Morphological and rheological study of TPS biocomposites blended in an original mixer based on elongational flows

Morphological and rheological study of TPS biocomposites blended in an original mixer based on elongational flows

Ragoubi, M. Terrié, C. Leblanc, N. 

Unité de Recherche agri'Terr-UniLaSalle Campus de Rouen, 3 rue du Tronquet, Mont Saint Aignan Cedex, 76 130, France

Corresponding Author Email:
31 December 2016
| Citation

This study describes the elaboration and characterization of plasticized starch composites based on lignocellulosic fibres. The transformation of native to plasticized starch and the preparation of TPS blends were done with a new lab-scale mixer based on an original concept. Firstly, the impact of process parameters (temperature, speed screw) on the quality and the structural properties of plasticized starch were examined by MEB and DRX. After that, we focused on the elaboration of various formulations based on plasticized starch matrix by varying TPS formulation, filler content and fibres length. The morphological and rheological properties of TPS/flax blends have been analyzed by TGA, MEB and DMTA. © Lavoisier 2016.


Extrusion, Lignocellulosic flax, Rheological and microstructural properties, RMX process, Starch biopolymer

Extended abstract
1. Introduction
2. Matériaux et procédure expérimentale
3. Résultats et discussion
4. Conclusion et perspectives

Les auteurs tiennent à remercier la région Normandie pour le soutien financier et Messieurs Nicolas Couvrat (Laboratoire SMS, université de Rouen), Sébastien Alix, Stéphane Buet (IFTS, Université de Reims) pour leurs apports techniques et scientifiques pour réaliser les analyses en DRX et DMA.


[1] Belhassen, R., Boufi, S., Vilaseca, F., López, J.P., Méndez, J.A., Franco, E., Pèlach, M.A., (...), Mutjé, P. (2009). Biocomposites based on Alfa fibers and starch-based biopolymer. Polymers for Advanced Technologies, 20 (12): 1068-1075.

[2] Bulkin, B.J., Kwak, Y., Dea, I.C.M. (1987). Retrogradation kinetics of waxy-corn and potato starches; a rapid, Raman-spectroscopic study. Carbohydrate Research, 160 (C): 95-112.

[3] Curvelo, A.A.S., De Carvalho, A.J.F., Agnelli, J.A.M. (2001). Thermoplastic starch-cellulosic fibers composites: Preliminary results. Carbohydrate Polymers, 45 (2): 183-188.

[4] Dufresne, A., Vignon, M.R. (1998). Improvement of starch film performances using cellulose microfibrils. Macromolecules, 31 (8): 2693-2696.

[5] Dufresne, A. (2000). Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Composite Interfaces, 7 (1): 53-67.

[6] Famá, L., Gerschenson, L., Goyanes, S. (2009). Starch-vegetable fibre composites to protect food products. Carbohydrate Polymers, 75 (2): 230-235.

[7] Xie, F., Halley, P.J., Avérous, L. (2012). Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in Polymer Science (Oxford), 37 (4): 595-623.

[8] Funke, U., Bergthaller, W., Lindhauer, M.G. (1998). Processing and characterization of biodegradable products based on starch. Polymer Degradation and Stability, 59 (1-3): 293-296.

[9] Gudmundsson, M. (1994). Retrogradation of starch and the role of its components. Thermochimica Acta, 246 (2): 329-341.

[10] Iannace, S., Ali, R., Nicolais, L. (2001). Effect of processing conditions on dimensions of sisal fibers in thermoplastic biodegradable composites. Journal of Applied Polymer Science, 79 (6): 1084-1091.<1084::AID-APP120>3.0.CO;2-J

[11] Kawabata, A., Sawayama, S., Nagashima, N., Nakamura, M. (1984). Journal of the Japanese Society of Starch Science, 31 (4): 224-232.

[12] Kim, H.-S., Yang, H.-S., Kim, H.-J., Lee, B.-J., Hwang, T.-S. (2005). Thermal properties of agro-flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 81 (2): 299-306.

[13] Liu, Q., Thompson, D.B. (1998). Effects of moisture content and different gelatinization heating temperatures on retrogradation of waxy-type maize starches. Carbohydrate Research, 314 (3-4): 221-235.

[14] Martin, O., Averous, L., Della Valle, G. (2003). In-line determination of plasticized wheat starch viscoelastic behavior: Impact of processing. Carbohydrate Polymers, 53 (2): 169-182.

[15] Mikus, P.-Y., Alix, S., Soulestin, J., Lacrampe, M.F., Krawczak, P., Coqueret, X., Dole, P. (2014). Deformation mechanisms of plasticized starch materials. Carbohydrate Polymers, 114: 450-457.

[16] Mittal, V., Chaudhry, A.U., Matsko, N.B. (2014). True biocomposites with biopolyesters and date seed powder: Mechanical, thermal, and degradation properties. Journal of Applied Polymer Science, 131 (19), art. no. 40816.

[17] Mohanty, A.K., Misra, M., Drzal, L.T. (2002). Sustainable Bio-Composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10 (1-2): 19-26.

[18] Tokihisa, M., Yakemoto, K., Sakai, T., Utracki, L.A., Sepehr, M., Li, J., Simard, Y. (2006). Extensional flow mixer for polymer nanocomposites. Polymer Engineering and Science, 46 (8): 1040-1050.

[19] Van Soest, J.J.G., De Wit, D., Vliegenthart, J.F.G. (1996). Mechanical properties of thermoplastic waxy maize starch. Journal of Applied Polymer Science, 61 (11): 1927-1937.

[20] Yu, L., Dean, K., Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science (Oxford), 31 (6): 576-602.