlalia de Marrakech.

  References

Abouelwafa R. (2009). Biodégradation aérobie des boues de station d’épuration des rejets du raffinage des huiles brutes pour une valorisation agronomique. Thèse de Doctorat, Université Caddi Ayyad, Faculté des Sciences Semlalia Marrakech, Maroc.

AFNOR. (1975). Dosage de l’azote ammoniacal. NF-T 90-015. Association Française de Normalisation.

AFNOR. (1999). Matières fertilisantes et supports de culture. Tome 1 : Normalisation. Dans Recueil normes et réglementation. Association française de normalisation. Paris, p. 433-436.

Ahn H.K., Sauer T.J., Richard T.L., Glanville T.D. (2009). Determination of thermal properties of composting bulking materials. Bioresource Technology, vol. 100, p. 3974-3981.

Akram Quasi M., Akram M., Ahmad N., Artiola J.F., Tuller M. (2009). Economical and environmental implications of solid waste compost applications to agricultural fields in Punjab, Pakistan. Waste Management, vol. 29, p. 2437-2445.

Aubert G. (1978). Méthodes d’analyse des sols. Edition CRDP, Marseille, France.

Barje F., El Fels L., El Hajjouji H., Amir S., Winterton P. and Hafidi M. (2012). Molecular behaviour of humic acid-like substances during co-composting of olive mill waste and the organic part of municipal solid waste. International Biodeterioration and Biodegradation, vol. 74, p. 17-23.

Bernal M.P., Paredes C., Sanchez-Monedero M.A., Cegarra J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, vol. 63, p. 91-99.

Clapp C.E., Chen Y., Hayes M.H.B., Cheng HH. (2001). Plant growth promoting activity of humic substances. Understanding and Managing Organic Matter in Soils, Sediments and Waters. Swift R. S. and Spark K. M. (Eds). p. 243-255.

El Ouaqoudi F.-Z. (2015). Contribution à la valorisation des déchets de palmier dattier par compostage : Approche physico-chimique, analyse lipidique, caractérisation spectroscopique et thermique des acides humiques et valeur agronomique des composts. Thèse de Doctorat, Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Maroc.

Francou C. (2003). Stabilisation de la matière organique au cours du compostage de déchets urbains : Influence de la nature des déchets et du procédé de compostage - Recherche d’indicateurs pertinent. Thèse de Doctorat, Institut National Agronomique, Paris Grignon.

Giusquiani P.L., Pagliai M., Gigliotti G., Businelli D., Benetti A. (1995). Urban watse composts: effects on physical, chemical and biochemical soil properties. Environ. Qual., vol 24, p 175-182.

Gregorich E.G., Beare M.H., Stoklas U., St-Georges P. (2003). Biodegradability of soluble organic matter in maize cropped soils. Geoderma, vol. 113, p. 237-252.

Gustafsson J.P., Van Hees P., Starr M., Karltun E., Lundstrom U. (2000). Partitioning of base cations and sulphate between solid and dissolved phases in three podzolised forest soils. Geoderma, vol, 94, p. 311-333.

Hachicha S., Sellami F., Cegarra J., Hachicha R., Drira N., Medhioub K., Ammar E. (2009). Biological activity during co-composting of sludge issued from the OMW evaporation ponds with poultry manure- Physico-chemical characterization of the processed organic matter. Journal of Hazardous Materials, vol. 162, p. 402-409.

Haug R.T. (1993). The practical handbook of compost engineering. Boca Raton, Florida.

Hofman J., Dušek L. (2003). Biochemical analysis of soil organic matter and microbial biomass composition a pilot study. European Journal of Soil Biology, vol. 39, p. 217-224.

Hsu J.H., Lo S.L., 1999. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution, vol. 104, p. 189-196.

Huang D.L., Zeng G.M., Feng C.L., Hu S., Lai C., Zhao M.H., Su F.F., Tang L., Liu HL. (2010). Changes of microbial population structure related to lignin degradation during lignicellulosic waste composting. Bioresource Technology, vol. 101, p. 4062-4067.

Jimenez I.E., Garcia P.V. (1989). Evaluation of city refuse compost maturity. Review Biological Wastes, vol. 27, p. 115-142.

Killi D., Kavdir Y. (2013). Effects of olive solid waste and olive solid waste compost application on soil properties and growth of Solanum lycopersicum. International Biodeterioration and Biodegradation, vol. 82, p. 157-165.

Koivula N., Hänninen K., Tolvanen O. (2000). Windrow composting of source separated kitchen biowastes in Finland. Waste Management and Research, vol. 18, p. 160-173.

Lim S.L., Wu T.Y., Clarke C. (2014). Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms. Journal of Agricultural and Food Chemistry. vol. 62, n° 3, p. 691-698.

Mallard P., Gabrielle B., Vial E., Rogeau M., Vignoles M., Sablayrolles C., Carrère M., Renou S., Pierre N., Muller O., Coppin Y. (2006). Quantification des impacts environnementaux associés au traitement biologique et à l’utilisation agricole des produits organiques – bilan des connaissances. Rapport final Contrat ademe GBD 03, ADEME, Anges, France.

Mehta C.M., Palni U., Franke-Whittle I.H., Sharma A.k. (2014). Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, vol. 34, p. 607-622.

Melillo J.M., Aber J.D., Muratore J.F. (1082). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, vol. 63, p. 621-626.

Moral R., Moreno-Caselles J., Perrez-Murcia M.D., Perez-Espinosa A., Rufete B., Parades C. (2005). Characterization of organic matter pool in manure. Bioresource Technology, vol. 96, p. 153-158.

Motta S.R., Maggiore T. (2013). Evaluation of nitrogen management in maize cultivation grows on soil amended with sewage sludge and urea. European Journal of Agronomy. vol. 45, p. 59-67.

Mustin M. (1987). Le compost. Gestion de la matière organique. Editions François Dubusc, Paris, France.

Nardi S., Concheri G., Dell’Agnola G. (1996). Biological activity of humus. In: Humic Substances in Terrestrial Ecosystems (Eds, A. Piccolo), Elsevier, Science B. V., Amsterdam, p. 361-406.

Nyembo K.L., Useni S.Y., Chinawej M.M.D., Kyabuntu I.D., Kaboza Y., Mpundu M.M. et Baboy L.L. (2014). Amélioration des propriétés physiques et chimiques du sol sous l’apport combiné des biodéchets et des engrais minéraux et influence sur le comportement du maïs (Zeamays L. variété Unilu). Journal Applied Biosciences, vol. 74, p. 6121-6130.

Oueslati M.A., Ksontini M., Haddad M., Charbonnel Y. (1995). Compostage des branches d’Acacia cyanophylla et desboues fraîches des stations d’épuration d’eaux usées. Revue Forestière Française. XLVII, vol. 5, p. 523-529.

Pascual J.A., Garcia C., Hernandez T. (1999). Comparison of fresh and composted organic waste in their efficacy for the improvement of arid soil quality. BioresourceTechnology, vol. 68, p. 255-264.

Petiot C., Guardia A. (2004). Composting in a laboratory reactor : a review. Compost Science and Utilization, vol. 12, p. 69-79.

Rauthan B., Schnitzer M. (1981). Effects of soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil, vol. 63, p. 491-495.

Raviv M., Oka Y., Katan J., Hadar Y., Yogev A., Medina S., Krasnovsky A., Ziadna H. (2005). High-nitrogen compost as a medium for organic container-grown crops. Bioresource Technology, vol. 96, p. 419-427.

Roca-Pérez L., Martinez C., Marcilla P., Boluda R. (2009). Composting rice straw with sewage sludge and compost effects on soil-plant system. Chemosphere, vol. 75, p. 781-787.

Rodier J. (1984). L’analyse de l’eau : eaux naturelles, eaux résiduaires, eau de mer. 7e édition. Dunod, Paris.

Ruggieri L., Cadena E., Martinez-Blanco J., Gasol C. M., Rieradevall J., Gabarrell X., Gea T., Sort X., Sanchez A. (2009). Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. Journal of Cleaner Production, vol. 17, p. 830-838.

Rynk R. (1992). On farm composting Handbook. Northest Regional Agricultural Engineering service, NRAES-54 Ithaca, N.Y : Cooperative extention 186.

Schnitzer M., Poapst PA. (1967). Effects of a soil humic compound on root initiation. Nature. vol. 213, p. 598-599.

Seul B.L., Chang H.L., Ki Yuol J., Park KD., Dokyoung L., Pil JK. (2009). Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil and Tillage Research, vol. 104, p 227-232.

Shak K.P.Y., Wu T.Y., Lim S.L., Lee C.A. (2014). Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production. Environmental Science and pollution Research, vol. 21, n° 2, p. 1349-1359.

Solano M.L., Iriate F., Ciria P., Negro M.J. (2001). Performance characteristics of three aeration systems in the composting of sheep manure and straw. Journal of Agricultural Engineering Research, vol. 79, p. 317-329.

Som M.P., Lemée L., Amblès A. (2009). Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption and thermochemolysis. Bioresource Technologie, vol. 100, p. 4404-4416.

Som M.P. (2006). Étude moléculaire des composés organiques de compost : formation, transformation dans les sols, action sur les propriétés des sols. Thèse de Doctorat, Université de Poitiers, France.

Stevenson F.J. (1994). Humus chemistry: Genesis, Composition, Reactions, 2nd Edition. Wiley-Interscience, New York.

Takeda M., Nakamoto T., Miyazawa K., Murayama T., Okad H. (2009). Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. Applied Soil Ecology, vol. 42, p. 86-95.

Tejada M., García-Martínez A.M., Parrado J. (2009). Effects of a vermicompost composted with beet vinasse on soil properties, soil losses and soil restoration. Catena, vol. 77, p. 238-247.

Tiquia S.M., Tam N.F.Y. (2000). Co-composting of spent pig litter and sludge with forced-aeration. Bioresource Technology, vol. 72, p. 1-7.

Toumpeli A., Pavlatou-Ve A.K., Kostopoulou S.K., Mamlos A.P., Siomos A.S., Kalburtji K.L. (2013). Composting phragmites australis Cav. Plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth. Journal of Environmental Management, vol. 128, p. 243-251.

Viel M. (1989). Contrôle et valorisation de la thermogenèse microbienne au cours de la biodégradation aérobie de déchets agro-industriels et urbains à teneurs variables en graisses. Thèse de l’Université de Toulouse, France. 166 p.

Yu H., Huang G.H. (2009). Effects of sodium acetate as a pH control amendment on the composting of food waste. Bioresource Technologie, vol. 100, p. 2005-2011.

Zhang L., Sun X. (2016). Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management, vol. 48, p. 115-126.

Zucconi F., De-Bertoldi M. (1987). Compost specifications for the production and characterization of compost from municipal solid waste. In de Bertoldi M et al (eds) Compost: production, quality and use. London, Elsevier Applied Science, p. 30-50.