Study of recycling routes for poly-(propylene)/flax fibre non-woven composites

Study of recycling routes for poly-(propylene)/flax fibre non-woven composites

Karim BehlouliJustin Mérotte Jérémie Le Bihan Nicolas Renouard Antoine Kervoëlen Marie Fournet Alain Bourmaud 

Ecotechnilin SAS BP 244, 79197 Yvetot, France

Automotive Performance Materials Rue des Prés Potets, Parc des Cortots, 21121 Fontaine-lès-Dijon, France

Institut de Recherche Dupuy de Lôme, Université de Bretagne Sud Rue de Saint Maudé BP 92116, 56321 Lorient Cedex, France

Corresponding Author Email: 
karim@eco-technilin.com
Page: 
295-311
|
DOI: 
https://doi.org/10.3166/RCMA.26.295-311
Received: 
N/A
|
Accepted: 
N/A
|
Published: 
31 December 2016
| Citation
Abstract: 

The incorporation of plant fiber in thermoplastic composites is growing rapidly; the issue of recycling and management of wastes of these new materials arises. In this article, we studied two different technology paths to value of shredded clipping of PP-flax non-woven composites; these products being currently not recycled. Firstly, we reintroduced a fraction of crushed cutting wastes in a nonwoven PP-flax during its manufacture phase, which represents a strongly innovating process. Despite a significant drop in fiber lengths that penalizes the impact strength of the nonwoven composites, mechanical characterization of these new products have shown good behavior in bending until an incorporation rate of 30% by weight of wastes. The second part of the study is dedicated to the manufacture of compounds from cutting wastes. The rheology of the products, their structure and mechanical properties allow to consider industrial uses of these compounds that are able to compete with existing biocomposites, especially regarding their tensile stress and impact energy. 

Keywords: 

thermoplastic, vegetal fiber, recycling, mechanical properties, viscosity, injection moulding, life cycle analysis

Extended abstract
1. Introduction
2. Matériaux et méthodes
3. Résultats et discussion
4. Conclusion
Remerciements

Les auteurs souhaitent remercier le ministère de la Recherche ainsi que l’Agence pour le Développement et la Maîtrise de l’Énergie (ADEME) pour leur soutien financier.

  References

Ausias G., Bourmaud A., Coroller G., Baley C. (2013). Study of the fibre morphology stability in polypropylene-flax composites. Polym. Degrad. Stab. 98, 1216-1224.

Barkoula N.M., Garkhail S.K., Peijs T. (2010). Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind. Crops Prod. 31, 34–42.

Bax B., Müssig J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos. Sci. Technol. 68, 1601–1607.

Beaugrand J., Berzin F. (2013). Lignocellulosic fiber reinforced composites: Influence of compounding conditions on defibrization and mechanical properties. J. Appl. Polym. Sci. 128, 1227–1238.

Bos H.L., Müssig J., van den Oever M.J.A. (2006). Mechanical properties of short-flax-fibre reinforced compounds. Compos. Part A Appl. Sci. Manuf. 37, 1591–1604.

Bourmaud A., Akesson D., Beaugrand J., Le Duigou A., Skrifvars M., Baley C. (2016). Recycling of L-Poly-(lactide)-Poly-(butylene-succinate)-flax biocomposite. Polym. Degrad. Stab. 128, 77-88.

Bourmaud A., Ausias G., Lebrun G., Tachon M.L., Baley C., (2013). Observation of the structure of a composite polypropylene/flax and damage mechanisms under stress. Ind. Crops Prod. 43, 225–236.

Bourmaud A., Baley C., (2009). Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polym. Degrad. Stab. 94, 297–305.

Bourmaud A., Baley C. (2007). Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym. Degrad. Stab. 92, 1034–1045.

Bourmaud A., Corre Y.-M., Baley C. (2015). Fully biodegradable composites: Use of poly-(butylene-succinate) as a matrix and to plasticize l-poly-(lactide)-flax blends. Ind. Crops Prod. 64, 251–257.

Bourmaud A., Le Duigou A., Baley C. (2011). What is the technical and environmental interest in reusing a recycled polypropylene–hemp fibre composite? Polym. Degrad. Stab. 96, 1732–1739.

Bourmaud A., Morvan C., Baley C. (2010). Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Ind. Crops Prod. 32, 662–667.

Dickson A.R., Even D., Warnes J.M., Fernyhough A. (2014). The effect of reprocessing on the mechanical properties of polypropylene reinforced with wood pulp, flax or glass fibre. Compos. Part A Appl. Sci. Manuf. 61, 258–267.

Doumbia A.S., Castro M., Jouannet D., Kervoëlen A., Falher T., Cauret L., Bourmaud A. (2015). Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fibre parameters. Mater. Des. 87, 331–341

Duval C. (2010). Plastiques et automobile : D’hier à aujourd’hui. Tech. l’ingénieur. Plast. Compos. Am5390

Meirhaeghe C. (2011). Evaluation de la disponibilité et de l’accessibilité de fibres végétales à usages matériaux en France, rapport ADEME.

Joshi S. V, Drzal L.T., Mohanty A.K., Arora S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 35, 371–376.

Kelly A., Tyson W.R. (1965). Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids 13, 329–338.

Koenig C., Mueller D., (2008). Acoustical Properties of Reinforced Composite Materials Basing on Natural Fibers. Proceedings of the INTC-International Nonwovens Technical Conference, Atlanta.

Le Duigou A., Davies P., Baley C. (2011). Environmental Impact Analysis of the Production of Flax Fibres to be Used as Composite Material Reinforcement. J. Biobased Mater. Bioenergy, Vol. 5, 153–165.

Le Duigou A., Pillin I., Bourmaud A., Davies P., Baley C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos. Part A Appl. Sci. Manuf. 39, 1471–1478.

Lefeuvre A., Bourmaud A., Morvan C., Baley C. (2014). Tensile properties of elementary fibres of flax and glass: Analysis of reproducibility and scattering. Mater. Lett. 130, 289–291.

Mérotte J., Le Duigou A., Bourmaud A., Behlouli K., Baley C. (2016). Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polym. Test, 51, 174-180.

Miao M., Shan M. (2011). Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos. Sci. Technol. 71, 1713–1718.

Mieck K.-P., Lützkendorf R., Reussmann T. (1996). Needle-Punched hybrid nonwovens of flax and ppfibers—textile semiproducts for manufacturing of fiber composites. Polym. Compos. 17, 873–878.

Oksman K. (2000). Mechanical properties of natural fibre mat reinforced thermoplastic. Appl. Compos. Mater. 7, 403–414.

Parlement européen (2009). Règlement (CE) No 443/2009 du Parlement européen et du Conseil.

Pervaiz M., Sain M.M. (2003). Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 39, 325–340.

PlasticsEurope (2014). Les matières plastiques accompagnent la révolution automobile – www.plasticseurope.fr.

S. Russell (2006). Handbook of Nonwovens, Woodhead Publishing.

Soccalingame L., Bourmaud A., Perrin D., Bénézet J.-C., Bergeret A. (2015). Reprocessing of wood flour reinforced polypropylene composites: Impact of particle size and coupling agent on composite and particle properties. Polym. Degrad. Stab. 113, 72–85.

Van de Velde K., Kiekens P. (2001). Thermoplastic polymers: overview of several properties and their consequences in flax fibre reinforced composites. Polym. Test. 20, 885–893.

Xu X., Jayaraman K., Morin C., Pecqueux N. (2008). Life cycle assessment of wood-fibre-reinforced polypropylene composites. J. Mater. Process. Technol. 198, 168–177.